

# ANNA UNIVERSITY, CHENNAI 600 025 NON- AUTONOMOUS AFFILIATED COLLEGES REGULATIONS 2021 CHOICE BASED CREDIT SYSTEM

**B. E. BIOMEDICAL ENGINEERING** 

# I. PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- 1. To enable the graduates to demonstrate their skills in design and develop medical devices for health care system through the core foundation and knowledge acquired in engineering and biology.
- 2. To enable the graduates to exhibit leadership in health care team to solve health care problems and make decisions with societal and ethical responsibilities.
- 3. To Carryout multidisciplinary research, addressing human healthcare problems and sustain technical competence with ethics, safety and standards.
- 4. To ensure that graduates will recognize the need for sustaining and expanding their technical competence and engage in learning opportunities throughout their careers.

# II. PROGRAM OUTCOMES (POs)

- 1 **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2 **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3 **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4 **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5 **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

- 6 **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7 **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8 **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9 **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10 **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11 **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12 **Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

# III. PROGRAM SPECIFIC OUTCOMES (PSOs)

- To design and develop diagnostic and therapeutic devices that reduces physician burnout and enhance the quality of life for the end user by applying fundamentals of Biomedical Engineering.
- 2. To apply software skills in developing algorithms for solving healthcare related problems in various fields of Medical sector.
- 3. To adapt to emerging information and communication technologies (ICT) to innovate ideas and solutions for current societal and scientific issues thereby developing indigenous medical instruments that are on par with the existing technology

|      |     | Mappin                                                          | g of | Cou | rse Ou | tcom | e and | Prog           | gramr | ne Ou | tcome | <del>)</del> |    |     |    |   |   |
|------|-----|-----------------------------------------------------------------|------|-----|--------|------|-------|----------------|-------|-------|-------|--------------|----|-----|----|---|---|
| Year | Sem | Course name                                                     |      |     | РО     | )    |       |                |       |       |       |              |    |     | PS | 0 |   |
|      |     |                                                                 | 1    | 2   | 3      | 4    | 5     | 6              | 7     | 8     | 9     | 10           | 11 | 12  | 1  | 2 | 3 |
|      | ı   | Induction Programme                                             |      |     |        |      |       |                |       |       |       |              |    |     |    |   |   |
| I    |     | Professional English - I                                        | 1.6  | 2.2 | 1.8    | 2.2  | 1.5   | 3              | 3     | 3     | 1.6   | 3            | 3  | 3   | -  | - | - |
|      |     | Matrices and Calculus                                           | 3    | 3   | 1      | 1    | 0     | 0              | 0     | 0     | 2     | 0            | 2  | 3   | -  | - | - |
|      |     | Engineering Physics                                             | 3    | 3   | 1.6    | 1.2  | 1.8   | 1              | -     | -     | -     | ı            | -  | 1   | -  | - | - |
|      |     | Engineering Chemistry                                           | 2.8  | 1.3 | 1.6    | 1    | -     | 1.5            | 1.8   | -     |       | -            | -  | 1.5 | -  | - | - |
|      |     | Problem Solving and<br>Python Programming                       | 2    | 3   | 3      | 3    | 2     | -              | -     | -     | -     | 1            | 2  | 2   | 3  | 3 |   |
|      |     | தமிழர் மரபு<br>/Heritage of Tamils                              |      |     |        |      |       |                |       | _     |       |              |    |     |    |   |   |
|      |     | Problem Solving and<br>Python Programming<br>Laboratory         | 2    | 3   | 3      | 3    | 2     | $\overline{V}$ | Ē     | ζ.    | F     | -            | 2  | 2   | 3  | 3 | - |
|      |     | Physics and Chemistry<br>Laboratory                             | 3    | 2.4 | 2.6    | 1    | 1     |                |       | Ū.    | M     |              | _  |     |    |   |   |
|      |     |                                                                 | 2.6  | 1.3 | 1.6    | 1    | 1     | 1.4            | 1.8   | 5     | ()    | Š            | 4  | 1.3 | -  | - | - |
|      |     | English Laboratory \$                                           | 3    | 3   | 3      | 3    | 1     | 3              | 3     | 3     | 3     | 3            | 3  | 3   | -  | - | - |
|      | II  | Professional English - II                                       | 3    | 3   | 3      | 3    | 2.75  | 3              | 3     | 3     | 2.2   | 3            | 3  | 3   | -  | - | - |
|      |     | Statistics and<br>Numerical Methods                             | 3    | 3   | 1      | 1    | 1     | 0              | 0     | 0     | 2     | 0            | 2  | 3   | -  | - | - |
|      |     | Biosciences for Medical<br>Engineering                          |      |     |        |      |       |                |       |       |       |              |    |     |    |   |   |
|      |     | Basic Electrical and<br>Electronics Engineering                 | 2    | 1.8 | 1      | -    |       |                | -     | 1     | -     | -            | -  | 2   | -  | - | 1 |
|      |     | Medical Physics                                                 |      |     |        | 7    |       |                |       | /     | /     |              |    |     |    |   |   |
|      |     | Engineering Graphics                                            | 3    | 1   | 2      | -    | 2     | 4              | - 1   | -     | F     | 3            | 1  | 2   | 2  | 2 | - |
|      |     | தமிழரும்<br>தொழில்நுட்பமும்<br>/Tamils and<br>Technology        |      |     |        |      |       |                |       |       | 1     |              | 7  |     |    |   |   |
|      |     | Engineering Practices Laboratory                                | 3    | 2   | ST     | HR   | đυ    | GF             | l KI  | VOV   | VI I  | in(          | ì. | 2   | 2  | 1 | 1 |
|      |     | Biosciences Laboratory                                          |      |     |        |      |       |                |       |       |       |              |    |     |    |   |   |
|      |     | Communication<br>Laboratory / Foreign<br>Language <sup>\$</sup> | 2.4  | 2.8 | 3      | 3    | 1.8   | 3              | 3     | 3     | 3     | 3            | 3  | 3   | -  | - | - |
| II   | III | Transforms and Partial Differential Equations                   | 3    | 3   | 1      | 1    | 0     | 0              | 0     | 0     | 2     | 0            | 0  | 3   | -  | - | - |
|      |     | Fundamentals of<br>Electronic Devices and<br>Circuits           | 3    | 3   | 3      |      | -     | 1              | -     | -     | -     | 1            | -  | -   | 1  | - | - |
|      |     | Sensors and<br>Measurements                                     | 3    | 3   | 2      | 1    | -     | -              | -     | -     | -     | -            | -  | -   | 1  | - | - |
|      |     | Electric Circuit Analysis                                       | 3    | 3   | 2      | 1    | -     | -              | -     | -     | -     | -            | -  | 1   | 1  | - | - |
|      |     | Anatomy and Human<br>Physiology                                 | 3    | 3   | 2      | -    | -     | 1              | -     | 1     | -     | -            | -  | 1   | 1  | - | - |
|      |     | Object oriented                                                 | 3    | 3   | 1      | 1    | 1     | -              | -     | -     | -     | -            | -  | -   | -  | 1 | 1 |

|     |     | programming                                                      |     |     |          |   |   |     |     |     |      |      |    |     |   |   |   |
|-----|-----|------------------------------------------------------------------|-----|-----|----------|---|---|-----|-----|-----|------|------|----|-----|---|---|---|
|     |     | Fundamentals of<br>Electronic Devices and<br>Circuits Laboratory | 3   | 2   | 1        | 1 | 1 | -   | -   | -   | 1    | 2    | -  | 1   | - | 1 | 1 |
|     |     | Sensors and<br>Measurements<br>Laboratory                        | 3   | 2   | 1        | 1 | - | -   | -   | -   | 1    | 2    | 1  | -   | 2 | - | - |
|     |     | Object oriented<br>programming<br>Laboratory                     | 3   | 3   | 1        | 1 | 1 | -   | -   | -   | -    | 1    | 1  | -   | - | 1 | 1 |
|     |     | Professional<br>Development <sup>\$</sup>                        |     |     |          |   |   |     |     |     |      |      |    |     |   |   |   |
|     | IV  | Random Processes and Linear Algebra                              | 3   | 3   | 0        | 0 | 0 | 0   | 0   | 0   | 3    | 0    | 0  | 2   | - | - | - |
|     |     | Biomedical<br>Instrumentation                                    | 3   | 2   | 1        | 1 | - | -   | -   | -   | -    | -    | 1  | -   | 2 | 1 | - |
|     |     | Analog and Digital Integrated Circuits                           | 3   | 2   | 1        | 1 | 1 | -   | -   | :0  | -    | -    | -  | -   | 2 | - | - |
|     |     | Bio Control Systems                                              | 3   | 2   | 2        | 2 | 1 | 17  | T   | 4-  | F    | -    | -  | -   | 2 | 1 | - |
|     |     | Signal Processing                                                | 3   | 2   | 2        | 2 | 1 | Y   | Œ,  | 9:  | 1    | 1    | 1  | 1   | 2 | 1 | - |
|     |     | Environmental Sciences and Sustainability                        | 2.8 | 1.8 | 1        | 1 | - | 2.2 | 2.4 | 2%  |      | F    | 3  | 1.8 | - | - | - |
|     |     | Biomedical<br>Instrumentation<br>Laboratory                      | 3   | 3   | 1        | 1 | 1 | 1   | -   |     | 1    | 1    | 1  | -   | 1 | - | 1 |
|     |     | Analog and Digital<br>Integrated Circuits<br>Laboratory          | 3   | 3   | 1        | 1 | 1 | -   | -   |     | 1    | 1    | 1  |     | 1 | - | - |
| III | V   | Embedded Systems and IoMT                                        | 3   | 2   | 1        | 1 | 1 | -   | -   | -   | _    | -    | -  | 1   | 1 | 1 | - |
|     |     | Diagnostic and<br>Therapeutic Equipment                          | 3   | 2   | 1        |   | 1 | -   | -   | 7 - | -/   | -    | -  | 1   | 2 |   | 1 |
|     |     | Embedded systems and IOMT Laboratory                             | 3   | 3   | 1        | 1 | 1 | 1   |     | -   | 1    | 1    | 1  | -   | 1 | - | - |
|     |     | Diagnostic and<br>Therapeutic Equipment<br>Laboratory            | 3   | 3   | 1        | 1 | 1 | -   | 7   |     | 1    | 1    | 1  | 1   | 2 | - | 1 |
|     | VI  | Artificial Intelligence and Machine Learning                     | 2   | 1   | 2        | 2 | 1 | -   | _   | 7   | 2    | 2    | 2  | 3   | 2 | 2 | 2 |
|     |     | Fundamentals of<br>Healthcare Analytics                          | 3   | 3   | <b>1</b> | 1 | 1 | GE  | IK  | NOV | VI I | F))( | ìΕ | 1   | 1 | - | 1 |
|     |     | Medical Image<br>Processing                                      | 3   | 3   | 1        | 1 | 1 | -   | -   | -   | -    | -    | -  | 1   | 1 | - | 1 |
| IV  | VII | Human Values and<br>Ethics                                       |     |     |          |   |   |     |     |     |      |      | _  |     | _ |   |   |
|     |     | Hospital Training                                                |     |     |          |   |   |     |     |     |      |      |    |     |   |   |   |
|     |     | Project Work / Internship                                        |     |     |          |   |   |     |     |     |      |      |    |     |   |   |   |

1 - low, 2 - medium, 3 - high, '-' - no correlation

# ANNA UNIVERSITY, CHENNAI 600 025 NON- AUTONOMOUS AFFILIATED COLLEGES REGULATIONS 2021

# B. E. BIOMEDICAL ENGINEERING CHOICE BASED CREDIT SYSTEM CURRICULUM AND SYLLABI FOR SEMESTERS I TO VIII

#### SEMESTER I

| S.   | COURSE | COURSE TITLE                                      | CATE- |     | IODS<br>WEEK |               | TOTAL<br>CONTACT | CREDITS |
|------|--------|---------------------------------------------------|-------|-----|--------------|---------------|------------------|---------|
| NO.  | CODE   |                                                   | GORY  | L   | Т            | Р             | PERIODS          |         |
| 1.   | IP3151 | Induction Programme                               | -     | -   | -            | -             | -                | 0       |
| THEO | RY     |                                                   |       |     |              |               |                  |         |
| 2.   | HS3152 | Professional English - I                          | HSMC  | 3   | 0            | 0             | 3                | 3       |
| 3.   | MA3151 | Matrices and Calculus                             | BSC   | 3   | 1            | 0             | 4                | 4       |
| 4.   | PH3151 | Engineering Physics                               | BSC   | 3   | 0            | 0             | 3                | 3       |
| 5.   | CY3151 | Engineering Chemistry                             | BSC   | 3   | 0            | 0             | 3                | 3       |
| 6.   | GE3151 | Problem Solving and Python Programming            | ESC   | 3   | 0            | 0             | 3                | 3       |
| 7.   | GE3152 | தமிழர் மரபு /Heritage of Tamils                   | HSMC  | 1   | 0            | 0             | 1                | 1       |
| PRAC | TICALS |                                                   |       | . " | //:          | $\overline{}$ | 7                |         |
| 8.   | GE3171 | Problem Solving and Python Programming Laboratory | ESC   | 0   | 0            | 4             | 4                | 2       |
| 9.   | BS3171 | Physics and Chemistry Laboratory                  | BSC   | 0   | 0            | 4             | 4                | 2       |
| 10.  | GE3172 | English Laboratory \$                             | EEC   | 0   | 0            | 2             | 2                | 1       |
|      |        |                                                   | TOTAL | 16  | 1            | 10            | 27               | 22      |

# \$ Skill Based Course

# **SEMESTER II**

| 6    | S. COURSE | COURSE TITLE                                       | CATE- |    | IODS |    | TOTAL   |         |
|------|-----------|----------------------------------------------------|-------|----|------|----|---------|---------|
| NO.  | CODE      | COURSE TITLE                                       | GORY  |    | WEEK |    | CONTACT | CREDITS |
| 140. | CODE      |                                                    | CORT  | /L | T    | Р  | PERIODS |         |
| THE  | ORY       | 1 / / [                                            |       | /  | 7    |    |         |         |
| 1.   | HS3252    | Professional English - II                          | HSMC  | 2  | 0    | 0  | 2       | 2       |
| 2.   | MA3251    | Statistics and Numerical Methods                   | BSC   | 3  | 1    | 0  | 4       | 4       |
| 3.   | BM3251    | Biosciences for Medical Engineering                | PCC   | 3  | 0    | 0  | 3       | 3       |
| 4.   | BE3251    | Basic Electrical and Electronics Engineering       | ESC   | 3  | 0    | 0  | 3       | 3       |
| 5.   | BM3252    | Medical Physics                                    | PCC   | 3  | 0    | 0  | 3       | 3       |
| 6.   | GE3251    | Engineering Graphics                               | ESC   | 2  | 0    | 4  | 6       | 4       |
| 7.   | GE3252    | தமிழரும் தொழில்நுட்பமும்<br>/Tamils and Technology | HSMC  | 1  | 0    | 0  | 1       | 1       |
| 8.   |           | NCC Credit Course Level 1#                         | -     | 2  | 0    | 0  | 2       | 2*      |
| PRA  | CTICALS   |                                                    |       | •  | •    |    |         |         |
| 9.   | GE3271    | Engineering Practices Laboratory                   | ESC   | 0  | 0    | 4  | 4       | 2       |
| 10.  | BM3271    | Biosciences Laboratory                             | PCC   | 0  | 0    | 4  | 4       | 2       |
| 11.  | GE3272    | Communication Laboratory / Foreign Language \$     | EEC   | 0  | 0    | 4  | 4       | 2       |
|      |           |                                                    | TOTAL | 17 | 1    | 16 | 34      | 26      |

<sup>\*</sup> NCC Credit Course level 1 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.

<sup>\$</sup> Skill Based Course

# **SEMESTER III**

| S.   | S. COURSE<br>NO. CODE | COURSE TITLE                                               | CATE  |    | RIOD<br>R WE |    | TOTAL<br>CONTACT | CREDITS |
|------|-----------------------|------------------------------------------------------------|-------|----|--------------|----|------------------|---------|
| NO.  | CODE                  |                                                            | GORY  | L  | Т            | Р  | PERIODS          |         |
| THE  | DRY                   |                                                            |       |    | •            |    |                  |         |
| 1.   | MA3351                | Transforms and Partial Differential Equations              | BSC   | 3  | 1            | 0  | 4                | 4       |
| 2.   | BM3353                | Fundamentals of Electronic Devices and Circuits            | ESC   | 3  | 0            | 0  | 3                | 3       |
| 3.   | BM3301                | Sensors and Measurements                                   | PCC   | 3  | 0            | 0  | 3                | 3       |
| 4.   | BM3352                | Electric Circuit Analysis                                  | ESC   | 3  | 0            | 0  | 3                | 3       |
| 5.   | BM3351                | Anatomy and Human<br>Physiology                            | PCC   | 3  | 0            | 2  | 5                | 4       |
| 6.   | CS3391                | Object oriented programming                                | ESC   | 3  | 0            | 0  | 3                | 3       |
| PRAC | CTICALS               |                                                            |       |    |              |    |                  |         |
| 7.   | BM3361                | Fundamentals of Electronic Devices and Circuits Laboratory | ESC   | 0  | 0            | 3  | 3                | 1.5     |
| 8.   | BM3311                | Sensors and Measurements Laboratory                        | PCC   | 0  | 0            | 3  | 3                | 1.5     |
| 9.   | CS3381                | Object oriented programming<br>Laboratory                  | ESC   | 0  | 0            | 3  | 3                | 1.5     |
| 10.  | GE3361                | Professional Development\$                                 | EEC   | 0  | 0            | 2  | 2                | 1       |
|      | •                     | 18744                                                      | TOTAL | 18 | 1            | 13 | 32               | 25.5    |

<sup>\$</sup> Skill Based Course

# **SEMESTER IV**

| S.   | S. COURSE<br>NO. CODE | COURSE TITLE                                      | CATE<br>GORY |    | RIO<br>R WE | _ | TOTAL<br>CONTACT | CREDITS |
|------|-----------------------|---------------------------------------------------|--------------|----|-------------|---|------------------|---------|
| 140. | CODE                  |                                                   | 501          | L  | Т           | Р | PERIODS          |         |
| THEC | DRY                   |                                                   |              |    |             |   |                  |         |
| 1.   | MA3355                | Random Processes and Linear Algebra               | BSC          | 3  | 1           | 0 | 4                | 4       |
| 2.   | BM3491                | Biomedical Instrumentation                        | PCC          | 3  | 0           | 0 | 3                | 3       |
| 3.   | BM3402                | Analog and Digital Integrated Circuits            | PCC          | 3  | 0           | 0 | 3                | 3       |
| 4.   | BM3451                | Bio Control Systems                               | PCC          | 3  | 0           | 0 | 3                | 3       |
| 5.   | BM3401                | Signal Processing                                 | PCC          | 3  | 0           | 2 | 5                | 4       |
| 6.   | GE3451                | Environmental Sciences and Sustainability         | BSC          | 2  | 0           | 0 | 2                | 2       |
| 7.   |                       | NCC Credit Course Level 2*                        |              | 3  | 0           | 0 | 3                | 3 #     |
| PRAC | CTICALS               |                                                   |              |    |             |   |                  |         |
| 8.   | BM3411                | Biomedical Instrumentation<br>Laboratory          | PCC          | 0  | 0           | 3 | 3                | 1.5     |
| 9.   | BM3412                | Analog and Digital Integrated Circuits Laboratory | PCC          | 0  | 0           | 3 | 3                | 1.5     |
|      |                       |                                                   | TOTAL        | 17 | 1           | 8 | 26               | 22      |

<sup>\*</sup> NCC Credit Course level 2 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.

#### **SEMESTER V**

| S.<br>NO. | COURSE  | COURSE TITLE                                    | CATE  |   | IODS<br>WEE | S PER<br>K | TOTAL<br>CONTACT | CREDITS |
|-----------|---------|-------------------------------------------------|-------|---|-------------|------------|------------------|---------|
| NO.       | CODE    |                                                 | GORT  | L | T           | Р          | PERIODS          |         |
| THEC      | DRY     |                                                 |       |   |             |            |                  |         |
| 1.        | BM3551  | Embedded Systems and IoMT                       | PCC   | 3 | 0           | 0          | 3                | 3       |
| 2.        | BM3591  | Diagnostic and Therapeutic Equipment            | PCC   | 3 | 0           | 0          | 3                | 3       |
| 3.        |         | Professional Elective I                         | PEC   | - |             | 1          | -                | 3       |
| 4.        |         | Professional Elective II                        | PEC   | - | -           | -          | -                | 3       |
| 5.        |         | Professional Elective III                       | PEC   | - | -           | -          | -                | 3       |
| 6.        |         | Mandatory Course-I&                             | MC    | 3 | 0           | 0          | 3                | 0       |
| PRAC      | CTICALS |                                                 |       | • | -           |            |                  |         |
| 7.        | BM3562  | Embedded systems and IOMT Laboratory            | PCC   | 0 | 0           | 3          | 3                | 1.5     |
| 8.        | BM3561  | Diagnostic and Therapeutic Equipment Laboratory | PCC   | 0 | 0           | 4          | 4                | 2       |
|           |         | A TOP                                           | TOTAL |   | 47          | 7          |                  | 18.5    |

<sup>&</sup>amp; Mandatory Course-I is a Non-credit Course (Student shall select one course from the list given under Mandatory Course-I)

#### **SEMESTER VI**

| S.<br>NO. | COURSE | COURSE TITLE                                 | CATE  |   | WEE | S PER<br>K | TOTAL<br>CONTACT | CREDITS |
|-----------|--------|----------------------------------------------|-------|---|-----|------------|------------------|---------|
| 140.      | CODE   |                                              | GOKT  | L | T   | Р          | PERIODS          |         |
| THEC      | DRY    |                                              |       |   |     |            |                  |         |
| 1.        | CS3491 | Artificial Intelligence and Machine Learning | PCC   | 3 | 0   | 2          | 5                | 4       |
| 2.        | BM3651 | Fundamentals of Healthcare Analytics         | PCC   | 3 | 0   | 0          | 3                | 3       |
| 3.        | BM3652 | Medical Image Processing                     | PCC   | 3 | 0   | 2          | 5                | 4       |
| 4.        |        | Open Elective – I*                           | OEC   | 3 | 0   | 0          | 3                | 3       |
| 5.        |        | Professional Elective IV                     | PEC   |   | -   | 1          | -                | 3       |
| 6.        |        | Professional Elective V                      | PEC   | - |     |            | -                | 3       |
| 7.        |        | Professional Elective VI                     | PEC   | - | -   | -          | -                | 3       |
| 8.        |        | Mandatory Course-II &                        | MC    | 3 | 0   | 0          | 3                | 0       |
| 9.        |        | NCC Credit Course Level 3#                   |       | 3 | 0   | 0          | 3                | 3#      |
|           |        |                                              | TOTAL | - | -   | -          | -                | 23      |

<sup>\*</sup>Open Elective - I Shall be chosen from the list of open electives offered by other Programmes

<sup>&</sup>lt;sup>&</sup> Mandatory Course-II is a Non-credit Course (Student shall should select one course from the list given under Mandatory Course-II)

<sup>\*</sup> NCC Credit Course level 3 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

# **SEMESTER VII / VIII\***

| S.<br>NO | COURSE  | COURSE TITLE            | CATE<br>GORY |    | RIO<br>R WE | _ | TOTAL<br>CONTACT | CREDITS |  |
|----------|---------|-------------------------|--------------|----|-------------|---|------------------|---------|--|
|          | CODE    |                         | GOKT         | L  | Т           | Р | PERIODS          |         |  |
| THE      | ORY     |                         |              |    |             |   |                  |         |  |
| 1.       | GE3791  | Human Values and Ethics | HSMC         | 2  | 0           | 0 | 2                | 2       |  |
| 2.       |         | Management – Elective#  | HSMC         | 3  | 0           | 0 | 3                | 3       |  |
| 3.       |         | Open Elective – II**    | OEC          | 3  | 0           | 0 | 3                | 3       |  |
| 4.       |         | Open Elective – III**   | OEC          | 3  | 0           | 0 | 3                | 3       |  |
| 5.       |         | Open Elective – IV**    | OEC          | 3  | 0           | 0 | 3                | 3       |  |
| PRA      | CTICALS |                         |              |    |             |   |                  |         |  |
| 6.       | BM3711  | Hospital Training       | EEC          | 0  | 0           | 0 | 0                | 2       |  |
|          |         |                         | TOTAL        | 14 | 0           | 0 | 14               | 16      |  |

<sup>\*</sup>If students undergo internship in Semester VII, then the courses offered during semester VII will be offered during semester VIII.

#### SEMESTER VIII /VII\*

| S.<br>NO | COURSE<br>CODE | COURSE TITLE              | CATE<br>GORY | PERIODS PER WEEK L T P |   | EEK | TOTAL<br>CONTACT<br>PERIODS | CREDITS |
|----------|----------------|---------------------------|--------------|------------------------|---|-----|-----------------------------|---------|
| PRA      | CTICALS        |                           |              |                        |   |     |                             |         |
| 1.       | BM3811         | Project Work / Internship | EEC          | 0                      | 0 | 20  | 20                          | 10      |
|          |                |                           | TOTAL        | 0                      | 0 | 20  | 20                          | 10      |

<sup>\*</sup>If students undergo internship in Semester VII, then the courses offered during semester VII will be offered during semester VIII.

**TOTAL CREDITS: 163** 

# **ELECTIVE - MANAGEMENT COURSES**

| S.<br>NO | COURSE | COURSE TITLE                                   | CATE<br>GORY |    |    | DS<br>EEK | TOTAL<br>CONTACT | CREDITS |
|----------|--------|------------------------------------------------|--------------|----|----|-----------|------------------|---------|
| INU      | CODE   | DDACDECC TUD                                   | GORT         | L/ | T) | Р         | PERIODS          |         |
| 1.       | GE3751 | Principles of Management                       | HSMC         | 3  | 0  | 0         | 3                | 3       |
| 2.       | GE3752 | Total Quality Management                       | HSMC         | 3  | 0  | 0         | 3                | 3       |
| 3.       | GE3753 | Engineering Economics and Financial Accounting | HSMC         | 3  | 0  | 0         | 3                | 3       |
| 4.       | GE3754 | Human Resource<br>Management                   | HSMC         | 3  | 0  | 0         | 3                | 3       |
| 5.       | GE3755 | Knowledge Management                           | HSMC         | 3  | 0  | 0         | 3                | 3       |
| 6.       | GE3792 | Industrial Management                          | HSMC         | 3  | 0  | 0         | 3                | 3       |

<sup>\*\*</sup> Open Elective II - IV (Shall be chosen from the list of open electives offered by other Programmes).

<sup>#</sup> Management - Elective shall be chosen from the Management Elective courses.

# **MANDATORY COURSES I**

| S.<br>NO. | , COURSE   COURSE IIII |                                          | CATE |   |   | DDS<br>EEK | TOTAL<br>CONTACT | CREDITS |
|-----------|------------------------|------------------------------------------|------|---|---|------------|------------------|---------|
| NO.       | CODE                   |                                          | GOKT | L | T | Р          | PERIODS          |         |
| 1.        | MX3081                 | Introduction to Women and Gender Studies | MC   | 3 | 0 | 0          | 3                | 0       |
| 2.        | MX3082                 | Elements of Literature                   | MC   | 3 | 0 | 0          | 3                | 0       |
| 3.        | MX3083                 | Film Appreciation                        | MC   | 3 | 0 | 0          | 3                | 0       |
| 4.        | MX3084                 | Disaster Risk Reduction and Management   | МС   | 3 | 0 | 0          | 3                | 0       |

# **MANDATORY COURSES II**

| S.<br>NO. | COURSE | COURSE TITLE                                                      | CATE<br>GORY |   | PERIODS<br>PER WEEK |   | TOTAL<br>CONTACT | CREDITS |
|-----------|--------|-------------------------------------------------------------------|--------------|---|---------------------|---|------------------|---------|
| NO.       | CODE   |                                                                   | GOKT         | L | Т                   | P | PERIODS          |         |
| 1.        | MX3085 | Well Being with Traditional Practices - Yoga, Ayurveda and Siddha | МС           | 3 | 0                   | 0 | 3                | 0       |
| 2.        | MX3086 | History of Science and Technology in India                        | MC           | 3 | 0                   | 0 | 3                | 0       |
| 3.        | MX3087 | Political and Economic Thought for a Humane Society               | МС           | 3 | 0                   | 0 | 3                | 0       |
| 4.        | MX3088 | State, Nation Building and Politics in India                      | MC           | 3 | 0                   | 0 | 3                | 0       |
| 5.        | MX3089 | Industrial Safety                                                 | MC           | 3 | 0                   | 0 | 3                | 0       |

PROGRESS THROUGH KNOWLEDGE

#### PROFESSIONAL ELECTIVE COURSES: VERTICALS

| Vertical I<br>Bio<br>Engineering       | Vertical II<br>Medical Device<br>Innovation and<br>Development | Vertical III<br>Management<br>(Healthcare)   | Vertical IV<br>Mechanics      | Vertical V<br>Signal and Image<br>Processing    | Verticals<br>VI<br>Communication                          | Verticals<br>VII<br>Advanced<br>Healthcare<br>Devices |
|----------------------------------------|----------------------------------------------------------------|----------------------------------------------|-------------------------------|-------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------|
| Biomaterials                           | Foundation Skills in<br>Integrated Product<br>Development      | Clinical Engineering                         | Biomechanics                  | Bio Signal Processing                           | Communication<br>Systems                                  | Bio MEMS                                              |
| Artificial Organs and Implants         | Medical Device<br>Design                                       | Hospital Planning and Management             | Rehabilitation<br>Engineering | Computer Vision                                 | Wearable Devices                                          | Critical Care<br>Equipment                            |
| Biomedical<br>Optics and<br>Photonics  | Patient safety,<br>Standards and<br>Ethics                     | Medical Waste<br>Management                  | Physiological<br>Modelling    | Speech and Audio<br>Signal Processing           | Body Area Networks                                        | Human Assist<br>Devices                               |
| Neural<br>Engineering                  | Medical Device<br>Regulations                                  | Economics and<br>Management for<br>Engineers | Assistive<br>Technology       | Medical Imaging<br>Systems                      | Virtual Reality and<br>Augmented Reality in<br>Healthcare | Advancements in<br>Healthcare<br>Technology           |
| Principles of<br>Tissue<br>Engineering | Medical Innovation<br>and<br>Entrepreneurship                  | Biostatistics                                | Ergonomics                    | Brain Computer<br>Interface and<br>Applications | Telehealth<br>Technology                                  | Robotics in<br>Medicine                               |
| Genetic<br>Engineering                 | Rapid Prototyping                                              | Forensic Science in Healthcare               | Haptics                       | Biometrics                                      | Medical Informatics                                       | Therapeutic<br>Equipment                              |

#### Registration of Professional Elective Courses from Verticals:

Professional Elective Courses will be registered in Semesters V and VI. These courses are listed in groups called verticals that represent a particular area of specialisation / diversified group. Students are permitted to choose all the Professional Electives from a particular vertical or from different verticals. Further, only one Professional Elective course shall be chosen in a semester horizontally (row-wise). However, two courses are permitted from the same row, provided one course is enrolled in Semester V and another in semester VI.

The registration of courses for B.E./B.Tech (Honours) or Minor degree shall be done from Semester V to VIII. The procedure for registration of courses explained above shall be followed for the courses of B.E/B.Tech (Honours) or Minor degree also. For more details on B.E./B.Tech (Honours) or Minor degree refer to the Regulations 2021, Clause 4.10 (Amendments).

# PROFESSIONAL ELECTIVE COURSES: VERTICALS

**VERTICAL 1: BIO ENGINEERING** 

| S.<br>NO. | COURSE | COURSE TITLE                       | CATE<br>GORY | I PER WEEK |   |   | TOTAL<br>CONTACT | CREDITS |
|-----------|--------|------------------------------------|--------------|------------|---|---|------------------|---------|
| NO.       | CODE   |                                    | GOK          | L          | Т | Р | PERIODS          |         |
| 1.        | CBM337 | Biomaterials                       | PEC          | 3          | 0 | 0 | 3                | 3       |
| 2.        | CBM332 | Artificial Organs and Implants     | PEC          | 3          | 0 | 0 | 3                | 3       |
| 3.        | CBM339 | Biomedical Optics and Biophotonics | PEC          | 2          | 0 | 2 | 4                | 3       |
| 4.        | CBM359 | Neural Engineering                 | PEC          | 3          | 0 | 0 | 3                | 3       |
| 5.        | CBM362 | Principles of Tissue Engineering   | PEC          | 3          | 0 | 0 | 3                | 3       |
| 6.        | CBM349 | Genetic Engineering                | PEC          | 3          | 0 | 0 | 3                | 3       |

# **VERTICAL 2: MEDICAL DEVICE INNOVATION AND DEVELOPMENT**

| S.<br>NO. | COURSE | COURSE TITLE                                              | CATE | PERIODS<br>PER WEEK |   |   | TOTAL CONTACT | CREDITS |
|-----------|--------|-----------------------------------------------------------|------|---------------------|---|---|---------------|---------|
| NO.       | CODE   |                                                           | GOKT | L                   | T | Р | PERIODS       |         |
| 1.        | CBM348 | Foundation Skills in<br>Integrated Product<br>Development | PEC  | 3                   | 0 | 0 | 3             | 3       |
| 2.        | CBM353 | Medical Device Design                                     | PEC  | 3                   | 0 | 0 | 3             | 3       |
| 3.        | CBM360 | Patient Safety,<br>Standards and Ethics                   | PEC  | 3                   | 0 | 0 | 3             | 3       |
| 4.        | CBM357 | Medical Device<br>Regulations                             | PEC  | 3                   | 0 | 0 | 3             | 3       |
| 5.        | CBM372 | Medical Innovation and Entrepreneurship                   | PEC  | 3                   | 0 | 0 | 3             | 3       |
| 6.        | CBM363 | Rapid Prototyping                                         | PEC  | 3                   | 0 | 0 | 3             | 3       |

# VERTICAL 3: MANAGEMENT (HEALTHCARE)

| S.<br>NO. | COURSE | COURSE TITLE                           | CATE<br>GORY |   | RIOI<br>R WE | _ | TOTAL<br>CONTACT | CREDITS |
|-----------|--------|----------------------------------------|--------------|---|--------------|---|------------------|---------|
| NO.       | CODE   |                                        | GOKT         | L | T            | Р | PERIODS          |         |
| 1.        | CBM343 | Clinical Engineering                   | PEC          | 3 | 0            | 0 | 3                | 3       |
| 2.        | CBM351 | Hospital Planning and Management       | PEC          | 3 | 0            | 0 | 3                | 3       |
| 3.        | CBM358 | Medical Waste<br>Management            | PEC          | 3 | 0            | 0 | 3                | 3       |
| 4.        | CBM345 | Economics and Management for Engineers | PEC          | 3 | 0            | 0 | 3                | 3       |
| 5.        | CBM336 | Biostatistics                          | PEC          | 2 | 0            | 2 | 4                | 3       |
| 6.        | CBM347 | Forensic Science in Healthcare         | PEC          | 3 | 0            | 0 | 3                | 3       |

**VERTICAL 4: MECHANICS** 

| SL.<br>NO. | COURSE | COURSE TITLE                  | CATE |   | ERIC<br>R W | DS<br>EEK | TOTAL<br>CONTACT | CREDITS |
|------------|--------|-------------------------------|------|---|-------------|-----------|------------------|---------|
| NO.        | CODE   |                               |      |   | Т           | Р         | PERIODS          |         |
| 1.         | CBM338 | Biomechanics                  | PEC  | 2 | 0           | 2         | 4                | 3       |
| 2.         | CBM364 | Rehabilitation<br>Engineering | PEC  | 3 | 0           | 0         | 3                | 3       |
| 3.         | CBM361 | Physiological Modelling       | PEC  | 3 | 0           | 0         | 3                | 3       |
| 4.         | CBM333 | Assistive Technology          | PEC  | 3 | 0           | 0         | 3                | 3       |
| 5.         | CBM346 | Ergonomics                    | PEC  | 3 | 0           | 0         | 3                | 3       |
| 6.         | CBM350 | Haptics                       | PEC  | 3 | 0           | 0         | 3                | 3       |

# **VERTICAL 5: SIGNAL AND IMAGE PROCESSING**

| S.<br>NO. | COURSE | COURSE TITLE                                    | CATE | PERIODS<br>PER WEEK |   |   | TOTAL<br>CONTACT | CREDITS |
|-----------|--------|-------------------------------------------------|------|---------------------|---|---|------------------|---------|
| NO.       | CODE   | 115                                             | GORT | ┙                   | T | Р | PERIODS          |         |
| 1.        | CBM335 | Bio Signal Processing                           | PEC  | 3                   | 0 | 0 | 3                | 3       |
| 2.        | CBM371 | Computer Vision                                 | PEC  | 2                   | 0 | 2 | 4                | 3       |
| 3.        | CBM366 | Speech and Audio<br>Signal Processing           | PEC  | 3                   | 0 | 0 | 3                | 3       |
| 4.        | CBM355 | Medical Imaging Systems                         | PEC  | 3                   | 0 | 0 | 3                | 3       |
| 5.        | CBM342 | Brain Computer<br>Interface and<br>Applications | PEC  | 3                   | 0 | 0 | 3                | 3       |
| 6.        | CBM340 | Biometric Systems                               | PEC  | 3                   | 0 | 0 | 3                | 3       |

# VERTICAL 6: COMMUNICATION

| S.<br>NO. | COURSE | COURSEIIIIE                                               |      |   | ERIC<br>R W | DS<br>EEK | TOTAL<br>CONTACT | CREDITS |
|-----------|--------|-----------------------------------------------------------|------|---|-------------|-----------|------------------|---------|
| 140.      | CODE   |                                                           | GORY | L | Т           | Р         | PERIODS          |         |
| 1.        | CBM354 | Communication<br>Systems                                  | PEC  | 3 | 0           | 0         | 3                | 3       |
| 2.        | CBM370 | Wearable Devices                                          | PEC  | 3 | 0           | 0         | 3                | 3       |
| 3.        | CBM341 | Body Area Networks                                        | PEC  | 3 | 0           | 0         | 3                | 3       |
| 4.        | CBM369 | Virtual Reality and<br>Augmented Reality in<br>Healthcare | PEC  | 3 | 0           | 0         | 3                | 3       |
| 5.        | CBM367 | Telehealth Technology                                     | PEC  | 2 | 0           | 2         | 4                | 3       |
| 6.        | CBM356 | Medical Informatics                                       | PEC  | 3 | 0           | 0         | 3                | 3       |

**VERTICAL 7: ADVANCED HEALTHCARE DEVICES** 

| SL.<br>NO. | COURSE |                                                     | CATE |   | ERIC<br>R W | DDS<br>EEK | TOTAL<br>CONTACT | CREDITS |
|------------|--------|-----------------------------------------------------|------|---|-------------|------------|------------------|---------|
| NO.        | CODE   |                                                     | GOKT | ┙ | T           | Р          | PERIODS          |         |
| 1.         | CBM334 | Bio MEMS                                            | PEC  | 3 | 0           | 0          | 3                | 3       |
| 2.         | CBM344 | Critical Care and<br>Operation Theatre<br>Equipment | PEC  | 3 | 0           | 0          | 3                | 3       |
| 3.         | CBM352 | Human Assist Devices                                | PEC  | 3 | 0           | 0          | 3                | 3       |
| 4.         | CBM331 | Advancements in Healthcare Technology               | PEC  | 3 | 0           | 0          | 3                | 3       |
| 5.         | CBM365 | Robotics in Medicine                                | PEC  | 3 | 0           | 0          | 3                | 3       |
| 6.         | CBM368 | Therapeutic Equipment                               | PEC  | 3 | 0           | 0          | 3                | 3       |

# **OPEN ELECTIVES**

(Students shall choose the open elective courses, such that the course contents are not similar to any other course contents/title under other course categories).

# **OPEN ELECTIVES - I**

| SL.<br>NO. | COURSE<br>CODE | COURSE TITLE                                           | CATE |   |   |                  | _ 001117.01 | CREDITS |
|------------|----------------|--------------------------------------------------------|------|---|---|------------------|-------------|---------|
| NO.        |                |                                                        | GORY | L | Т | WEEK   CON   PER | PERIODS     |         |
| 1.         | OAS351         | Space Science                                          | OEC  | 3 | 0 | 0                | 3           | 3       |
| 2.         | OIE351         | Introduction to Industrial Engineering                 | OEC  | 3 | 0 | 0                | 3           | 3       |
| 3.         | OBT351         | Food, Nutrition and Health                             | OEC  | 3 | 0 | 0                | 3           | 3       |
| 4.         | OCE351         | Environmental and Social Impact Assessment             | OEC  | 3 | 0 | 0                | 3           | 3       |
| 5.         | OEE351         | Renewable Energy System                                | OEC  | 3 | 0 | 0                | 3           | 3       |
| 6.         | OEI351         | Introduction to Industrial Instrumentation and Control | OEC  | 3 | 0 | 0                | 3           | 3       |
| 7.         | OMA351         | Graph Theory                                           | OEC  | 3 | 0 | 0                | 3           | 3       |
| 8.         | CCS355         | Neural Networks and Deep<br>Learning                   | OEC  | 2 | 0 | 2                | 4           | 3       |
| 9.         | CCW332         | Digital Marketing                                      | OEC  | 2 | 0 | 2                | 4           | 3       |

# **OPEN ELECTIVES - II**

| SL.<br>NO. |        |                                     | CATE |   | ERIC<br>R W | DS<br>EEK | TOTAL<br>CONTACT | CREDITS |
|------------|--------|-------------------------------------|------|---|-------------|-----------|------------------|---------|
| NO.        |        |                                     | GOKI | L | T           | Р         | PERIODS          |         |
| 1.         | OIE352 | Resource Management Techniques      | OEC  | 3 | 0           | 0         | 3                | 3       |
| 2.         | OMG351 | Fintech Regulation                  | OEC  | 3 | 0           | 0         | 3                | 3       |
| 3.         | OFD351 | Holistic Nutrition                  | OEC  | 3 | 0           | 0         | 3                | 3       |
| 4.         | Al3021 | IT in Agricultural System           | OEC  | 3 | 0           | 0         | 3                | 3       |
| 5.         | OEI352 | Introduction to Control Engineering | OEC  | 3 | 0           | 0         | 3                | 3       |
| 6.         | OPY351 | Pharmaceutical Nanotechnology       | OEC  | 3 | 0           | 0         | 3                | 3       |
| 7.         | OAE351 | Aviation Management                 | OEC  | 3 | 0           | 0         | 3                | 3       |
| 8.         | CCS342 | DevOps                              | OEC  | 2 | 0           | 2         | 4                | 3       |
| 9.         | CCS361 | Robotic Process Automation          | OEC  | 2 | 0           | 2         | 4                | 3       |

# OPEN ELECTIVES - III

| SL. | COURSE | COURSE TITLE                             | CATE |   | RIO<br>R WE | EEK | TOTAL<br>CONTACT | CREDITS |
|-----|--------|------------------------------------------|------|---|-------------|-----|------------------|---------|
|     | OODL   |                                          | JOKT | L | Т           | Р   | PERIODS          |         |
| 1.  | OHS351 | English for Competitive Examinations     | OEC  | 3 | 0           | 0   | 3                | 3       |
| 2.  | OMG352 | NGOs and Sustainable Development         | OEC  | 3 | 0           | 0   | 3                | 3       |
| 3.  | OMG353 | Democracy and Good<br>Governance         | OEC  | 3 | 0           | 0   | 3                | 3       |
| 4.  | CME365 | Renewable Energy Technologies            | OEC  | 3 | 0           | 0   | 3                | 3       |
| 5.  | OME354 | Applied Design Thinking                  | OEC  | 3 | 0           | 0   | 3                | 3       |
| 6.  | MF3003 | Reverse Engineering                      | OEC  | 3 | 0           | 0   | 3                | 3       |
| 7.  | OPR351 | Sustainable Manufacturing                | OEC  | 3 | 0           | 0   | 3                | 3       |
| 8.  | AU3791 | Electric and Hybrid Vehicles             | OEC  | 3 | 0           | 0   | 3                | 3       |
| 9.  | OAS352 | Space Engineering                        | OEC  | 3 | 0           | 0   | 3                | 3       |
| 10. | OIM351 | Industrial Management                    | OEC  | 3 | 0           | 0   | 3                | 3       |
| 11. | OIE354 | Quality Engineering                      | OEC  | 3 | 0           | 0   | 3                | 3       |
| 12. | OSF351 | Fire Safety Engineering                  | OEC  | 3 | 0           | 0   | 3                | 3       |
| 13. | OML351 | Introduction to non-destructive testing  | OEC  | 3 | 0           | 0   | 3                | 3       |
| 14. | OMR351 | Mechatronics                             | OEC  | 3 | 0           | 0   | 3                | 3       |
| 15. | ORA351 | Foundation of Robotics                   | OEC  | 3 | 0           | 0   | 3                | 3       |
| 16. | OAE352 | Fundamentals of Aeronautical engineering | OEC  | 3 | 0           | 0   | 3                | 3       |
| 17. | OGI351 | Remote Sensing Concepts                  | OEC  | 3 | 0           | 0   | 3                | 3       |
| 18. | OAI351 | Urban Agriculture                        | OEC  | 3 | 0           | 0   | 3                | 3       |
| 19. | OEN351 | Drinking Water Supply and Treatment      | OEC  | 3 | 0           | 0   | 3                | 3       |
| 20. | OEE352 | Electric Vehicle technology              | OEC  | 3 | 0           | 0   | 3                | 3       |
| 21. | OEI353 | Introduction to PLC Programming          | OEC  | 3 | 0           | 0   | 3                | 3       |
| 22. | OCH351 | Nano Technology                          | OEC  | 3 | 0           | 0   | 3                | 3       |
| 23. | OCH352 | Functional Materials                     | OEC  | 3 | 0           | 0   | 3                | 3       |
| 24. | OFD352 | Traditional Indian Foods                 | OEC  | 3 | 0           | 0   | 3                | 3       |

| 25. | OFD353              | Introduction to food processing                       | OEC | 3 | 0 | 0 | 3  | 3 |  |  |  |  |
|-----|---------------------|-------------------------------------------------------|-----|---|---|---|----|---|--|--|--|--|
| 26. | OPY352              | IPR for Pharma Industry                               | OEC | 3 | 0 | 0 | 3  | 3 |  |  |  |  |
| 27. | OTT351              | Basics of Textile Finishing                           | OEC | 3 | 0 | 0 | 3  | 3 |  |  |  |  |
| 28. | OTT352              | Industrial Engineering for Garment Industry           | OEC | 3 | 0 | 0 | 3  | 3 |  |  |  |  |
| 29. | OTT353              | Basics of Textile Manufacture                         | OEC | 3 | 0 | 0 | 3  | 3 |  |  |  |  |
| 30. | OPE351              | Introduction to Petroleum Refining and Petrochemicals | OEC | 3 | 0 | 0 | 3  | 3 |  |  |  |  |
| 31. | CPE334              | Energy Conservation and Management                    | OEC | 3 | 0 | 0 | 3  | 3 |  |  |  |  |
| 32. | OPT351              | Basics of Plastics Processing                         | OEC | 3 | 0 | 0 | 3  | 3 |  |  |  |  |
| 33. | OEC351              | Signals and Systems                                   | OEC | 3 | 0 | 0 | 3  | 3 |  |  |  |  |
| 34. | OEC352              | Fundamentals of Electronic Devices and Circuits       | OEC | 3 | 0 | 0 | 3  | 3 |  |  |  |  |
| 35. | OMA352              | Operations Research                                   | OEC | 3 | 0 | 0 | 3  | 3 |  |  |  |  |
| 36. | OMA353              | Algebra and Number Theory                             | OEC | 3 | 0 | 0 | 3  | 3 |  |  |  |  |
| 37. | OMA354              | Linear Algebra                                        | OEC | 3 | 0 | 0 | 3  | 3 |  |  |  |  |
| 38. | OCE353              | Lean Concepts, Tools And Practices                    | OEC | 3 | 0 | 0 | 3  | 3 |  |  |  |  |
| 39. | OBT352              | Basics of Microbial Technology                        | OEC | 3 | 0 | 0 | _3 | 3 |  |  |  |  |
| 40. | OBT353              | Basics of Biomolecules                                | OEC | 3 | 0 | 0 | 3  | 3 |  |  |  |  |
| 41. | OBT354              | Fundamentals of Cell and Molecular Biology            | OEC | 3 | 0 | 0 | 3  | 3 |  |  |  |  |
|     | OPEN ELECTIVES – IV |                                                       |     |   |   |   |    |   |  |  |  |  |

| S.<br>NO. | COURSE | COURSE TITLE                                           | CATE |   |   | ODS<br>VEEK | TOTAL CONTACT | CREDITS |
|-----------|--------|--------------------------------------------------------|------|---|---|-------------|---------------|---------|
| NO.       | CODE   |                                                        | GORT | L | Т | Р           | PERIODS       |         |
| 1.        | OHS352 | Project Report Writing                                 | OEC  | 3 | 0 | 0           | 3             | 3       |
| 2.        | OMA355 | Advanced Numerical Methods                             | OEC  | 3 | 0 | 0           | 3             | 3       |
| 3.        | OMA356 | Random Processes                                       | OEC  | 3 | 0 | 0           | 3             | 3       |
| 4.        | OMA357 | Queuing and Reliability Modelling                      | OEC  | 3 | 0 | 0           | 3             | 3       |
| 5.        | OMG354 | Production and Operations Management for Entrepreneurs | OEC  | 3 | 0 | 0           | 3             | 3       |
| 6.        | OMG355 | Multivariate Data Analysis                             | OEC  | 3 | 0 | 00          | 3             | 3       |
| 7.        | OME352 | Additive Manufacturing                                 | OEC  | 3 | 0 | 0           | 3             | 3       |
| 8.        | CME343 | New Product Development                                | OEC  | 3 | 0 | 0           | 3             | 3       |
| 9.        | OME355 | Industrial Design & Rapid Prototyping Techniques       | OEC  | 3 | 0 | 0           | 3             | 3       |
| 10.       | MF3010 | Micro and Precision Engineering                        | OEC  | 3 | 0 | 0           | 3             | 3       |
| 11.       | OMF354 | Cost Management of<br>Engineering Projects             | OEC  | 3 | 0 | 0           | 3             | 3       |
| 12.       | AU3002 | Batteries and Management system                        | OEC  | 3 | 0 | 0           | 3             | 3       |
| 13.       | AU3008 | Sensors and Actuators                                  | OEC  | 3 | 0 | 0           | 3             | 3       |
| 14.       | OAS353 | Space Vehicles                                         | OEC  | 3 | 0 | 0           | 3             | 3       |
| 15.       | OIM352 | Management Science                                     | OEC  | 3 | 0 | 0           | 3             | 3       |
| 16.       | OIM353 | Production Planning and Control                        | OEC  | 3 | 0 | 0           | 3             | 3       |
| 17.       | OIE353 | Operations Management                                  | OEC  | 3 | 0 | 0           | 3             | 3       |

| 18. | OSF352 | Industrial Hygiene                                 | OEC | 3 | 0 | 0 | 3 | 3 |
|-----|--------|----------------------------------------------------|-----|---|---|---|---|---|
| 19. | OSF353 | Chemical Process Safety                            | OEC | 3 | 0 | 0 | 3 | 3 |
| 20. | OML352 | Electrical, Electronic and Magnetic materials      | OEC | 3 | 0 | 0 | 3 | 3 |
| 21. | OML353 | Nanomaterials and applications                     | OEC | 3 | 0 | 0 | 3 | 3 |
| 22. | OMR352 | Hydraulics and Pneumatics                          | OEC | 3 | 0 | 0 | 3 | 3 |
| 23. | OMR353 | Sensors                                            | OEC | 3 | 0 | 0 | 3 | 3 |
| 24. | ORA352 | Concepts in Mobile Robots                          | OEC | 3 | 0 | 0 | 3 | 3 |
| 25. | MV3501 | Marine Propulsion                                  | OEC | 3 | 0 | 0 | 3 | 3 |
| 26. | OMV351 | Marine Merchant Vessels                            | OEC | 3 | 0 | 0 | 3 | 3 |
| 27. | OMV352 | Elements of Marine Engineering                     | OEC | 3 | 0 | 0 | 3 | 3 |
| 28. | CRA332 | Drone Technologies                                 | OEC | 3 | 0 | 0 | 3 | 3 |
| 29. | OGI352 | Geographical Information System                    | OEC | 3 | 0 | 0 | 3 | 3 |
| 30. | OAI352 | Agriculture Entrepreneurship Development           | OEC | 3 | 0 | 0 | 3 | 3 |
| 31. | OEN352 | Biodiversity Conservation                          | OEC | 3 | 0 | 0 | 3 | 3 |
| 32. | OEE353 | Introduction to control systems                    | OEC | 3 | 0 | 0 | 3 | 3 |
| 33. | OEI354 | Introduction to Industrial Automation Systems      | OEC | 3 | 0 | 0 | 3 | 3 |
| 34. | OCH353 | Energy Technology                                  | OEC | 3 | 0 | 0 | 3 | 3 |
| 35. | OCH354 | Surface Science                                    | OEC | 3 | 0 | 0 | 3 | 3 |
| 36. | OFD354 | Fundamentals of Food Engineering                   | OEC | 3 | 0 | 0 | 3 | 3 |
| 37. | OFD355 | Food safety and Quality Regulations                | OEC | 3 | 0 | 0 | 3 | 3 |
| 38. | OPY353 | Nutraceuticals                                     | OEC | 3 | 0 | 0 | 3 | 3 |
| 39. | OTT354 | Basics of Dyeing and Printing                      | OEC | 3 | 0 | 0 | 3 | 3 |
| 40. | FT3201 | Fibre Science                                      | OEC | 3 | 0 | 0 | 3 | 3 |
| 41. | OTT355 | Garment Manufacturing Technology                   | OEC | 3 | 0 | 0 | 3 | 3 |
| 42. | OPE353 | Industrial safety                                  | OEC | 3 | 0 | 0 | 3 | 3 |
| 43. | OPE354 | Unit Operations in Petro<br>Chemical Industries    | OEC | 3 | 0 | 0 | 3 | 3 |
| 44. | OPT352 | Plastic Materials for<br>Engineers                 | OEC | 3 | 0 | 0 | 3 | 3 |
| 45. | OPT353 | Properties and Testing of Plastics                 | OEC | 3 | 0 | 0 | 3 | 3 |
| 46. | OEC353 | VLSI Design                                        | OEC | 3 | 0 | 0 | 3 | 3 |
| 47. | OCE354 | Basics of Integrated Water<br>Resources Management | OEC | 3 | 0 | 0 | 3 | 3 |
| 48. | OBT355 | Biotechnology for Waste<br>Management              | OEC | 3 | 0 | 0 | 3 | 3 |
| 49. | OBT356 | Lifestyle Diseases                                 | OEC | 3 | 0 | 0 | 3 | 3 |
| 50. | OBT357 | Biotechnology in Health Care                       | OEC | 3 | 0 | 0 | 3 | 3 |

#### SUMMARY

|      | Na                         | me of th | ne Prog | ramme: | B.E. Bi | omedic  | al Engi | neering  |          |                  |
|------|----------------------------|----------|---------|--------|---------|---------|---------|----------|----------|------------------|
| S.No | Subject Area               |          |         | Cr     | edits p | er Seme | ester   |          |          | Total<br>Credits |
|      |                            | I        | II      | III    | IV      | V       | VI      | VII/VIII | VIII/VII | Orealts          |
| 1    | HSMC                       | 4        | 3       |        |         |         |         | 5        |          | 12               |
| 2    | BSC                        | 12       | 4       | 4      | 6       |         |         |          |          | 26               |
| 3    | ESC                        | 5        | 9       | 12     |         |         |         |          |          | 26               |
| 4    | PCC                        |          | 8       | 8.5    | 16      | 9.5     | 11      |          |          | 53               |
| 5    | PEC                        |          |         |        |         | 9       | 9       |          |          | 18               |
| 6    | OEC                        |          |         |        |         |         | 3       | 9        |          | 12               |
| 7    | EEC                        | 1        | 2       | 1      |         |         |         | 2        | 10       | 16               |
| 8    | Non-Credit<br>/(Mandatory) |          |         |        |         | 7       | V       |          |          |                  |
|      | Total                      | 22       | 26      | 25.5   | 22      | 18.5    | 23      | 16       | 10       | 163              |

# ENROLLMENT FOR B.E. / B. TECH. (HONOURS) / MINOR DEGREE (OPTIONAL)

A student can also optionally register for additional courses (18 credits) and become eligible for the award of B.E. / B. Tech. (Honours) or Minor Degree.

For B.E. / B. Tech. (Honours), a student shall register for the additional courses (18 credits) from semester V onwards. These courses shall be from the same vertical or a combination of different verticals of the same programme of study only.

For minor degree, a student shall register for the additional courses (18 credits) from semester V onwards. All these courses have to be in a particular vertical from any one of the other programmes, Moreover, for minor degree the student can register for courses from any one of the following verticals also.

Complete details are available in clause 4.10 (Amendments) of Regulations 2021.

# <u>VERTICALS FOR MINOR DEGREE</u> (In addition to all the verticals of other programmes

(choice of courses for Minor degree is to be made from any one vertical of other programmes or from anyone of the following verticals)

| Vertical I<br>Fintech and<br>Block Chain              | Vertical II<br>Entrepreneurship                             | Vertical III<br>Public<br>Administration | Vertical IV<br>Business<br>Data<br>Analytics   | Vertical V<br>Environment and<br>Sustainability        |
|-------------------------------------------------------|-------------------------------------------------------------|------------------------------------------|------------------------------------------------|--------------------------------------------------------|
| Financial<br>Management                               | Foundations of<br>Entrepreneurship                          | Principles of Public Administration      | Statistics for Management                      | Sustainable infrastructure Development                 |
| Fundamentals of Investment                            | Team Building &<br>Leadership<br>Management for<br>Business | Constitution of India                    | Datamining for<br>Business<br>Intelligence     | Sustainable Agriculture and Environmental Management   |
| Banking,<br>Financial<br>Services and<br>Insurance    | Creativity & Innovation in Entrepreneurship                 | Public Personnel<br>Administration       | Human<br>Resource<br>Analytics                 | Sustainable Bio<br>Materials                           |
| Introduction to<br>Blockchain and<br>its Applications | Principles of Marketing Management For Business             | Administrative<br>Theories               | Marketing and<br>Social Media<br>Web Analytics | Materials for Energy<br>Sustainability                 |
| Fintech Personal<br>Finance and<br>Payments           | Human Resource Management for Entrepreneurs                 | Indian Administrative<br>System          | Operation and<br>Supply Chain<br>Analytics     | Green Technology                                       |
| Introduction to Fintech                               | Financing New<br>Business Ventures                          | Public Policy<br>Administration          | Financial<br>Analytics                         | Environmental Quality Monitoring and Analysis          |
| -                                                     | 2./                                                         |                                          | /:                                             | Integrated Energy Planning for Sustainable Development |
| -                                                     | 7.                                                          |                                          |                                                | Energy Efficiency for<br>Sustainable<br>Development    |

PROGRESS THROUGH KNOWLEDGE

**VERTICAL 1: FINTECH AND BLOCK CHAIN** 

| S.<br>NO. | COURSE | COURSE TITLE                                    | CATE  |   | ERIO<br>ER W |   | TOTAL<br>CONTACT | CREDITS |
|-----------|--------|-------------------------------------------------|-------|---|--------------|---|------------------|---------|
| 140.      | CODE   |                                                 | GOINT | L | T            | Р | PERIODS          |         |
| 1.        | CMG331 | Financial Management                            | PEC   | 3 | 0            | 0 | 3                | 3       |
| 2.        | CMG332 | Fundamentals of Investment                      | PEC   | 3 | 0            | 0 | 3                | 3       |
| 3.        | CMG333 | Banking, Financial<br>Services and Insurance    | PEC   | 3 | 0            | 0 | 3                | 3       |
| 4.        | CMG334 | Introduction to Blockchain and its Applications | PEC   | 3 | 0            | 0 | 3                | 3       |
| 5.        | CMG335 | Fintech Personal Finance and Payments           | PEC   | 3 | 0            | 0 | 3                | 3       |
| 6.        | CMG336 | Introduction to Fintech                         | PEC   | 3 | 0            | 0 | 3                | 3       |

# **VERTICAL 2: ENTREPRENEURSHIP**

| S.<br>NO. | COURSE | COURSE TITLE                                       | CATE |   | RIOI<br>R WE |   | TOTAL<br>CONTACT | CREDITS |
|-----------|--------|----------------------------------------------------|------|---|--------------|---|------------------|---------|
| NO.       | CODL   |                                                    | GOKT | L | Т            | Ρ | PERIODS          |         |
| 1.        | CMG337 | Foundations of Entrepreneurship                    | PEC  | 3 | 0            | 0 | 3                | 3       |
| 2.        | CMG338 | Team Building & Leadership Management for Business | PEC  | 3 | 0            | 0 | 3                | 3       |
| 3.        | CMG339 | Creativity & Innovation in Entrepreneurship        | PEC  | 3 | 0            | 0 | 3                | 3       |
| 4.        | CMG340 | Principles of Marketing Management For Business    | PEC  | 3 | 0            | 0 | 3                | 3       |
| 5.        | CMG341 | Human Resource Management for Entrepreneurs        | PEC  | 3 | 0            | 0 | 3                | 3       |
| 6.        | CMG342 | Financing New Business Ventures                    | PEC  | 3 | 0            | 0 | 3                | 3       |

# VERTICAL 3: PUBLIC ADMINISTRATION

| S.<br>NO. | COURSE | COURSE TITLE                        | CATE |   | RIOE<br>WE |   | TOTAL<br>CONTACT | CREDITS |
|-----------|--------|-------------------------------------|------|---|------------|---|------------------|---------|
| NO.       | CODE   |                                     | GOKT | L | Т          | Р | PERIODS          |         |
| 1.        | CMG343 | Principles of Public Administration | PEC  | 3 | 0          | 0 | 3                | 3       |
| 2.        | CMG344 | Constitution of India               | PEC  | 3 | 0          | 0 | 3                | 3       |
| 3.        | CMG345 | Public Personnel<br>Administration  | PEC  | 3 | 0          | 0 | 3                | 3       |
| 4.        | CMG346 | Administrative Theories             | PEC  | 3 | 0          | 0 | 3                | 3       |
| 5.        | CMG347 | Indian Administrative System        | PEC  | 3 | 0          | 0 | 3                | 3       |
| 6.        | CMG348 | Public Policy<br>Administration     | PEC  | 3 | 0          | 0 | 3                | 3       |

# **VERTICAL 4: BUSINESS DATA ANALYTICS**

| S.<br>NO. | COURSE | COURSE TITLE                             | CATE<br>GORY |   | ERIC<br>R W | DS<br>EEK | TOTAL<br>CONTACT | CREDITS |  |
|-----------|--------|------------------------------------------|--------------|---|-------------|-----------|------------------|---------|--|
| NO.       | CODE   |                                          | GORT         | L | T           | Р         | PERIODS          |         |  |
| 1.        | CMG349 | Statistics for Management                | PEC          | 3 | 0           | 0         | 3                | 3       |  |
| 2.        | CMG350 | Datamining for Business Intelligence     | PEC          | 3 | 0           | 0         | 3                | 3       |  |
| 3.        | CMG351 | Human Resource<br>Analytics              | PEC          | 3 | 0           | 0         | 3                | 3       |  |
| 4.        | CMG352 | Marketing and Social Media Web Analytics | PEC          | 3 | 0           | 0         | 3                | 3       |  |
| 5.        | CMG353 | Operation and Supply Chain Analytics     | PEC          | 3 | 0           | 0         | 3                | 3       |  |
| 6.        | CMG354 | Financial Analytics                      | PEC          | 3 | 0           | 0         | 3                | 3       |  |

# **VERTICAL 5: ENVIRONMENT AND SUSTAINABILITY**

| S.<br>NO. | COURSE | COURSE TITLE                                           | CATE |   |   | ODS<br>VEEK | TOTAL CONTACT | CREDITS |
|-----------|--------|--------------------------------------------------------|------|---|---|-------------|---------------|---------|
| NO.       | CODE   | 7-27                                                   | GOKT | L | Т | Р           | PERIODS       |         |
| 1.        | CES331 | Sustainable infrastructure<br>Development              | PEC  | 3 | 0 | 0           | 3             | 3       |
| 2.        | CES332 | Sustainable Agriculture and Environmental Management   | PEC  | 3 | 0 | 0           | 3             | 3       |
| 3.        | CES333 | Sustainable Bio Materials                              | PEC  | 3 | 0 | 0           | 3             | 3       |
| 4.        | CES334 | Materials for Energy<br>Sustainability                 | PEC  | 3 | 0 | 0           | 3             | 3       |
| 5.        | CES335 | Green Technology                                       | PEC  | 3 | 0 | 0           | 3             | 3       |
| 6.        | CES336 | Environmental Quality Monitoring and Analysis          | PEC  | 3 | 0 | 0           | 3             | 3       |
| 7.        | CES337 | Integrated Energy Planning for Sustainable Development | PEC  | 3 | 0 | 0           | 3             | 3       |
| 8.        | CES338 | Energy Efficiency for<br>Sustainable Development       | PEC  | 3 | 0 | 0           | 3             | 3       |
|           |        | PROGRESS THRO                                          | JGH  |   |   | WLE         |               |         |

#### IP3151

#### INDUCTION PROGRAMME

This is a mandatory 2 week programme to be conducted as soon as the students enter the institution. Normal classes start only after the induction program is over.

The induction programme has been introduced by AICTE with the following objective:

"Engineering colleges were established to train graduates well in the branch/department of admission, have a holistic outlook, and have a desire to work for national needs and beyond. The graduating student must have knowledge and skills in the area of his/her study. However, he/she must also have a broad understanding of society and relationships. Character needs to be nurtured as an essential quality by which he/she would understand and fulfill his/her responsibility as an engineer, a citizen and a human being. Besides the above, several meta-skills and underlying values are needed."

"One will have to work closely with the newly joined students in making them feel comfortable, allow them to explore their academic interests and activities, reduce competition and make them work for excellence, promote bonding within them, build relations between teachers and students, give a broader view of life, and build character."

Hence, the purpose of this programme is to make the students feel comfortable in their new environment, open them up, set a healthy daily routine, create bonding in the batch as well as between faculty and students, develop awareness, sensitivity and understanding of the self, people around them, society at large, and nature.

The following are the activities under the induction program in which the student would be fully engaged throughout the day for the entire duration of the program.

# (i) Physical Activity

This would involve a daily routine of physical activity with games and sports, yoga, gardening, etc.

#### (ii) Creative Arts

Every student would choose one skill related to the arts whether visual arts or performing arts. Examples are painting, sculpture, pottery, music, dance etc. The student would pursue it everyday for the duration of the program. These would allow for creative expression. It would develop a sense of aesthetics and

also enhance creativity which would, hopefully, grow into engineering design later.

#### (iii) Universal Human Values

This is the anchoring activity of the Induction Programme. It gets the student to explore oneself and allows one to experience the joy of learning, stand up to peer pressure, make decisions with courage, be aware of relationships with colleagues and supporting stay in the hostel and department, be sensitive to others, etc. A module in Universal Human Values provides the base. Methodology of teaching this content is extremely important. It must not be through do's and don'ts, but get students to explore and think by engaging them in a dialogue. It is best taught through group discussions and real life activities rather than lecturing.

Discussions would be conducted in small groups of about 20 students with a faculty mentor each. It would be effective that the faculty mentor assigned is also the faculty advisor for the student for the full duration of the UG programme.

# (iv) Literary Activity

Literary activity would encompass reading, writing and possibly, debating, enacting a play etc.

# (v) Proficiency Modules

This would address some lacunas that students might have, for example, English, computer familiarity etc.

# (vi) Lectures by Eminent People

Motivational lectures by eminent people from all walks of life should be arranged to give the students exposure to people who are socially active or in public life.

# (vii) Visits to Local Area

A couple of visits to the landmarks of the city, or a hospital or orphanage could be organized. This would familiarize them with the area as well as expose them to the underprivileged.

# (viii) Familiarization to Dept./Branch & Innovations

They should be told about what getting into a branch or department means what role it plays in society, through its technology. They should also be shown the laboratories, workshops & other facilities.

# (ix) Department Specific Activities

About a week can be spent in introducing activities (games, quizzes, social interactions, small experiments, design thinking etc.) that are relevant to the particular branch of Engineering / Technology / Architecture that can serve as a motivation and kindle interest in building things (become a maker) in that particular field. This can be conducted in the form of a workshop. For example, CSE and IT students may be introduced to activities that kindle computational thinking, and get them to build simple games. ECE students may be introduced to building simple circuits as an extension of their knowledge in Science, and so on. Students may be asked to build stuff using their knowledge of science.

Induction Programme is totally an activity based programme and therefore there shall be no tests / assessments during this programme.

#### References:

Guide to Induction program from AICTE

LT P C 3 0 0 3

#### **COURSE OBJECTIVES:**

- To improve the communicative competence of learners.
- To learn to use basic grammatic structures in suitable contexts.
- To acquire lexical competence and use them appropriately in a sentence and understand their meaning in a text.
- To help learners use language effectively in professional contexts.
- To develop learners' ability to read and write complex texts, summaries, articles, blogs, definitions, essays and user manuals.

#### UNIT I INTRODUCTION TO EFFECTIVE COMMUNICATION

1

What is effective communication? (Explain using activities) Why is communication critical for excellence during study, research and work? What are the seven C's of effective communication? What are key language skills? What is effective listening? What does it involve? What is effective speaking? What does it mean to be an excellent reader? What should you be able to do? What is effective writing? How does one develop language and communication skills? What does the course focus on? How are communication and language skills going to be enhanced during this course? What do you as a learner need to do to enhance your English language and communication skills to get the best out of this course?

#### INTRODUCTION TO FUNDAMENTALS OF COMMUNICATION

8

Reading - Reading brochures (technical context), telephone messages / social media messages relevant to technical contexts and emails. Writing - Writing emails / letters introducing oneself. Grammar - Present Tense (simple and progressive); Question types: Wh/ Yes or No/ and Tags. Vocabulary - Synonyms; One word substitution; Abbreviations & Acronyms (as used in technical contexts).

# UNIT II NARRATION AND SUMMATION

9

Reading - Reading biographies, travelogues, newspaper reports, Excerpts from literature, and travel & technical blogs. Writing - Guided writing-- Paragraph writing Short Report on an event (field trip etc.) Grammar –Past tense (simple); Subject-Verb Agreement; and Prepositions. Vocabulary - Word forms (prefixes& suffixes); Synonyms and Antonyms. Phrasal verbs.

#### UNIT III DESCRIPTION OF A PROCESS / PRODUCT

g

Reading – Reading advertisements, gadget reviews; user manuals. Writing - Writing definitions; instructions; and Product /Process description. Grammar - Imperatives; Adjectives; Degrees of comparison; Present & Past Perfect Tenses. Vocabulary - Compound Nouns, Homonyms; and Homophones, discourse markers (connectives & sequence words).

# UNIT IV CLASSIFICATION AND RECOMMENDATIONS

9

Reading – Newspaper articles; Journal reports –and Non Verbal Communcation (tables, pie charts etc,. ). Writing – Note-making / Note-taking (\*Study skills to be taught, not tested); Writing recommendations; Transferring information from non verbal (chart, graph etc, to verbal mode) Grammar – Articles; Pronouns - Possessive & Relative pronouns. Vocabulary - Collocations; Fixed / Semi fixed expressions.

# UNIT V EXPRESSION

9

Reading - Reading editorials; and Opinion Blogs; Writing - Essay Writing (Descriptive or narrative). Grammar - Future Tenses, Punctuation; Negation (Statements & Questions); and

Simple, Compound & Complex Sentences. Vocabulary - Cause & Effect Expressions - Content vs Function words.

**TOTAL: 45 PERIODS** 

#### **COURSE OUTCOMES:**

At the end of the course, learners will be able.

**CO1**:To use appropriate words in a professional context.

CO2:To gain understanding of basic grammatic structures and use them in right context.

CO3:To read and infer the denotative and connotative meanings of technical texts.

**CO4**:To write definitions, descriptions, narrations and essays on various topics.

#### **TEXT BOOKS:**

- 1. English for Engineers & Technologists Orient Blackswan Private Ltd. Department of English, Anna University, (2020 edition)
  - English for Science & Technology Cambridge University Press, 2021.
- 2. Authored by Dr. Veena Selvam, Dr. Sujatha Priyadarshini, Dr. Deepa Mary Francis, Dr. KN. Shoba, and Dr. Lourdes Joevani, Department of English, Anna University.

#### **REFERENCES:**

- 1. Technical Communication Principles And Practices By Meenakshi Raman & Sangeeta Sharma, Oxford Univ. Press, 2016, New Delhi.
- 2. A Course Book On Technical English By Lakshminarayanan, Scitech Publications (India) Pvt. Ltd.
- 3. English For Technical Communication (With CD) By Aysha Viswamohan, Mcgraw Hill Education, ISBN: 0070264244.
- 4. Effective Communication Skill, Kulbhusan Kumar, RS Salaria, Khanna Publishing House.
- 5. Learning to Communicate Dr. V. Chellammal, Allied Publishing House, New Delhi, 2003.

#### **ASSESSMENT PATTERN**

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence.

# CO's-PO's & PSO's MAPPING

| CO's | PO's |     |     |     |     |   |   |   |     |    |    |    | PSO's |   |   |
|------|------|-----|-----|-----|-----|---|---|---|-----|----|----|----|-------|---|---|
|      | 1    | 2   | 3   | 4   | 5   | 6 | 7 | 8 | 9   | 10 | 11 | 12 | 1     | 2 | 3 |
| 1    | 1    | 1   | 1   | 1   | 1   | 3 | 3 | 3 | 1   | 3  | -  | 3  | -     | - | - |
| 2    | 1    | 1   | 1   | 1   | 1   | 3 | 3 | 3 | 1   | 3  | _  | 3  | _     | _ | - |
| 3    | 2    | 3   | 2   | 3   | 2   | 3 | 3 | 3 | 2   | 3  | 3  | 3  | -     | - | - |
| 4    | 2    | 3   | 2   | 3   | 2   | 3 | 3 | 3 | 2   | 3  | 3  | 3  | -     | - | - |
| 5    | 2    | 3   | 3   | 3   | -   | 3 | 3 | 3 | 2   | 3  | -  | 3  | -     | - | - |
| AVg. | 1.6  | 2.2 | 1.8 | 2.2 | 1.5 | 3 | 3 | 3 | 1.6 | 3  | 3  | 3  | -     | - | - |

1 - low, 2 - medium, 3 - high, '-' - no correlation

L T P C 3 1 0 4

#### **COURSE OBJECTIVES:**

- To develop the use of matrix algebra techniques that are needed by engineers for practical applications.
- To familiarize the students with differential calculus.
- To familiarize the student with functions of several variables. This is needed in many branches of engineering.
- To make the students understand various techniques of integration.
- To acquaint the student with mathematical tools needed in evaluating multiple integrals and their applications.

#### UNIT I MATRICES

9 + 3

Eigenvalues and Eigenvectors of a real matrix – Characteristic equation – Properties of Eigenvalues and Eigenvectors – Cayley - Hamilton theorem – Diagonalization of matrices by orthogonal transformation – Reduction of a quadratic form to canonical form by orthogonal transformation – Nature of quadratic forms – Applications: Stretching of an elastic membrane.

#### UNIT II DIFFERENTIAL CALCULUS

9 + 3

Representation of functions - Limit of a function - Continuity - Derivatives - Differentiation rules (sum, product, quotient, chain rules) - Implicit differentiation - Logarithmic differentiation - Applications : Maxima and Minima of functions of one variable.

#### UNIT III FUNCTIONS OF SEVERAL VARIABLES

9 + 3

Partial differentiation – Homogeneous functions and Euler's theorem – Total derivative – Change of variables – Jacobians – Partial differentiation of implicit functions – Taylor's series for functions of two variables – Applications : Maxima and minima of functions of two variables and Lagrange's method of undetermined multipliers.

# UNIT IV INTEGRAL CALCULUS

9 + 3

Definite and Indefinite integrals - Substitution rule - Techniques of Integration : Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals - Applications : Hydrostatic force and pressure, moments and centres of mass.

#### UNIT V MULTIPLE INTEGRALS

9 + 3

Double integrals – Change of order of integration – Double integrals in polar coordinates – Area enclosed by plane curves – Triple integrals – Volume of solids – Change of variables in double and triple integrals – Applications : Moments and centres of mass, moment of inertia.

TOTAL: 60 PERIODS

#### **COURSE OUTCOMES:**

At the end of the course the students will be able to

**CO1**:Use the matrix algebra methods for solving practical problems.

**CO2**: Apply differential calculus tools in solving various application problems.

CO3: Able to use differential calculus ideas on several variable functions.

**CO4**:Apply different methods of integration in solving practical problems.

**CO5**:Apply multiple integral ideas in solving areas, volumes and other practical problems.

#### **TEXT BOOKS:**

- 1. Kreyszig.E, "Advanced Engineering Mathematics", John Wiley and Sons, 10<sup>th</sup> Edition, New Delhi, 2016.
- 2. Grewal.B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 44<sup>th</sup> Edition , 2018.
- 3. James Stewart, "Calculus: Early Transcendentals", Cengage Learning, 8<sup>th</sup> Edition, New Delhi, 2015. [For Units II & IV Sections 1.1, 2.2, 2.3, 2.5, 2.7 (Tangents problems only), 2.8, 3.1 to 3.6, 3.11, 4.1, 4.3, 5.1 (Area problems only), 5.2, 5.3, 5.4 (excluding net change theorem), 5.5, 7.1 7.4 and 7.8].

#### **REFERENCES:**

- 1. Anton. H, Bivens. I and Davis. S, "Calculus", Wiley, 10th Edition, 2016
- 2. Bali. N., Goyal. M. and Watkins. C., "Advanced Engineering Mathematics", Firewall Media (An imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 7<sup>th</sup> Edition, 2009.
- 3. Jain. R.K. and Iyengar. S.R.K., "Advanced Engineering Mathematics", Narosa Publications, New Delhi, 5<sup>th</sup> Edition, 2016.
- 4. Narayanan. S. and Manicavachagom Pillai. T. K., "Calculus" Volume I and II, S. Viswanathan Publishers Pvt. Ltd., Chennai, 2009.
- 5. Ramana. B.V., "Higher Engineering Mathematics", McGraw Hill Education Pvt. Ltd, New Delhi, 2016.
- 6. Srimantha Pal and Bhunia. S.C, "Engineering Mathematics" Oxford University Press, 2015.
- 7. Thomas. G. B., Hass. J, and Weir. M.D, "Thomas Calculus", 14<sup>th</sup> Edition, Pearson India, 2018.

# CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |    | PSO's |   |   |  |
|------|------|---|---|---|---|---|---|---|---|----|----|----|-------|---|---|--|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1     | 2 | 3 |  |
| 1    | 3    | 3 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 0  | 2  | 3  | -     | - | - |  |
| 2    | 3    | 3 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 0  | 2  | 3  | -     | - | - |  |
| 3    | 3    | 3 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 0  | 2  | 3  | -     | - | - |  |
| 4    | 3    | 3 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 0  | 2  | 3  | -     | - | - |  |
| 5    | 3    | 3 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 0  | 2  | 3  | /     | - | - |  |
| AVg. | 3    | 3 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 0  | 2  | 3  | -     | - | - |  |

1 - low, 2 - medium, 3 - high, '-' - no correlation

\_\_\_\_\_

ENGINEERING PHYSICS

L T P C 3 0 0 3

#### **COURSE OBJECTIVES:**

PH3151

- To make the students effectively achieve an understanding of mechanics.
- To enable the students to gain knowledge of electromagnetic waves and its applications.
- To introduce the basics of oscillations, optics and lasers.
- Equipping the students to successfully understand the importance of quantum physics.
- To motivate the students towards the applications of quantum mechanics.

#### UNIT I MECHANICS

9

Multi-particle dynamics: Center of mass (CM) – CM of continuous bodies – motion of the CM – kinetic energy of the system of particles. Rotation of rigid bodies: Rotational kinematics – rotational kinetic energy and moment of inertia - theorems of M .I –moment of inertia of continuous bodies – M.I of a diatomic molecule - torque – rotational dynamics of rigid bodies – conservation of angular

momentum – rotational energy state of a rigid diatomic molecule - gyroscope - torsional pendulum – double pendulum –Introduction to nonlinear oscillations.

# UNIT II ELECTROMAGNETIC WAVES

9

The Maxwell's equations - wave equation; Plane electromagnetic waves in vacuum, Conditions on the wave field - properties of electromagnetic waves: speed, amplitude, phase, orientation and waves in matter - polarization - Producing electromagnetic waves - Energy and momentum in EM waves: Intensity, waves from localized sources, momentum and radiation pressure - Cell-phone reception. Reflection and transmission of electromagnetic waves from a non-conducting medium-vacuum interface for normal incidence.

#### UNIT III OSCILLATIONS, OPTICS AND LASERS

9

Simple harmonic motion - resonance —analogy between electrical and mechanical oscillating systems - waves on a string - standing waves - traveling waves - Energy transfer of a wave - sound waves - Doppler effect. Reflection and refraction of light waves - total internal reflection - interference —Michelson interferometer —Theory of air wedge and experiment. Theory of laser - characteristics - Spontaneous and stimulated emission - Einstein's coefficients - population inversion - Nd-YAG laser, CO<sub>2</sub> laser, semiconductor laser —Basic applications of lasers in industry.

#### UNIT IV BASIC QUANTUM MECHANICS

9

Photons and light waves - Electrons and matter waves - Compton effect - The Schrodinger equation (Time dependent and time independent forms) - meaning of wave function - Normalization - Free particle - particle in a infinite potential well: 1D,2D and 3D Boxes-Normalization, probabilities and the correspondence principle.

#### UNIT V APPLIED QUANTUM MECHANICS

9

The harmonic oscillator(qualitative)- Barrier penetration and quantum tunneling(qualitative)- Tunneling microscope - Resonant diode - Finite potential wells (qualitative)- Bloch's theorem for particles in a periodic potential –Basics of Kronig-Penney model and origin of energy bands.

TOTAL: 45 PERIODS

#### **COURSE OUTCOMES:**

After completion of this course, the students should be able to

CO1:Understand the importance of mechanics.

CO2: Express their knowledge in electromagnetic waves.

CO3: Demonstrate a strong foundational knowledge in oscillations, optics and lasers.

CO4:Understand the importance of quantum physics.

CO5:Comprehend and apply quantum mechanical principles towards the formation of energy bands.

#### **TEXT BOOKS:**

- 1. D.Kleppner and R.Kolenkow. An Introduction to Mechanics. McGraw Hill Education (Indian Edition), 2017.
- 2. E.M.Purcell and D.J.Morin, Electricity and Magnetism, Cambridge Univ. Press, 2013.
- 3. Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, Concepts of Modern Physics, McGraw-Hill (Indian Edition), 2017.

#### **REFERENCES:**

- 1. R.Wolfson. Essential University Physics. Volume 1 & 2. Pearson Education (Indian Edition), 2009.
- 2. Paul A. Tipler, Physic Volume 1 & 2, CBS, (Indian Edition), 2004.

- 3. K.Thyagarajan and A.Ghatak. Lasers: Fundamentals and Applications, Laxmi Publications, (Indian Edition), 2019.
- 4. D.Halliday, R.Resnick and J.Walker. Principles of Physics, Wiley (Indian Edition), 2015.
- 5. N.Garcia, A.Damask and S.Schwarz. Physics for Computer Science Students. Springer-Verlag, 2012.

#### CO's-PO's & PSO's MAPPING

| CO's |   | PO's |     |     |     |   |   |   |   |    |    |    |   | PSO's |   |  |  |
|------|---|------|-----|-----|-----|---|---|---|---|----|----|----|---|-------|---|--|--|
|      | 1 | 2    | 3   | 4   | 5   | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2     | 3 |  |  |
| 1    | 3 | 3    | 2   | 1   | 1   | 1 | - | - | - | -  | -  | -  | - | -     | - |  |  |
| 2    | 3 | 3    | 2   | 1   | 2   | 1 | - | - | - | -  | -  | -  | - | -     | - |  |  |
| 3    | 3 | 3    | 2   | 2   | 2   | 1 | - | - | - | -  | -  | 1  | - | -     | - |  |  |
| 4    | 3 | 3    | 1   | 1   | 2   | 1 | - | - | - | -  | -  | -  | - | -     |   |  |  |
| 5    | 3 | 3    | 1   | 1   | 2   | 1 | - | - | - | -  | -  | -  | - | -     | - |  |  |
| AVg. | 3 | 3    | 1.6 | 1.2 | 1.8 | 1 | - | - | - | -  | -  | 1  | ı | -     | - |  |  |

1 - low, 2 - medium, 3 - high, '-' - no correlation

CY3151

#### **ENGINEERING CHEMISTRY**

LTPC

#### **COURSE OBJECTIVES:**

- To inculcate sound understanding of water quality parameters and water treatment techniques.
- To impart knowledge on the basic principles and preparatory methods of nanomaterials.
- To introduce the basic concepts and applications of phase rule and composites.
- To facilitate the understanding of different types of fuels, their preparation, properties and combustion characteristics.
- To familiarize the students with the operating principles, working processes and applications of energy conversion and storage devices.

# UNIT I WATER AND ITS TREATMENT

9

Water: Sources and impurities, Water quality parameters: Definition and significance of-color, odour, turbidity, pH, hardness, alkalinity, TDS, COD and BOD, fluoride and arsenic. Municipal water treatment: primary treatment and disinfection (UV, Ozonation, break-point chlorination). Desalination of brackish water: Reverse Osmosis. Boiler troubles: Scale and sludge, Boiler corrosion, Caustic embrittlement, Priming & foaming. Treatment of boiler feed water: Internal treatment (phosphate, colloidal, sodium aluminate and calgon conditioning) and External treatment – Ion exchange demineralization and zeolite process.

#### UNIT II NANOCHEMISTRY

9

Basics: Distinction between molecules, nanomaterials and bulk materials; Size-dependent properties (optical, electrical, mechanical and magnetic); Types of nanomaterials: Definition, properties and uses of – nanoparticle, nanocluster, nanorod, nanowire and nanotube. Preparation of nanomaterials: sol-gel, solvothermal, laser ablation, chemical vapour deposition, electrochemical deposition and electro spinning. Applications of nanomaterials in medicine, agriculture, energy, electronics and catalysis.

#### UNIT III PHASE RULE AND COMPOSITES

Phase rule: Introduction, definition of terms with examples. One component system - water system; Reduced phase rule; Construction of a simple eutectic phase diagram - Thermal analysis; Two component system: lead-silver system - Pattinson process.

Composites: Introduction: Definition & Need for composites; Constitution: Matrix materials (Polymer matrix, metal matrix and ceramic matrix) and Reinforcement (fiber, particulates, flakes and whiskers). Properties and applications of: Metal matrix composites (MMC), Ceramic matrix composites and Polymer matrix composites. Hybrid composites - definition and examples.

#### UNIT IV FUELS AND COMBUSTION

9

9

Fuels: Introduction: Classification of fuels; Coal and coke: Analysis of coal (proximate and ultimate), Carbonization, Manufacture of metallurgical coke (Otto Hoffmann method). Petroleum and Diesel: Manufacture of synthetic petrol (Bergius process), Knocking - octane number, diesel oil - cetane number; Power alcohol and biodiesel.

Combustion of fuels: Introduction: Calorific value - higher and lower calorific values, Theoretical calculation of calorific value; Ignition temperature: spontaneous ignition temperature, Explosive range; Flue gas analysis - ORSAT Method. CO<sub>2</sub> emission and carbon footprint.

#### UNIT V ENERGY SOURCES AND STORAGE DEVICES

9

Stability of nucleus: mass defect (problems), binding energy; Nuclear energy: light water nuclear power plant, breeder reactor. Solar energy conversion: Principle, working and applications of solar cells; Recent developments in solar cell materials. Wind energy; Geothermal energy; Batteries: Types of batteries, Primary battery - dry cell, Secondary battery - lead acid battery and lithium-ion-battery; Electric vehicles - working principles; Fuel cells: H<sub>2</sub>-O<sub>2</sub> fuel cell, microbial fuel cell; Supercapacitors: Storage principle, types and examples.

# **TOTAL: 45 PERIODS**

#### **COURSE OUTCOMES:**

At the end of the course, the students will be able:

**CO1**:To infer the quality of water from quality parameter data and propose suitable treatment methodologies to treat water.

**CO2**:To identify and apply basic concepts of nanoscience and nanotechnology in designing the synthesis of nanomaterials for engineering and technology applications.

CO3:To apply the knowledge of phase rule and composites for material selection requirements.

CO4:To recommend suitable fuels for engineering processes and applications.

**CO5**:To recognize different forms of energy resources and apply them for suitable applications in energy sectors.

#### **TEXT BOOKS:**

- 1. P. C. Jain and Monica Jain, "Engineering Chemistry", 17<sup>th</sup> Edition, Dhanpat Rai Publishing Company (P) Ltd, New Delhi, 2018.
- 2. Sivasankar B., "Engineering Chemistry", Tata McGraw-Hill Publishing Company Ltd, New Delhi, 2008.
- 3. S.S. Dara, "A Text book of Engineering Chemistry", S. Chand Publishing, 12<sup>th</sup> Edition, 2018

#### **REFERENCES:**

- B. S. Murty, P. Shankar, Baldev Raj, B. B. Rath and James Murday, "Text book of nanoscience and nanotechnology", Universities Press-IIM Series in Metallurgy and Materials Science, 2018.
- 2. O.G. Palanna, "Engineering Chemistry" McGraw Hill Education (India) Private Limited, 2<sup>nd</sup> Edition, 2017.

- 3. Friedrich Emich, "Engineering Chemistry", Scientific International PVT, LTD, New Delhi, 2014.
- 4. ShikhaAgarwal, "Engineering Chemistry-Fundamentals and Applications", Cambridge University Press. Delhi. Second Edition. 2019.
- 5. O.V. Roussak and H.D. Gesser, Applied Chemistry-A Text Book for Engineers and Technologists, Springer Science Business Media, New York, 2nd Edition, 2013.

#### CO's-PO's & PSO's MAPPING

| CO's | PO's |     |     |   |   |     |     |     |   |    |     |     |   | PSO's |   |  |  |
|------|------|-----|-----|---|---|-----|-----|-----|---|----|-----|-----|---|-------|---|--|--|
|      | 1    | 2   | 3   | 4 | 5 | 6   | 7   | 8   | 9 | 10 | 11  | 12  | 1 | 2     | 3 |  |  |
| 1    | 3    | 2   | 2   | 1 | - | 1   | 1   | -   | - | -  | -   | 1   | - | -     | - |  |  |
| 2    | 2    | -   | -   | 1 | - | 2   | 2   | -   | - | -  | -   | -   | - | -     | - |  |  |
| 3    | 3    | 1   | -   |   | - | -   | -   | -   | - | -  | -   | -   | - | -     | - |  |  |
| 4    | 3    | 1   | 1   |   | - | 1   | 2   | -   | - | -  | -   | -   | - | -     | - |  |  |
| 5    | 3    | 1   | 2   | 1 | 4 | 2   | 2   | -   | - | -/ |     | 2   | - | -     | - |  |  |
| AVg. | 2.8  | 1.3 | 1.6 | 1 | 1 | 1.5 | 1.8 | 115 |   |    | -// | 1.5 | - | -     | - |  |  |

1 - low, 2 - medium, 3 - high, '-' - no correlation

**GE3151** 

#### PROBLEM SOLVING AND PYTHON PROGRAMMING

L T P C 3 0 0 3

#### COURSE OBJECTIVES:

- To understand the basics of algorithmic problem solving.
- To learn to solve problems using Python conditionals and loops.
- To define Python functions and use function calls to solve problems.
- To use Python data structures lists, tuples, dictionaries to represent complex data.
- To do input/output with files in Python.

# UNIT I COMPUTATIONAL THINKING AND PROBLEM SOLVING

q

Fundamentals of Computing – Identification of Computational Problems -Algorithms, building blocks of algorithms (statements, state, control flow, functions), notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple strategies for developing algorithms (iteration, recursion). Illustrative problems: find minimum in a list, insert a card in a list of sorted cards, guess an integer number in a range, Towers of Hanoi.

# UNIT II DATA TYPES, EXPRESSIONS, STATEMENTS

9

Python interpreter and interactive mode, debugging; values and types: int, float, boolean, string, and list; variables, expressions, statements, tuple assignment, precedence of operators, comments; Illustrative programs: exchange the values of two variables, circulate the values of n variables, distance between two points.

# UNIT III CONTROL FLOW, FUNCTIONS, STRINGS

9

Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return values, parameters, local and global scope, function composition, recursion; Strings: string slices, immutability, string functions and methods, string module: Lists arravs. Illustrative programs: square root, gcd, exponentiation, sum an array of numbers, linear search, binary search.

#### **UNIT IV** LISTS, TUPLES, DICTIONARIES

9

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension; Illustrative programs: simple sorting, histogram, Students marks statement, Retail bill preparation.

#### FILES, MODULES, PACKAGES **UNIT V**

9

Files and exceptions: text files, reading and writing files, format operator; command line arguments, errors and exceptions, handling exceptions, modules, packages; Illustrative programs: word count, copy file, Voter's age validation, Marks range validation (0-100).

**TOTAL: 45 PERIODS** 

#### COURSE OUTCOMES:

# Upon completion of the course, students will be able to

CO1: Develop algorithmic solutions to simple computational problems.

CO2: Develop and execute simple Python programs.

CO3: Write simple Python programs using conditionals and loops for solving problems.

CO4: Decompose a Python program into functions.

CO5: Represent compound data using Python lists, tuples, dictionaries etc.

CO6: Read and write data from/to files in Python programs.

#### **TEXT BOOKS:**

- 1. Allen B. Downey, "Think Python: How to Think like a Computer Scientist", 2nd Edition, O'Reilly Publishers, 2016.
- 2. Karl Beecher, "Computational Thinking: A Beginner's Guide to Problem Solving and Programming", 1st Edition, BCS Learning & Development Limited, 2017.

#### REFERENCES:

- 1. Paul Deitel and Harvey Deitel, "Python for Programmers", Pearson Education, 1st Edition, 2021.
- 2. G Venkatesh and Madhavan Mukund, "Computational Thinking: A Primer for Programmers and Data Scientists", 1st Edition, Notion Press, 2021.
- 3. John V Guttag, "Introduction to Computation and Programming Using Python: With Applications to Computational Modeling and Understanding Data", Third Edition, MIT Press . 2021
- 4. Eric Matthes, "Python Crash Course, A Hands on Project Based Introduction to Programming", 2nd Edition, No Starch Press, 2019.
- 5. https://www.python.org/
- 6. Martin C. Brown, "Python: The Complete Reference", 4th Edition, Mc-Graw Hill, 2018.

# CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |    |   | PSO's |  |
|------|------|---|---|---|---|---|---|---|---|----|----|----|---|-------|--|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2     |  |
| 1    | 3    | 3 | 3 | 3 | 2 | - | - | - | - | -  | 2  | 2  | 3 | 3     |  |
| 2    | 3    | 3 | 3 | 3 | 2 | - | - | - | - | -  | 2  | 2  | 3 | -     |  |
| 3    | 3    | 3 | 3 | 3 | 2 | - | - | - | - | -  | 2  | -  | 3 | -     |  |
| 4    | 2    | 2 | - | 2 | 2 | - | - | - | - | -  | 1  | -  | 3 | -     |  |
| 5    | 1    | 2 | - | - | 1 | - | - | - | - | -  | 1  | -  | 2 | -     |  |
| 6    | 2    | 2 | - | - | 2 | - | - | - | - | -  | 1  | -  | 2 | -     |  |
| AVg. | 2    | 3 | 3 | 3 | 2 | - | - | - | - | -  | 2  | 2  | 3 | 3     |  |

1 - low, 2 - medium, 3 - high, '-' - no correlation

#### UNIT I LANGUAGE AND LITERATURE

3

Language Families in India - Dravidian Languages - Tamil as a Classical Language - Classical Literature in Tamil - Secular Nature of Sangam Literature - Distributive Justice in Sangam Literature - Management Principles in Thirukural - Tamil Epics and Impact of Buddhism & Jainism in Tamil Land - Bakthi Literature Azhwars and Nayanmars - Forms of minor Poetry - Development of Modern literature in Tamil - Contribution of Bharathiyar and Bharathidhasan.

#### UNIT II HERITAGE - ROCK ART PAINTINGS TO MODERN ART – SCULPTURE 3

Hero stone to modern sculpture - Bronze icons - Tribes and their handicrafts - Art of temple car making - - Massive Terracotta sculptures, Village deities, Thiruvalluvar Statue at Kanyakumari, Making of musical instruments - Mridhangam, Parai, Veenai, Yazh and Nadhaswaram - Role of Temples in Social and Economic Life of Tamils.

#### UNIT III FOLK AND MARTIAL ARTS

3

Therukoothu, Karagattam, Villu Pattu, Kaniyan Koothu, Oyillattam, Leather puppetry, Silambattam, Valari, Tiger dance - Sports and Games of Tamils.

#### UNIT IV THINAI CONCEPT OF TAMILS

3

Flora and Fauna of Tamils & Aham and Puram Concept from Tholkappiyam and Sangam Literature - Aram Concept of Tamils - Education and Literacy during Sangam Age - Ancient Cities and Ports of Sangam Age - Export and Import during Sangam Age - Overseas Conquest of Cholas.

# UNIT V CONTRIBUTION OF TAMILS TO INDIAN NATIONAL MOVEMENT AND INDIAN CULTURE 3

Contribution of Tamils to Indian Freedom Struggle - The Cultural Influence of Tamils over the other parts of India - Self-Respect Movement - Role of Siddha Medicine in Indigenous Systems of Medicine - Inscriptions & Manuscripts - Print History of Tamil Books.

# **TOTAL: 15 PERIODS**

# **TEXT-CUM-REFERENCE BOOKS**

- 1. தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
- 2. கணினித் தமிழ் முனைவர் இல சுந்தரம் (விகடன் பிரசுரம்).
- 3. கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருரை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).

- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Publishedby: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Bookand Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

GE3152 தமிழர் மரபு

L T P C 1 0 0 1

# அலகு I மொழி மற்றும் இலக்கியம்:

3

இந்திய மொழிக் குடும்பங்கள் – திராவிட மொழிகள் – தமிழ் ஒரு செம்மொழி – தமிழ் செவ்விலக்கியங்கள் - சங்க இலக்கியத்தின் சமயச் சார்பற்ற தன்மை – சங்க இலக்கியத்தில் பகிர்தல் அறம் – திருக்குறளில் மேலாண்மைக் கருத்துக்கள் – தமிழ்க் காப்பியங்கள், தமிழகத்தில் சமண பௌத்த சமயங்களின் தாக்கம் - பக்தி இலக்கியம், ஆழ்வார்கள் மற்றும் நாயன்மார்கள் – சிற்றிலக்கியங்கள் – தமிழில் நவீன இலக்கியத்தின் வளர்ச்சி – தமிழ் இலக்கிய வளர்ச்சியில் பாரதியார் மற்றும் பாரதிதாசன் ஆகியோரின் பங்களிப்பு.

# அலகு II மரபு – பாறை ஓவியங்கள் முதல் நவீன ஓவியங்கள் வரை – சிற்பக் கலை:

2

நடுகல் முதல் நவீன சிற்பங்கள் வரை – ஐம்பொன் சிலைகள்– பழங்குடியினர் மற்றும் அவர்கள் தயாரிக்கும் கைவினைப் பொருட்கள், பொம்மைகள் – தேர் செய்யும் கலை – சுடுமண் சிற்பங்கள் – நாட்டுப்புறத் தெய்வங்கள் – குமரிமுனையில் திருவள்ளுவர் சிலை – இசைக் கருவிகள் – மிருதங்கம், பறை, வீணை, யாழ், நாதஸ்வரம் – தமிழர்களின் சமூக பொருளாதார வாழ்வில் கோவில்களின் பங்கு.

நாட்டுப்புறக் கலைகள் மற்றும் வீர விளையாட்டுகள்: அலகு III 3 தெருக்கூத்து, கரகாட்டம், வில்வப்பாட்டு, கணியான் கூக்து. ஒயிலாட்டம், தோல்பாவைக் கூத்து, சிலம்பாட்டம், வளரி, புலியாட்டம், தமிழர்களின் விளையாட்டுகள்.

# அலகு IV தமிழர்களின் திணைக் கோட்பாடுகள்:

3

தமிழகத்தின் தாவரங்களும், விலங்குகளும் – தொல்காப்பியம் மற்றும் சங்க இலக்கியத்தில் அகம் மற்றும் புறக் கோட்பாடுகள் – தமிழர்கள் போற்றிய அறக்கோட்பாடு – சங்ககாலத்தில் தமிழகத்தில் எழுத்தறிவும், கல்வியும் – சங்ககால நகரங்களும் துறை முகங்களும் – சங்ககாலத்தில் ஏற்றுமதி மற்றும் இறக்குமதி – கடல்கடந்த நாடுகளில் சோழர்களின் வெற்றி.

# அலகு V இந்திய தேசிய இயக்கம் மற்றும் இந்திய பண்பாட்டிற்குத் தமிழர்களின் பங்களிப்பு:

3

இந்திய விடுதலைப்போரில் தமிழர்களின் பங்கு – இந்தியாவின் பிறப்பகுதிகளில் தமிழ்ப் பண்பாட்டின் தாக்கம் – சுயமரியாதை இயக்கம் – இந்திய மருத்துவத்தில், சித்த மருத்துவத்தின் பங்கு – கல்வெட்டுகள், கையெழுத்துப்படிகள் - தமிழ்ப் புத்தகங்களின் அச்சு வரலாறு.

**TOTAL: 15 PERIODS** 

#### **TEXT-CUM-REFERENCE BOOKS**

- 1. தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
- 2. கணினித் தமிழ் முனைவர் இல. சுந்தரம். (விகடன் பிரசுரம்).
- 3. கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Publishedby: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Bookand Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

# GE3171 PROBLEM SOLVING AND PYTHON PROGRAMMING LABORATORY L T P C 0 0 4 2

#### **COURSE OBJECTIVES:**

- To understand the problem solving approaches.
- To learn the basic programming constructs in Python.
- To practice various computing strategies for Python-based solutions to real world problems.
- To use Python data structures lists, tuples, dictionaries.
- To do input/output with files in Python.

#### **EXPERIMENTS:**

Note: The examples suggested in each experiment are only indicative. The lab instructor is expected to design other problems on similar lines. The Examination shall not be restricted to the sample experiments listed here.

- Identification and solving of simple real life or scientific or technical problems, and developing flow charts for the same. (Electricity Billing, Retail shop billing, Sin series, weight of a motorbike, Weight of a steel bar, compute Electrical Current in Three Phase AC Circuit, etc.)
- 2. Python programming using simple statements and expressions (exchange the values of two variables, circulate the values of n variables, distance between two points).
- 3. Scientific problems using Conditionals and Iterative loops. (Number series, Number Patterns, pyramid pattern)
- 4. Implementing real-time/technical applications using Lists, Tuples. (Items present in a library/Components of a car/ Materials required for construction of a building –operations of list & tuples)
- 5. Implementing real-time/technical applications using Sets, Dictionaries. (Language, components of an automobile, Elements of a civil structure, etc.- operations of Sets & Dictionaries)
- 6. Implementing programs using Functions. (Factorial, largest number in a list, area of shape)
- 7. Implementing programs using Strings. (reverse, palindrome, character count, replacing characters)
- 8. Implementing programs using written modules and Python Standard Libraries (pandas, numpy. Matplotlib, scipy)
- 9. Implementing real-time/technical applications using File handling. (copy from one file to another, word count, longest word)
- 10. Implementing real-time/technical applications using Exception handling. (divide by zero error, voter's age validity, student mark range validation)
- 11. Exploring Pygame tool.
- 12. Developing a game activity using Pygame like bouncing ball, car race etc.

**TOTAL: 60 PERIODS** 

# **COURSE OUTCOMES:**

On completion of the course, students will be able to:

**CO1**: Develop algorithmic solutions to simple computational problems.

**CO2**: Develop and execute simple Python programs.

CO3: Implement programs in Python using conditionals and loops for solving problems.

CO4: Deploy functions to decompose a Python program.

CO5: Process compound data using Python data structures.

**CO6**: Utilize Python packages in developing software applications.

#### **TEXT BOOKS:**

- 1. Allen B. Downey, "Think Python: How to Think like a Computer Scientist", 2nd Edition, O'Reilly Publishers, 2016.
- 2. Karl Beecher, "Computational Thinking: A Beginner's Guide to Problem Solving and Programming", 1st Edition, BCS Learning & Development Limited, 2017.

#### **REFERENCES:**

- 1. Paul Deitel and Harvey Deitel, "Python for Programmers", Pearson Education, 1st Edition, 2021.
- 2. G Venkatesh and Madhavan Mukund, "Computational Thinking: A Primer for Programmers and Data Scientists", 1st Edition, Notion Press, 2021.
- 3. John V Guttag, "Introduction to Computation and Programming Using Python: With Applications to Computational Modeling and Understanding Data", Third Edition, MIT Press , 2021.

- 4. Eric Matthes, "Python Crash Course, A Hands on Project Based Introduction to Programming", 2nd Edition, No Starch Press, 2019.
- 5. https://www.python.org/
- 6. Martin C. Brown, "Python: The Complete Reference", 4th Edition, Mc-Graw Hill, 2018. CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |    | PSO's |   |   |  |  |  |  |  |
|------|------|---|---|---|---|---|---|---|---|----|----|----|-------|---|---|--|--|--|--|--|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1     | 2 | 3 |  |  |  |  |  |
| 1    | 3    | 3 | 3 | 3 | 3 | - | - | - | - | -  | 3  | 2  | 3     | 3 | - |  |  |  |  |  |
| 2    | 3    | 3 | 3 | 3 | 3 | - | - | - | - | -  | 3  | 2  | 3     | - | - |  |  |  |  |  |
| 3    | 3    | 3 | 3 | 3 | 2 | - | - | - | - | -  | 2  | -  | 3     | - | - |  |  |  |  |  |
| 4    | 3    | 2 | - | 2 | 2 | - | - | - | - | -  | 1  | -  | 3     | - | - |  |  |  |  |  |
| 5    | 1    | 2 | - | - | 1 | - | - | - | - | -  | 1  | -  | 2     | - | - |  |  |  |  |  |
| 6    | 2    | - | - | - | 2 | - | - | - | - | -  | 1  | -  | 2     | - | - |  |  |  |  |  |
| AVg. | 2    | 3 | 3 | 3 | 2 | - |   | - | - | -  | 2  | 2  | 3     | 3 | - |  |  |  |  |  |

1 - low, 2 - medium, 3 - high, '-' - no correlation

**BS3171** 

#### PHYSICS AND CHEMISTRY LABORATORY

L T P C 0 0 4 2

# PHYSICS LABORATORY: (Any Seven Experiments)

# **COURSE OBJECTIVES:**

- To learn the proper use of various kinds of physics laboratory equipment.
- To learn how data can be collected, presented and interpreted in a clear and concise manner.
- To learn problem solving skills related to physics principles and interpretation of experimental data.
- To determine error in experimental measurements and techniques used to minimize such error.
- To make the student an active participant in each part of all lab exercises.
  - 1. Torsional pendulum Determination of rigidity modulus of wire and moment of inertia of regular and irregular objects.
  - 2. Simple harmonic oscillations of cantilever.
  - 3. Non-uniform bending Determination of Young's modulus.
  - 4. Uniform bending Determination of Young's modulus.
  - 5. Laser- Determination of the wavelength of the laser using grating.
  - 6. Air wedge Determination of thickness of a thin sheet/wire.
  - 7. a) Optical fibre -Determination of Numerical Aperture and acceptance angle.
    - b) Compact disc- Determination of width of the groove using laser.
  - 8. Acoustic grating- Determination of velocity of ultrasonic waves in liquids.
  - 9. Ultrasonic interferometer determination of the velocity of sound and compressibility of liquids
  - 10. Post office box -Determination of Band gap of a semiconductor.
  - 11. Photoelectric effect
  - 12. Michelson Interferometer.
  - 13. Melde's string experiment
  - 14. Experiment with lattice dynamics kit.

**TOTAL: 30 PERIODS** 

## **COURSE OUTCOMES:**

Upon completion of the course, the students should be able to

**CO1**:Understand the functioning of various physics laboratory equipment.

CO2:Use graphical models to analyze laboratory data.

**CO3**:Use mathematical models as a medium for quantitative reasoning and describing physical reality.

CO4: Access, process and analyze scientific information.

CO5: Solve problems individually and collaboratively.

## CO's-PO's & PSO's MAPPING

| СО  | P01 | PO2 | PO3 | PO4 | PO5 | P06 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| 1   | 3   | 2   | 3   | 1   | 1   | -   | -   | -   | -   | -    | -    | -    | -    | -    | -    |
| 2   | 3   | 3   | 2   | 1   | 1   | -   | -   | -   | -   | -    | -    | -    | -    | -    | -    |
| 3   | 3   | 2   | 3   | 1   | 1   | -   | -   | -   | -   | -    | -    | -    | -    | -    | -    |
| 4   | 3   | 3   | 2   | 1   | 1   | -   | -   | -   | -   | -    | -    | -    | -    | -    | -    |
| 5   | 3   | 2   | 3   | 1   | 1   | 45  | -   | -   | -   | - 4  | -    | -    | -    | -    | -    |
| AVG | 3   | 2.4 | 2.6 | 1   | 1   |     |     |     |     | _//  | 77   |      |      |      |      |

1 - low, 2 - medium, 3 - high, '-' - no correlation

## CHEMISTRY LABORATORY: (Any seven experiments to be conducted)

## **COURSE OBJECTIVES:**

- To inculcate experimental skills to test basic understanding of water quality parameters, such as, acidity, alkalinity, hardness, DO, chloride and copper.
- To induce the students to familiarize with electroanalytical techniques such as, pH metry, potentiometry and conductometry in the determination of impurities in aqueous solutions.
- To demonstrate the analysis of metals and alloys.
- To demonstrate the synthesis of nanoparticles
  - 1. Preparation of Na<sub>2</sub>CO<sub>3</sub> as a primary standard and estimation of acidity of a water sample using the primary standard
  - 2. Determination of types and amount of alkalinity in a water sample.
  - Split the first experiment into two
  - 3. Determination of total, temporary & permanent hardness of water by EDTA method.
  - 4. Determination of DO content of water sample by Winkler's method.
  - 5. Determination of chloride content of water sample by Argentometric method.
  - 6. Estimation of copper content of the given solution by lodometry.
  - 7. Estimation of TDS of a water sample by gravimetry.
  - 8. Determination of strength of given hydrochloric acid using pH meter.
  - 9. Determination of strength of acids in a mixture of acids using conductivity meter.
  - 10. Conductometric titration of barium chloride against sodium sulphate (precipitation titration)
  - 11. Estimation of iron content of the given solution using potentiometer.
  - 12. Estimation of sodium /potassium present in water using a flame photometer.
  - 13. Preparation of nanoparticles (TiO<sub>2</sub>/ZnO/CuO) by Sol-Gel method.
  - 14. Estimation of Nickel in steel
  - 15. Proximate analysis of Coal

## **COURSE OUTCOMES:**

**CO1**:To analyse the quality of water samples with respect to their acidity, alkalinity, hardness and DO.

CO2:To determine the amount of metal ions through volumetric and spectroscopic techniques

**CO3**:To analyse and determine the composition of alloys.

CO4:To learn simple method of synthesis of nanoparticles

CO5:To quantitatively analyse the impurities in solution by electroanalytical techniques

## **TEXT BOOKS:**

1. J. Mendham, R. C. Denney, J.D. Barnes, M. Thomas and B. Sivasankar, Vogel's Textbook of Quantitative Chemical Analysis (2009).

## CO's-PO's & PSO's MAPPING

| СО   | P01 | PO2 | PO3 | PO4 | PO5 | P06 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| 1    | 3   | -   | 1   | -   | -   | 2   | 2   | -   | -   | -    | -    | 2    | -    | -    | -    |
| 2    | 3   | 1   | 2   | •   | •   | _1  | 2   | -   | -   |      | -    | 1    | -    | ı    | -    |
| 3    | 3   | 2   | 1   | 1   | - 4 | -   | 1   | -   | -   | -//  | -    | -    | -    | -    | -    |
| 4    | 2   | 1   | 2   | -   | - 1 | 2   | 2   | 7.1 | 17  | -    | 1-   | -    | -    | -    | -    |
| 5    | 2   | 1   | 2   | •   | 1   | 2   | 2   | -   | V-E | 6    | -    | 1    | -    | ı    | -    |
| Avg. | 2.6 | 1.3 | 1.6 | 1   | 1,  | 1.4 | 1.8 | -   |     | 41   | 1    | 1.3  | -    | -    | -    |

1 - low, 2 - medium, 3 - high, '-' - no correlation

Note: the average value of this course to be used for program articulation matrix.

**GE3172** 

## **ENGLISH LABORATORY**

L T P C 0 0 2 1

## **COURSE OBJECTIVES:**

- To improve the communicative competence of learners
- To help learners use language effectively in academic /work contexts
- To develop various listening strategies to comprehend various types of audio materials like lectures, discussions, videos etc.
- To build on students' English language skills by engaging them in listening, speaking and grammar learning activities that are relevant to authentic contexts.
- To use language efficiently in expressing their opinions via various media.

## UNIT I INTRODUCTION TO FUNDAMENTALS OF COMMUNICATION 6

Listening for general information-specific details- conversation: Introduction to classmates - Audio / video (formal & informal); Telephone conversation; Listening to voicemail & messages; Listening and filling a form. Speaking - making telephone calls-Self Introduction; Introducing a friend; - politeness strategies- making polite requests, making polite offers, replying to polite requests and offers- understanding basic instructions (filling out a bank application for example).

## UNIT II NARRATION AND SUMMATION

6

Listening - Listening to podcasts, anecdotes / stories / event narration; documentaries and interviews with celebrities. Speaking - Narrating personal experiences / events-Talking about current and temporary situations & permanent and regular situations\* - describing experiences and feelings- engaging in small talk- describing requirements and abilities.

## UNIT III DESCRIPTION OF A PROCESS / PRODUCT

6

Listening - Listen to product and process descriptions; a classroom lecture; and advertisements about products. Speaking - Picture description- describing locations in workplaces- Giving

instruction to use the product- explaining uses and purposes- Presenting a product- describing shapes and sizes and weights- talking about quantities(large & small)-talking about precautions.

## UNIT IV CLASSIFICATION AND RECOMMENDATIONS

6

Listening – Listening to TED Talks; Listening to lectures - and educational videos. Speaking – Small Talk; discussing and making plans-talking about tasks-talking about progress- talking about positions and directions of movement-talking about travel preparations- talking about transportation-

## UNIT V EXPRESSION

6

Listening – Listening to debates/ discussions; different viewpoints on an issue; and panel discussions. Speaking –making predictions- talking about a given topic-giving opinions-understanding a website-describing processes

**TOTAL: 30 PERIODS** 

## **COURSE OUTCOMES:**

At the end of the course, learners will be able

CO1:To listen to and comprehend general as well as complex academic information

CO2:To listen to and understand different points of view in a discussion

CO3:To speak fluently and accurately in formal and informal communicative contexts

**CO4**:To describe products and processes and explain their uses and purposes clearly and accurately

CO5:To express their opinions effectively in both formal and informal discussions

## CO's-PO's & PSO's MAPPING

| СО   |   |   | F | ,O |   |   |   |   |   |    |    |    | PSO |   |   |  |
|------|---|---|---|----|---|---|---|---|---|----|----|----|-----|---|---|--|
|      | 1 | 2 | 3 | 4  | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1   | 2 | 3 |  |
| 1    | 3 | 3 | 3 | 3  | 1 | 3 | 3 | 3 | 3 | 3  | 3  | 3  | -   | - | - |  |
| 2    | 3 | 3 | 3 | 3  | 1 | 3 | 3 | 3 | 3 | 3  | 3  | 3  | -   | - | - |  |
| 3    | 3 | 3 | 3 | 3  | 1 | 3 | 3 | 3 | 3 | 3  | 3  | 3  | -   | - | - |  |
| 4    | 3 | 3 | 3 | 3  | 1 | 3 | 3 | 3 | 3 | 3  | 3  | 3  | -   | - | - |  |
| 5    | 3 | 3 | 3 | 3  | 1 | 3 | 3 | 3 | 3 | 3  | 3  | 3  | -   | - | - |  |
| AVg. | 3 | 3 | 3 | 3  | 1 | 3 | 3 | 3 | 3 | 3  | 3  | 3  | -   | - | - |  |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

Note: The average value of this course to be used for program articulation matrix.

## ASSESSMENT PATTERN

- One online / app based assessment to test listening /speaking
- End Semester ONLY listening and speaking will be conducted online.
- Proficiency certification is given on successful completion of listening and speaking internal test and end semester exam.

HS3252

PROFESSIONAL ENGLISH - II

L T P C 2 0 0 2

## **COURSE OBJECTIVES:**

- To engage learners in meaningful language activities to improve their reading and writing skills
- To learn various reading strategies and apply in comprehending documents in professional context.

- To help learners understand the purpose, audience, contexts of different types of writing
- To develop analytical thinking skills for problem solving in communicative contexts
- To demonstrate an understanding of job applications and interviews for internship and placements

## UNIT I MAKING COMPARISONS

6

Reading - Reading advertisements, user manuals, brochures; Writing – Professional emails, Email etiquette - Compare and Contrast Essay; Grammar – Mixed Tenses, Prepositional phrases

## UNIT II EXPRESSING CAUSAL RELATIONS IN SPEAKING AND WRITING

Reading - Reading longer technical texts- Cause and Effect Essays, and Letters / emails of complaint, Writing - Writing responses to complaints. Grammar - Active Passive Voice transformations, Infinitive and Gerunds

## UNIT III PROBLEM SOLVING

6

Reading - Case Studies, excerpts from literary texts, news reports etc. Writing – Letter to the Editor, Checklists, Problem solution essay / Argumentative Essay. Grammar – Error correction; If conditional sentences

## UNIT IV REPORTING OF EVENTS AND RESEARCH

6

**TOTAL: 30 PERIODS** 

Reading –Newspaper articles; Writing – Recommendations, Transcoding, Accident Report, Survey Report Grammar – Reported Speech, Modals Vocabulary – Conjunctions- use of prepositions

## UNIT V THE ABILITY TO PUT IDEAS OR INFORMATION COGENTLY 6

Reading – Company profiles, Statement of Purpose, (SOP), an excerpt of interview with professionals; Writing – Job / Internship application – Cover letter & Resume; Grammar – Numerical adjectives, Relative Clauses.

## **COURSE OUTCOMES:**

At the end of the course, learners will be able

CO1:To compare and contrast products and ideas in technical texts.

CO2:To identify and report cause and effects in events, industrial processes through technical texts

CO3:To analyse problems in order to arrive at feasible solutions and communicate them in the written format.

CO4:To present their ideas and opinions in a planned and logical manner

**CO5**:To draft effective resumes in the context of job search.

## **TEXT BOOKS:**

- 1. English for Engineers & Technologists (2020 edition) Orient Blackswan Private Ltd. Department of English, Anna University.
- 2. English for Science & Technology Cambridge University Press 2021.
- 3. Authored by Dr. Veena Selvam, Dr. Sujatha Priyadarshini, Dr. Deepa Mary Francis, Dr. KN. Shoba, and Dr. Lourdes Joevani, Department of English, Anna University.

## **REFERENCES:**

- 1. Raman. Meenakshi, Sharma. Sangeeta (2019). Professional English. Oxford university press. New Delhi.
- 2. Improve Your Writing ed. V.N. Arora and Laxmi Chandra, Oxford Univ. Press, 2001, NewDelhi.
- 3. Learning to Communicate Dr. V. Chellammal. Allied Publishers, New Delhi, 2003

- 4. Business Correspondence and Report Writing by Prof. R.C. Sharma & Krishna Mohan, Tata McGraw Hill & Co. Ltd., 2001, New Delhi.
- 5. Developing Communication Skills by Krishna Mohan, Meera Bannerji- Macmillan India Ltd. 1990. Delhi.

#### **ASSESSMENT PATTERN**

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence.

CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |      |   |   |   |     |    |    |    | PSO' | 's |   |
|------|------|---|---|---|------|---|---|---|-----|----|----|----|------|----|---|
|      | 1    | 2 | 3 | 4 | 5    | 6 | 7 | 8 | 9   | 10 | 11 | 12 | 1    | 2  | 3 |
| 1    | 3    | 3 | 3 | 3 | 3    | 3 | 3 | 3 | 2   | 3  | 3  | 3  | -    | -  | - |
| 2    | 3    | 3 | 3 | 3 | 3    | 3 | 3 | 3 | 2   | 3  | 3  | 3  | -    | -  | - |
| 3    | 3    | 3 | 3 | 3 | 3    | 3 | 3 | 3 | 2   | 3  | 3  | 3  | -    | -  | - |
| 4    | 3    | 3 | 3 | 3 | 2    | 3 | 3 | 3 | 2   | 3  | 3  | 3  | -    | -  | - |
| 5    | -    | - | - | - | 4    | - | - | - | 3   | 3  | 3  | 3  | -    | -  | - |
| AVg. | 3    | 3 | 3 | 3 | 2.75 | 3 | 3 | 3 | 2.2 | 3  | 3  | 3  | •    | •  | • |

<sup>1-</sup>low, 2-medium, 3-high, '-"- no correlation

**Note:** The average value of this course to be used for program articulation matrix.

**MA3251** 

## STATISTICS AND NUMERICAL METHODS

LTPC

## COURSE OBJECTIVES:

- This course aims at providing the necessary basic concepts of a few statistical and numerical methods and give procedures for solving numerically different kinds of problems occurring in engineering and technology.
- To acquaint the knowledge of testing of hypothesis for small and large samples which plays an important role in real life problems.
- To introduce the basic concepts of solving algebraic and transcendental equations.
- To introduce the numerical techniques of interpolation in various intervals and numerical techniques of differentiation and integration which plays an important role in engineering and technology disciplines.
- To acquaint the knowledge of various techniques and methods of solving ordinary differential equations.

## UNIT I TESTING OF HYPOTHESIS

9 + 3

Sampling distributions - Tests for single mean, proportion and difference of means (Large and small samples) - Tests for single variance and equality of variances - Chi square test for goodness of fit - Independence of attributes.

## UNIT II DESIGN OF EXPERIMENTS

9 + 3

One way and two way classifications - Completely randomized design – Randomized block design – Latin square design -  $2^2$  factorial design.

## UNIT III SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS

9 + 3

Solution of algebraic and transcendental equations - Fixed point iteration method - Newton Raphson method- Solution of linear system of equations - Gauss elimination method - Pivoting - Gauss Jordan method - Iterative methods of Gauss Jacobi and Gauss Seidel - Eigenvalues of a matrix by Power method and Jacobi's method for symmetric matrices.

## UNIT IV INTERPOLATION, NUMERICAL DIFFERENTIATION AND NUMERICAL INTEGRATION

9 + 3

Lagrange's and Newton's divided difference interpolations – Newton's forward and backward difference interpolation – Approximation of derivates using interpolation polynomials – Numerical single and double integrations using Trapezoidal and Simpson's 1/3 rules.

## UNIT V NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS 9 +3

Single step methods: Taylor's series method - Euler's method - Modified Euler's method - Fourth order Runge-Kutta method for solving first order differential equations - Multi step methods: Milne's and Adams - Bash forth predictor corrector methods for solving first order differential equations.

## **TOTAL: 60 PERIODS**

#### COURSE OUTCOMES:

Upon successful completion of the course, students will be able to:

CO1:Apply the concept of testing of hypothesis for small and large samples in real life problems.

**CO2**: Apply the basic concepts of classifications of design of experiments in the field of agriculture.

**CO3**:Appreciate the numerical techniques of interpolation in various intervals and apply the numerical techniques of differentiation and integration for engineering problems.

**CO4**:Understand the knowledge of various techniques and methods for solving first and second order ordinary differential equations.

**CO5**:Solve the partial and ordinary differential equations with initial and boundary conditions by using certain techniques with engineering applications.

## **TEXT BOOKS:**

- 1. Grewal, B.S., and Grewal, J.S., "Numerical Methods in Engineering and Science", Khanna Publishers, 10<sup>th</sup> Edition, New Delhi, 2015.
- 2. Johnson, R.A., Miller, I and Freund J., "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 8<sup>th</sup> Edition, 2015.

## **REFERENCES:**

- 1. Burden, R.L and Faires, J.D, "Numerical Analysis", 9th Edition, Cengage Learning, 2016.
- 2. Devore. J.L., "Probability and Statistics for Engineering and the Sciences", Cengage Learning, New Delhi, 8<sup>th</sup> Edition, 2014.
- 3. Gerald. C.F. and Wheatley. P.O. "Applied Numerical Analysis" Pearson Education, Asia, New Delhi, 7<sup>th</sup> Edition, 2007.
- 4. Gupta S.C. and Kapoor V. K., "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, New Delhi, 12<sup>th</sup> Edition, 2020.
- 5. Spiegel. M.R., Schiller. J. and Srinivasan. R.A., "Schaum's Outlines on Probability and Statistics", Tata McGraw Hill Edition, 4<sup>th</sup> Edition, 2012.
- 6. Walpole. R.E., Myers. R.H., Myers. S.L. and Ye. K., "Probability and Statistics for Engineers and Scientists", 9<sup>th</sup> Edition, Pearson Education, Asia, 2010.

## CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |    | PSO's |   |   |
|------|------|---|---|---|---|---|---|---|---|----|----|----|-------|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1     | 2 | 3 |
| 1    | 3    | 3 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 0  | 2  | 3  | -     | - | - |
| 2    | 3    | 3 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 0  | 2  | 3  | -     | - | - |
| 3    | 3    | 3 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 0  | 2  | 3  | -     | - | - |
| 4    | 3    | 3 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 0  | 2  | 3  | -     | - | - |
| 5    | 3    | 3 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 0  | 2  | 3  | -     | - | - |

1 - low, 2 - medium, 3 - high, '-' - no correlation

## BM3251 BIOSCIENCES FOR MEDICAL ENGINEERING

LTPC

3 0 0 3

## **COURSE OBJECTIVES:**

#### The student should be:

- To study structural and functional properties of carbohydrates, proteins, lipids and amino acids
- To emphasize the role of these biomolecules by providing basic information on specific metabolic diseases and disorders of these biomolecules
- Gain knowledge on the structural and functional aspects of living organisms.
- Know the etiology and remedy in treating the pathological diseases.

## UNIT I FUNDAMENTALS TO BIOCHEMISTRY

9

Introduction to Biochemistry, water as a biological solvent, weak acid and bases, pH, buffers, Handerson - Hasselbalch equation, physiological buffers in living systems, Energy in living organism. Properties of water and their applications in biological systems. Introduction to Biomolecules, Biological membrane, Clinical application of Electrolytes and radioisotopes.

## UNIT II CARBOHYDRATES, LIPIDS, PROTEIN

9

Classification of carbohydrates - mono, di, oligo and polysaccharides. Structure, physical and chemical properties of carbohydrates - Classification of lipids- simple, compound, and derived lipids. Nomenclature of fatty acid - Structure and properties of proteins, structural organization of proteins, classification and properties of amino acids. Nucleic acid: Structural aspects - Components of DNA and RNA, Nucleosides & Nucleotides (introduction, structure & bonding), Double helical structure of DNA (Watson-Crick model), various forms of DNA.

## UNIT III CELL DEGENERATION, REPAIR AND NEOPLASIA

9

Cell injury - Reversible cell injury and Irreversible cell injury and Necrosis, Apoptosis, Intracellular accumulations, Pathological calcification- Dystrophic and Metastatic. cellular adaptations of growth and differentiation, Inflammation and Repair including fracture healing, Neoplasia, Classification, Benign and Malignant tumours, carcinogenesis, spread of tumours Autopsy and biopsy.

## UNIT IV FLUID AND HEMODYNAMIC DERANGEMENTS

9

Edema, Hyperemia/Ischemia, normal hemostasis, thrombosis, disseminated intravascular coagulation, embolism, infarction, shock, Chronic venous congestion. Hematological disorders-Bleeding disorders, Leukaemias, Lymphomas Haemorrhage.

## UNIT V FUNDAMENTALS OF MICROBIOLOGY AND IMMUNOPATHOLOGY 9

Structure of Bacteria and Virus - Morphological features and structural organization of bacteria and virus - List of common bacterial, fungal and viral diseases of human beings.- Basics of Microscopes: Light microscope, Electron microscope (TEM & SEM). - Natural and artificial immunity, types of Hypersensitivity, antibody and cell mediated tissue injury, Immunological techniques: immune diffusion, immuno electrophoresis, RIA and ELISA, monoclonal antibodies.

**TOTAL: 45 PERIODS** 

## **COURSE OUTCOMES:**

## At the end of the course, the student should be able to:

CO1: Explain the fundamentals of biochemistry

CO2: Analyze structural and functional aspects of living organisms.

CO3: Explain the function of microscope

CO4: Describe methods involved in treating the pathological diseases.

## **TEXT BOOKS:**

- **1.** RAFI MD "Text book of biochemistry for Medical Student" Fourth Edition, Universities Press, Orient Blackswan Private Limited New Delhi 2021.
- Ramzi S Cotran, Vinay Kumar & Stanley L Robbins, "Pathologic Basis of Diseases", 10<sup>th</sup> edition: South Asia Edition Elsevier India, 2020. (Units III & IV).
- 2. Ananthanarayanan & Panicker, "Microbiology" Orientblackswan, 2017 10<sup>th</sup> edition. (Units III,IV and V).

## **REFERENCES:**

- 1. Keith Wilson & John Walker, "Practical Biochemistry Principles & Techniques", Oxford University Press, 2009.
- 2. Underwood JCE: General and Systematic Pathology Churchill Livingstone, 3rd edition, 2000.
- 3. Dubey RC and Maheswari DK. "A Text Book of Microbiology" Chand & Company Ltd, 2007
- 4. Prescott, Harley and Klein, "Microbiology", 10th edition, McGraw Hill, 2017

## BE3251

## BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

L T PC 3 0 0 3

## **COURSE OBJECTIVES:**

- To introduce the basics of electric circuits and analysis
- To impart knowledge in the basics of working principles and application of electrical machines
- To introduce analog devices and their characteristics
- To educate on the fundamental concepts of digital electronics
- To introduce the functional elements and working of measuring instruments

## UNIT I ELECTRICAL CIRCUITS

9

DC Circuits: Circuit Components: Conductor, Resistor, Inductor, Capacitor – Ohm's Law - Kirchhoff's Laws –Independent and Dependent Sources – Simple problems- Nodal Analysis, Mesh analysis with Independent sources only (Steady state)

Introduction to AC Circuits and Parameters: Waveforms, Average value, RMS Value, Instantaneous power, real power, reactive power and apparent power, power factor – Steady state analysis of RLC circuits (Simple problems only)

## UNIT II ELECTRICAL MACHINES

9

Construction and Working principle- DC Separately and Self excited Generators, EMF equation, Types and Applications. Working Principle of DC motors, Torque Equation, Types and Applications. Construction, Working principle and Applications of Transformer, Three phase Alternator, Synchronous motor and Three Phase Induction Motor.

#### UNIT III **ANALOG ELECTRONICS**

9

Resistor, Inductor and Capacitor in Electronic Circuits- Semiconductor Materials: Silicon &Germanium - PN Junction Diodes, Zener Diode - Characteristics Applications - Bipolar Junction Transistor-Biasing, JFET, SCR, MOSFET, IGBT - Types, I-V Characteristics and Applications, Rectifier and Inverters

#### UNIT IV **DIGITAL ELECTRONICS**

9

Review of number systems, binary codes, error detection and correction codes, Combinational logic - representation of logic functions-SOP and POS forms, K-map representations - minimization using K maps (Simple Problems only).

#### **UNIT V** MEASUREMENTS AND INSTRUMENTATION

9

Functional elements of an instrument, Standards and calibration, Operating Principle, types -Moving Coil and Moving Iron meters, Measurement of three phase power, Energy Meter, Instrument Transformers-CT and PT,DSO- Block diagram- Data acquisition.

**TOTAL: 45 PERIODS** 

## **COURSE OUTCOMES:**

After completing this course, the students will be able to

**CO1:** Compute the electric circuit parameters for simple problems

CO2: Explain the working principle and applications of electrical machines

CO3: Analyze the characteristics of analog electronic devices

CO4: Explain the basic concepts of digital electronics

**CO5:** Explain the operating principles of measuring instruments

## **TEXT BOOKS:**

- 1. Kothari DP and I.J Nagrath, "Basic Electrical and Electronics Engineering", Second Edition, McGraw Hill Education, 2020
- 2. S.K.Bhattacharya "Basic Electrical and Electronics Engineering", Pearson Education, Second Edition, 2017.
- 3. Sedha R.S., "A textbook book of Applied Electronics", S. Chand & Co., 2008
- 4. James A .Svoboda, Richard C. Dorf, "Dorf's Introduction to Electric Circuits", Wiley, 2018.
- 5. A.K. Sawhney, Puneet Sawhney 'A Course in Electrical & Electronic Measurements & Instrumentation', Dhanpat Rai and Co, 2015.

## **REFERENCES:**

- 1. Kothari DP and I.J Nagrath, "Basic Electrical Engineering", Fourth Edition, McGraw Hill Education, 2019.
- 2. Thomas L. Floyd, 'Digital Fundamentals', 11th Edition, Pearson Education, 2017.
- 3. Albert Malvino, David Bates, 'Electronic Principles, McGraw Hill Education; 7th edition, 2017.
- 4. Mahmood Nahvi and Joseph A. Edminister, "Electric Circuits", Schaum' Outline Series, McGraw Hill, 2002.
- 5. H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw-Hill, New Delhi, 2010

#### CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   | PSO's |    |    |   |   |   |
|------|------|---|---|---|---|---|---|---|---|-------|----|----|---|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10    | 11 | 12 | 1 | 2 | 3 |
| 1    | 2    | 2 | 1 | - | - | - | - | 1 | - | -     | -  | 2  | - | - | 1 |
| 2    | 2    | 2 | 1 | - | - | - | - | 1 | - | -     | -  | 2  | - | - | 1 |
| 3    | 2    | 1 | 1 | - | - | - | - | 1 | - | -     | -  | 2  | - | - | 1 |

| 4    | 2 | 2   | 1 | - | - | - | - | 1 | - | - | - | 2 | - | - | 1 |
|------|---|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 5    | 2 | 2   | 1 | - | - | - | - | 1 | - | - | - | 2 | - | - | 1 |
| AVg. | 2 | 1.8 | 1 | - | - | - | - | 1 | - | - | - | 2 | - | - | 1 |

1 - low, 2 - medium, 3 - high, '-' - no correlation

## BM3252 L T P C MEDICAL PHYSICS 3 0 0 3

## **COURSE OBJECTIVE:**

- To provide understanding of the application of the radiation concepts and methods of Physics in Medical science
- To accentuate the principle, effects and clinical applications of ionizing, non-ionizing and electromagnetic radiation.
- To enunciate the fundamentals of acoustic waves and their interaction with human tissues.
- To explore the effects of radiation in matter and how isotopes are produced
- To study effects of sound and light in human body

## UNIT I LOW ENERGY ELECTROMAGNETIC SPECTRUM AND ITS MEDICAL APPLICATION

Physics of light, Intensity of light, limits of vision and color vision an overview, Non-ionizing Electromagnetic Radiation: Overview of non-ionizing radiation effects-Tissue as a leaky dielectric-Low Frequency Effects- Higher frequency effects., Thermography— Application

## UNIT II PRINCIPLES OF RADIOACTIVE NUCLIDES

9

9

Radioactive Decay – Spontaneous Emission – Isometric Transition – Gamma ray emission, alpha, beta, Positron decay, electron capture, Sources of Radioisotopes Natural and Artificial radioactivity, Radionuclide used in Medicine and Technology, Decay series, Production of radionuclides – Cyclotron produced Radionuclide- Reactor produced Radionuclide-fission and neutron capture reaction, radionuclide Generator-Technetium generator

## UNIT III INTERACTION OF RADIATION WITH MATTER LIPIDS

9

Interaction of charged particles with matter –Specific ionization, Linear energy transfer range, Bremsstrahlung, Annihilation, Interaction of X and Gamma radiation with matter- Photoelectric effect, Compton Scattering, Pair production, Attenuation of Gamma Radiation, Interaction of neutron with matter and their clinical significance

## UNIT IV RADIATION DOSE AND ITS EFFECTS

ç

Dose and Exposure measurements – Units (SI), Inverse square law, Maximum permissible exposure, relationship between the dosimetric quantities, Radiation biology – effects of radiation, concept of LD 50, Stochastic and Non-stochastic effects, Radiation Syndrome.

## UNIT V PRINCIPLES AND APPLICATIONS OF SOUND IN MEDICINE

9

Physics of sound, Normal sound levels, ultrasound fundamentals, Generation of ultrasound (Ultrasound Transducer), Interaction of Ultrasound with matter- Cavitations, Reflection, Transmission, Scanning methods, Artifacts, Ultrasound- Doppler effect, Clinical Applications

**TOTAL: 45 PERIODS** 

## **COURSE OUTCOMES:**

## Upon completion of the course, students will be able to:

**CO1**:Interpret the properties of electromagnetic radiations and its effect on human.

CO2: Apply the principles and understand the production of radioactive nuclides.

CO3: Explain the interaction of radiation with matter.

CO4:Identify and Analyse the radiation quantities and its effects

CO5:Demonstrate the knowledge on the properties of sound and its application in medicine.

## **TEXT BOOKS:**

- 1. B.H. Brown, R.H. Smallwood, D.C. Barber, P.V. Lawford, D.R. Hose, "Medical Physics and Biomedical Engineering", Institute of physics publishing, Bristol and Philadelphia, 1999.
- 2. Gopal B. Saha "Physics and Radiobiology of Nuclear Medicine" Fourth edition Springer, 2006.

## **REFERENCES:**

- 1. W.J. Meredith and J.B. Massey "Fundamental Physics of Radiology" Varghese Publishing house, Third Edition, 2013.
- 2. Steve Webb, The Physics of Medical Imaging, Taylor & Francis, Newyork, Second Edition, 2012.
- 3. R.S. Khandpur, "Handbook of Biomedical Instrumentation", Tata McGraw-Hill, New Delhi, 2003.

## e-RESOURCES:

- 1. <a href="http://www.nptel.ac.in/courses/115102017/">http://www.nptel.ac.in/courses/115102017/</a>, "Nuclear science and Engineering", Dr. Santanu Gosh, Department of Physics, IIT, Delhi.
- 2. <a href="http://www.uthgsbsmedphys.org/GS02-0093/">http://www.uthgsbsmedphys.org/GS02-0093/</a>, "Introduction to Medical Physics", Dr George Starkschall, The University of Texas at Houston.

**GE3251** 

## **ENGINEERING GRAPHICS**

LTPC

## COURSE OBJECTIVES:

The main learning objective of this course is to prepare the students for:

- Drawing engineering curves.
- Drawing freehand sketch of simple objects.
- Drawing orthographic projection of solids and section of solids.
- Drawing development of solids
- Drawing isometric and perspective projections of simple solids.

## **CONCEPTS AND CONVENTIONS (Not for Examination)**

Importance of graphics in engineering applications — Use of drafting instruments — BIS conventions and specifications — Size, layout and folding of drawing sheets — Lettering and dimensioning.

## UNIT I PLANE CURVES

6+12

Basic Geometrical constructions, Curves used in engineering practices: Conics — Construction of ellipse, parabola and hyperbola by eccentricity method — Construction of cycloid — construction of involutes of square and circle — Drawing of tangents and normal to the above curves.

## UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACE 6+12

Orthographic projection- principles-Principal planes-First angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method and traces. Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

## UNIT III PROJECTION OF SOLIDS AND FREEHAND SKETCHING

6+12

Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes and parallel to the other by rotating object method. Visualization concepts and Free Hand sketching: Visualization principles —Representation of Three Dimensional objects — Layout of views- Freehand sketching of multiple views from pictorial views of objects.

Practicing three dimensional modeling of simple objects by CAD Software(Not for examination)

## UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES 6 +12

Sectioning of above solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other — obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids — Prisms, pyramids cylinders and cones.

Practicing three dimensional modeling of simple objects by CAD Software(Not for examination)

## UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS 6+12

Principles of isometric projection — isometric scale —Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions - Perspective projection of simple solids-Prisms, pyramids and cylinders by visual ray method.

Practicing three dimensional modeling of isometric projection of simple objects by CAD Software(Not for examination)

TOTAL: (L=30+P=60) 90 PERIODS

## **COURSE OUTCOMES:**

On successful completion of this course, the student will be able to

CO1:Use BIS conventions and specifications for engineering drawing.

CO2: Construct the conic curves, involutes and cycloid.

**CO3**:Solve practical problems involving projection of lines.

CO4: Draw the orthographic, isometric and perspective projections of simple solids.

**CO5**:Draw the development of simple solids.

## **TEXT BOOKS:**

- 1. Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, 53<sup>rd</sup> Edition, 2019.
- 2. Natrajan K.V., "A Text Book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2018.
- 3. Parthasarathy, N. S. and Vela Murali, "Engineering Drawing", Oxford University Press, 2015

## **REFERENCES:**

- 1. Basant Agarwal and Agarwal C.M., "Engineering Drawing", McGraw Hill, 2<sup>nd</sup> Edition, 2019.
- 2. Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas Publications, Bangalore, 27<sup>th</sup> Edition, 2017.
- 3. Luzzader, Warren.J. and Duff, John M., "Fundamentals of Engineering Drawing with an introduction to Interactive Computer Graphics for Design and Production, Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005.
- 4. Parthasarathy N. S. and Vela Murali, "Engineering Graphics", Oxford University, Press, New Delhi, 2015.
- 5. Shah M.B., and Rana B.C., "Engineering Drawing", Pearson Education India, 2<sup>nd</sup> Edition, 2009.

6. Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2008.

#### **Publication of Bureau of Indian Standards:**

- 1. IS 10711 2001: Technical products Documentation Size and lay out of drawing sheets.
- 2. IS 9609 (Parts 0 & 1) 2001: Technical products Documentation Lettering.
- 3. IS 10714 (Part 20) 2001 & SP 46 2003: Lines for technical drawings.
- 4. IS 11669 1986 & SP 46 —2003: Dimensioning of Technical Drawings.
- 5. IS 15021 (Parts 1 to 4) 2001: Technical drawings Projection Methods.

## Special points applicable to University Examinations on Engineering Graphics:

- 1. There will be five questions, each of either or type covering all units of the syllabus.
- 2. All questions will carry equal marks of 20 each making a total of 100.
- 3. The answer paper shall consist of drawing sheets of A3 size only. The students will be permitted to use appropriate scale to fit solution within A3 size.
- 4. The examination will be conducted in appropriate sessions on the same day

## CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |     |   |    |   |   |   |    |       |    | PSO's |   |   |  |  |
|------|------|---|---|-----|---|----|---|---|---|----|-------|----|-------|---|---|--|--|
|      | 1    | 2 | 3 | 4   | 5 | 6  | 7 | 8 | 9 | 10 | 11    | 12 | 1     | 2 | 3 |  |  |
| 1    | 3    | 1 | 2 | -   | 2 | -  | - | - |   | 3  | 3-7   | 2  | 2     | 2 | - |  |  |
| 2    | 3    | 1 | 2 | - 1 | 2 | -  | - | - | - | 3  | , Y.  | 2  | 2     | 2 | - |  |  |
| 3    | 3    | 1 | 2 | 2   | 2 | -  | - | - | - | 3  | -     | 2  | 2     | 2 | - |  |  |
| 4    | 3    | 1 | 2 | 7   | 2 | -  |   | - | - | 3  | - , ' | 2  | 2     | 2 | - |  |  |
| 5    | 3    | 1 | 2 | -   | 2 | -4 | - |   |   | 3  | -     | 2  | 2     | 2 | - |  |  |
| AVg. | 3    | 1 | 2 | -   | 2 | -  | - | - | - | 3  | -     | 2  | 2     | 2 | - |  |  |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

**GE3252** 

**TAMILS AND TECHNOLOGY** 

LTPC 1 0 0 1

## UNIT I WEAVING AND CERAMIC TECHNOLOGY

0 0

3

Weaving Industry during Sangam Age – Ceramic technology – Black and Red Ware Potteries (BRW) – Graffiti on Potteries.

## UNIT II DESIGN AND CONSTRUCTION TECHNOLOGY

3

Designing and Structural construction House & Designs in household materials during Sangam Age - Building materials and Hero stones of Sangam age - Details of Stage Constructions in Silappathikaram - Sculptures and Temples of Mamallapuram - Great Temples of Cholas and other worship places - Temples of Nayaka Period - Type study (Madurai Meenakshi Temple)-Thirumalai Nayakar Mahal - Chetti Nadu Houses, Indo - Saracenic architecture at Madras during British Period.

## UNIT III MANUFACTURING TECHNOLOGY

3

Art of Ship Building - Metallurgical studies - Iron industry - Iron smelting, steel -Copper and gold-Coins as source of history - Minting of Coins — Beads making-industries Stone beads -Glass beads - Terracotta beads -Shell beads/ bone beats - Archeological evidences - Gem stone types described in Silappathikaram.

## UNIT IV AGRICULTURE AND IRRIGATION TECHNOLOGY

3

Dam, Tank, ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husbandry - Wells designed for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fisheries - Pearl - Conche diving - Ancient Knowledge of Ocean - Knowledge Specific Society.

## UNIT V SCIENTIFIC TAMIL & TAMIL COMPUTING

Development of Scientific Tamil - Tamil computing – Digitalization of Tamil Books – Development of Tamil Software – Tamil Virtual Academy – Tamil Digital Library – Online Tamil Dictionaries – Sorkuvai Project.

**TOTAL: 15 PERIODS** 

3

## **TEXT-CUM-REFERENCE BOOKS**

- 1. தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
- 2. கணினித் தமிழ் முனைவர் இல. சுந்தரம். (விகடன் பிரசுரம்).
- 3. கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Publishedby: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Bookand Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

**GE3252** 

## தமிழரும் தொழில்நுட்பமும்

LTPC

1 0 0 1

அலகு I நெசவு மற்றும் பானைத் தொழில்நுட்பம்: 3 சங்க காலத்தில் நெசவுத் தொழில் – பானைத் தொழில்நுட்பம் - கருப்பு சிவப்பு பாண்டங்கள் – பாண்டங்களில் கீறல் குறியீடுகள்.

## அலகு II <u>வடிவமைப்பு மற்றும் கட்டிடத் தொழில்நுட்பம்</u>:

3

சங்க காலத்தில் வடிவமைப்பு மற்றும் கட்டுமானங்கள் & சங்க காலத்தில் வீட்டுப் பொருட்களில் வடிவமைப்பு- சங்க காலத்தில் கட்டுமான பொருட்களும் நடுகல்லும் – சிலப்பதிகாரத்தில் மேடை அமைப்பு பற்றிய விவரங்கள் - மாமல்லபுரச் சிற்பங்களும், கோவில்களும் – சோழர் காலத்துப் பெருங்கோயில்கள் மற்றும் பிற வழிபாட்டுத் தலங்கள் – நாயக்கர் காலக் கோயில்கள் - மாதிரி கட்டமைப்புகள் பற்றி அறிதல், மதுரை மீனாட்சி அம்மன் ஆலயம் மற்றும் திருமலை நாயக்கர் மஹால் – செட்டிநாட்டு வீடுகள் – பிரிட்டிஷ் காலத்தில் சென்னையில் இந்தோ-சாரோசெனிக் கட்டிடக் கலை.

## அலகு III உற்பத்தித் தொழில் நுட்பம்:

கப்பல் கட்டும் கலை – உலோகவியல் – இரும்புத் தொழிற்சாலை – இரும்பை உருக்குதல், எஃகு – வரலாற்றுச் சான்றுகளாக செம்பு மற்றும் தங்க நாணயங்கள் – நாணயங்கள் அச்சடித்தல் – மணி உருவாக்கும் தொழிற்சாலைகள் – கல்மணிகள், கண்ணாடி மணிகள் – சுடுமண் மணிகள் – சங்கு மணிகள் – எலும்புத்துண்டுகள் – தொல்லியல் சான்றுகள் – சிலப்பதிகாரத்தில் மணிகளின் வகைகள்.

அலகு IV வேளாண்மை மற்றும் நீர்ப்பாசனத் தொழில் நுட்பம்: அணை, ஏரி, குளங்கள், மதகு – சோழர்காலக் குமுழித் தூம்பின் முக்கியத்துவம் – கால்நடை பராமரிப்பு – கால்நடைகளுக்காக வடிவமைக்கப்பட்ட கிணறுகள் – வேளாண்மை மற்றும் வேளாண்மைச் சார்ந்த செயல்பாடுகள் – கடல்சார் அறிவு – மீன்வளம் – முத்து மற்றும் முத்துக்குளித்தல் – பெருங்கடல் குறித்த பண்டைய

## அலகு V அறிவியல் தமிழ் மற்றும் கணித்தமிழ்:

அறிவியல் தமிழின் வளர்ச்சி –கணித்தமிழ் வளர்ச்சி - தமிழ் நூல்களை மின்பதிப்பு செய்தல் – தமிழ் மென்பொருட்கள் உருவாக்கம் – தமிழ் இணையக் கல்விக்கழகம் – தமிழ் மின் நூலகம் – இணையத்தில் தமிழ் அகராதிகள் – சொற்குவைத் திட்டம்.

**TOTAL: 15 PERIODS** 

3

3

## **TEXT-CUM-REFERENCE BOOKS**

அறிவு – அறிவுசார் சமூகம்.

- 1. தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
- 2. கணினித் தமிழ் முனைவர் இல. சுந்தரம். (விகடன் பிரசுரம்).
- 3. கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Publishedby: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Bookand Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

## NX3251

# NCC Credit Course Level 1\* (ARMY WING)

|          | NCC Credit Course Level - I                                                                | L<br>2 | T<br>0 | P<br>0 | C<br>2 |
|----------|--------------------------------------------------------------------------------------------|--------|--------|--------|--------|
| NCC GEN  | IFR AI                                                                                     |        |        |        | 6      |
|          |                                                                                            |        |        |        | 4      |
| NCC 1    | Aims, Objectives & Organization of NCC                                                     |        |        |        | 1      |
| NCC 2    | Incentives                                                                                 |        |        |        | 2      |
| NCC 3    | Duties of NCC Cadet                                                                        |        |        |        | 1      |
| NCC 4    | NCC Camps: Types & Conduct                                                                 |        |        |        | 2      |
| NATIONA  | L INTEGRATION AND AWARENESS                                                                |        |        |        | 4      |
| NI 1     | National Integration: Importance & Necessity                                               |        |        |        | 1      |
| NI 2     | Factors Affecting National Integration                                                     |        |        |        | 1      |
| NI 3     | Unity in Diversity & Role of NCC in Nation Building                                        |        |        |        | 1      |
| NI 4     | Threats to National Security                                                               |        |        |        | 1      |
| PERSONA  | ALITY DEVELOPMENT                                                                          |        |        |        | 7      |
| PD 1     | Self-Awareness, Empathy, Critical & Creative Thinking, Decision Making and Problem Solving |        |        |        | 2      |
| PD 2     | Communication Skills                                                                       |        |        |        | 3      |
| PD 3     | Group Discussion: Stress & Emotions                                                        |        |        |        | 2      |
| LEADERS  | SHIP \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                 |        |        |        | 5      |
| L 1      | Leadership Capsule: Traits, Indicators, Motivation, Moral Values, Honour Code              |        |        |        | 3      |
| L 2      | Case Studies: Shivaji, Jhasi Ki Rani                                                       |        |        |        | 2      |
| SOCIAL S | SERVICE AND COMMUNITY DEVELOPMENT                                                          |        |        |        | 8      |
| SS 1     | Basics, Rural Development Programmes, NGOs, Contribution of Youth                          |        |        |        | 3      |
| SS 4     | Protection of Children and Women Safety                                                    |        |        |        | 1      |
| SS 5     | Road / Rail Travel Safety                                                                  |        |        |        | 1      |
| SS 6     | New Initiatives                                                                            |        |        |        | 2      |
| SS 7     | Cyber and Mobile Security Awareness                                                        |        |        |        | 1      |

## NX3252

# NCC Credit Course Level 1\* (NAVAL WING)

|          | NCC Credit Course Level - I L T 2 0                                                        | P | C |
|----------|--------------------------------------------------------------------------------------------|---|---|
|          | 2 0                                                                                        | 0 | 2 |
| NCC GEN  | IERAL                                                                                      |   | 6 |
| NCC 1    | Aims, Objectives & Organization of NCC                                                     |   | 1 |
| NCC 2    | Incentives                                                                                 |   | 2 |
| NCC 3    | Duties of NCC Cadet                                                                        |   | 1 |
| NCC 4    | NCC Camps: Types & Conduct                                                                 |   | 2 |
| NATIONA  | L INTEGRATION AND AWARENESS                                                                |   | 4 |
| NI 1     | National Integration: Importance & Necessity                                               |   | 1 |
| NI 2     | Factors Affecting National Integration                                                     |   | 1 |
| NI 3     | Unity in Diversity & Role of NCC in Nation Building                                        |   | 1 |
| NI 4     | Threats to National Security                                                               |   | 1 |
| PERSON   | ALITY DEVELOPMENT                                                                          |   | 7 |
| PD 1     | Self-Awareness, Empathy, Critical & Creative Thinking, Decision Making and Problem Solving |   | 2 |
| PD 2     | Communication Skills                                                                       |   | 3 |
| PD 3     | Group Discussion: Stress & Emotions                                                        |   | 2 |
| LEADERS  | SHIP                                                                                       |   | 5 |
| L 1      | Leadership Capsule: Traits, Indicators, Motivation, Moral Values,<br>Honour Code           |   | 3 |
| L 2      | Case Studies: Shivaji, Jhasi Ki Rani                                                       |   | 2 |
| SOCIAL S | SERVICE AND COMMUNITY DEVELOPMENT                                                          |   | 8 |
| SS 1     | Basics, Rural Development Programmes, NGOs, Contribution of Youth                          |   | 3 |
| SS 4     | Protection of Children and Women Safety                                                    |   | 1 |
| SS 5     | Road / Rail Travel Safety                                                                  |   | 1 |
| SS 6     | New Initiatives                                                                            |   | 2 |
| SS 7     | Cyber and Mobile Security Awareness                                                        |   | 1 |

## NX3253

# NCC Credit Course Level 1\* (AIR FORCE WING)

|          | NCC Credit Course Level - I                                                                | L<br>2 | T<br>0 | P<br>0 | 2<br>2 |
|----------|--------------------------------------------------------------------------------------------|--------|--------|--------|--------|
| NCC GEN  | ERAL                                                                                       |        |        |        | 6      |
| NCC 1    | Aims, Objectives & Organization of NCC                                                     |        |        |        | 1      |
| NCC 2    | Incentives                                                                                 |        |        |        | 2      |
| NCC 3    | Duties of NCC Cadet                                                                        |        |        |        | 1      |
| NCC 4    | NCC Camps: Types & Conduct                                                                 |        |        |        | 2      |
| NATIONA  | L INTEGRATION AND AWARENESS                                                                |        |        |        | 4      |
| NI 1     | National Integration: Importance & Necessity                                               |        |        |        | 1      |
| NI 2     | Factors Affecting National Integration                                                     |        |        |        | 1      |
| NI 3     | Unity in Diversity & Role of NCC in Nation Building                                        |        |        |        | 1      |
| NI 4     | Threats to National Security                                                               |        |        |        | 1      |
| PERSONA  | ALITY DEVELOPMENT                                                                          |        |        |        | 7      |
| PD 1     | Self-Awareness, Empathy, Critical & Creative Thinking, Decision Making and Problem Solving |        |        |        | 2      |
| PD 2     | Communication Skills                                                                       |        |        |        | 3      |
| PD 3     | Group Discussion: Stress & Emotions                                                        |        |        |        | 2      |
|          |                                                                                            |        |        |        |        |
| LEADERS  | SHIP                                                                                       |        |        |        | 5      |
| L 1      | Leadership Capsule: Traits, Indicators, Motivation, Moral Values, Honour Code              |        |        |        | 3      |
| L 2      | Case Studies: Shivaji, Jhasi Ki Rani                                                       |        |        |        | 2      |
| SOCIAL S | SERVICE AND COMMUNITY DEVELOPMENT                                                          |        |        |        | 8      |
| SS 1     | Basics, Rural Development Programmes, NGOs, Contribution Youth                             | of     |        |        | 3      |
| SS 4     | Protection of Children and Women Safety                                                    |        |        |        | 1      |
| SS 5     | Road / Rail Travel Safety                                                                  |        |        |        | 1      |
| SS 6     | New Initiatives                                                                            |        |        |        | 2      |
| SS 7     | Cyber and Mobile Security Awareness                                                        |        |        |        | 1      |

#### GE3271

L T P C

## **COURSE OBJECTIVES:**

The main learning objective of this course is to provide hands on training to the students in:

- 1. Drawing pipe line plan; laying and connecting various pipe fittings used in common household plumbing work; Sawing; planing; making joints in wood materials used in commonhousehold wood work.
- 2. Wiring various electrical joints in common household electrical wire work.

**ENGINEERING PRACTICES LABORATORY** 

- Welding various joints in steel plates using arc welding work; Machining various simple processes like turning, drilling, tapping in parts; Assembling simple mechanical assembly of common household equipments; Making a tray out of metal sheet using sheet metal work.
- 4. Soldering and testing simple electronic circuits; Assembling and testing simple electronic components on PCB.

## **GROUP - A (CIVIL & ELECTRICAL)**

## PART I CIVIL ENGINEERING PRACTICES PLUMBING WORK:

15

- a) Connecting various basic pipe fittings like valves, taps, coupling, unions, reducers, elbows and other components which are commonly used in household.
- b) Preparing plumbing line sketches.
- c) Laying pipe connection to the suction side of a pump
- d) Laying pipe connection to the delivery side of a pump.
- e) Connecting pipes of different materials: Metal, plastic and flexible pipes used inhousehold appliances.

## WOOD WORK:

- a) Sawing,
- b) Planing and
- c) Making joints like T-Joint, Mortise joint and Tenon joint and Dovetail joint.

## Wood Work Study:

- a) Studying joints in door panels and wooden furniture
- b) Studying common industrial trusses using models.

## PART II ELECTRICAL ENGINEERING PRACTICES

15

- a) Introduction to switches, fuses, indicators and lamps Basic switch board wiring with lamp, fan and three pin socket
- b) Staircase wiring
- c) Fluorescent Lamp wiring with introduction to CFL and LED types.
- d) Energy meter wiring and related calculations/ calibration
- e) Study of Iron Box wiring and assembly
- f) Study of Fan Regulator (Resistor type and Electronic type using Diac/Triac/quadrac)
- g) Study of emergency lamp wiring/Water heater

## **GROUP - B (MECHANICAL AND ELECTRONICS)**

## PART III MECHANICAL ENGINEERING PRACTICES

## **WELDING WORK:**

- a) Welding of Butt Joints, Lap Joints, and Tee Joints using arc welding.
- b) Practicing gas welding.

## **BASIC MACHINING WORK:**

- a) (simple)Turning.
- b) (simple)Drilling.
- c) (simple)Tapping.

## **ASSEMBLY WORK:**

- a) Assembling a centrifugal pump.
- b) Assembling a household mixer.
- c) Assembling an airconditioner.

## SHEET METAL WORK:

a) Making of a square tray

## FOUNDRY WORK:

a) Demonstrating basic foundry operations.

## PART IV ELECTRONIC ENGINEERING PRACTICES

15

**TOTAL: 60 PERIODS** 

15

## **SOLDERING WORK:**

a) Soldering simple electronic circuits and checking continuity.

## **ELECTRONIC ASSEMBLY AND TESTING WORK:**

a) Assembling and testing electronic components on a small PCB.

## **ELECTRONIC EQUIPMENT STUDY:**

- a) Study an elements of smart phone..
- b) Assembly and dismantle of LED TV.
- c) Assembly and dismantle of computer/laptop

## **COURSE OUTCOMES:**

Upon completion of this course, the students will be able to:

**CO1**:Draw pipe line plan; lay and connect various pipe fittings used in common household plumbing work; Saw; plan; make joints in wood materials used in common household wood work.

**CO2**:Wire various electrical joints in common household electrical wire work.

**CO3**:Weld various joints in steel plates using arc welding work; Machine various simple processes like turning, drilling, tapping in parts; Assemble simple mechanical assembly of common household equipments; Make a tray out of metal sheet using sheet metal work.

**CO4**:Solder and test simple electronic circuits; Assemble and test simple electronic components on PCB.

56

## CO's-PO's & PSO's MAPPING

| CO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| 1  | 3   | 2   | -   | -   | 1   | 1   | 1   | -   | -   | -    | -    | 2    | 2    | 1    | 1    |
| 2  | 3   | 2   | -   | -   | 1   | 1   | 1   | -   | -   | -    | -    | 2    | 2    | 1    | 1    |
| 3  | 3   | 2   | -   | -   | 1   | 1   | 1   | -   | -   | -    | -    | 2    | 2    | 1    | 1    |
| CO | 3   | 2   | -   | -   | 1   | 1   | 1   | -   | -   | -    | -    | 2    | 2    | 1    | 1    |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

#### BIOSCIENCES LABORATORY

L T P C 0 0 4 2

## **COURSE OBJECTIVES:**

BM3271

## To provide practice on:

- Estimation and quantification of biomolecules.
- Separation of macromolecules.
- Use Compound microscope
- · Practice on chemical examinations, Histopathological examinations etc

## LIST OF EXPERIMENTS:

- 1. Preparation of solutions: 1) percentage solutions, 2) molar solutions, 3) normal solutions
- 2. Standardization of pH meter, preparation of buffers, emulsions.
- 3. Spectroscopy: Determination of absorption maxima (λmax) of a given solution
- 4. General tests for carbohydrates, proteins and lipids.
- 5. Identification of Blood Collection Tubes and Phlebotomy equipment
- 6. Preparation of serum and plasma from blood
- 7. Estimation of Haemoglobin and blood glucose
- 8. Estimation of creatinine, urea and Uric acid
- 9. Separation of proteins by SDS electrophoresis(Demo) and amino acids by thin layer chromatography (Demo).
- 10. Urine physical and chemical examination (protein, reducing substances, ketones, bilirubin and blood)
- 11. Basic staining Hematoxylin and eosin staining.
- 12. Special stains cresyl fast Blue (CFV)- Trichrome oil red O PAS
- 13. Types of Staining: Simple stain, Gram stain
- 14. Study of parts of compound microscope
- 15. Study of Histopathological slides of benign and malignant tumours.
- 16. Study of Haematology slides of anemia and leukemia.

**TOTAL: 60 PERIODS** 

## **COURSE OUTCOMES:**

## Upon completion of the course, students will be able to:

CO1:Understand the Biochemistry laboratory functional components

**CO2**: Have a sound knowledge of qualitative test of different biomolecules.

**CO3**:Understand the basics knowledge of Biochemical parameter and their interpretation in Blood sample.

CO4: Have a sound knowledge of separation technology of proteins and amino acids.

CO5: Student can perform practical experiments on staining Processes.

## **TEXT BOOK:**

1. Ramnik Sood, Textbook of Medical Laboratory Technology, 6<sup>th</sup>Edition, Jaypee Brothers Medical Publishers, 2009

## **GE3272**

## **COMMUNICATION LABORATORY**

LT P C 0 0 4 2

**TOTAL: 60 PERIODS** 

## **COURSE OBJECTIVES**

- To identify varied group discussion skills and apply them to take part in effective discussions in a professional context.
- To analyse concepts and problems and make effective presentations explaining them clearly and precisely.
- To be able to communicate effectively through formal and informal writing.
- To be able to use appropriate language structures to write emails, reports and essays
- To give instructions and recommendations that are clear and relevant to the context

UNIT I 12

Speaking-Role Play Exercises Based on Workplace Contexts, - talking about competition-discussing progress toward goals-talking about experiences- talking about events in life-discussing past events-Writing: writing emails (formal & semi-formal).

UNIT II 12

Speaking: discussing news stories-talking about frequency-talking about travel problems-discussing travel procedures- talking about travel problems- making arrangements-describing arrangements-discussing plans and decisions- discussing purposes and reasons- understanding common technology terms-Writing: - writing different types of emails.

UNIT III 12

Speaking: discussing predictions-describing the climate-discussing forecasts and scenarios-talking about purchasing-discussing advantages and disadvantages- making comparisons-discussing likes and dislikes- discussing feelings about experiences-discussing imaginary scenarios Writing: short essays and reports-formal/semi-formal letters.

UNIT IV

Speaking: discussing the natural environment-describing systems-describing position and movement- explaining rules-( example- discussing rental arrangements)- understanding technical instructions-Writing: writing instructions-writing a short article.

UNIT V 12

Speaking: describing things relatively-describing clothing-discussing safety issues( making recommendations) talking about electrical devices-describing controlling actions- Writing: job application( Cover letter + Curriculum vitae)-writing recommendations.

## **COURSE OUTCOMES**

CO1: Speak effectively in group discussions held in formal/semi formal contexts.

**CO2**:Discuss, analyse and present concepts and problems from various perspectives to arrive at suitable solutions

CO3:Write emails, letters and effective job applications.

CO4:Write critical reports to convey data and information with clarity and precision

CO5: Give appropriate instructions and recommendations for safe execution of tasks

## **Assessment Pattern**

- One online / app based assessment to test speaking and writing skills
- Proficiency certification is given on successful completion of speaking and writing.

## CO's-PO's & PSO's MAPPING

| СО   | P01 | PO2 | PO3 | PO4 | PO5 | P06 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| 1    | 2   | 3   | 3   | 3   | 1   | 3   | 3   | 3   | 3   | 3    | 3    | 3    | -    | -    | -    |
| 2    | 2   | 3   | 3   | 3   | 1   | 3   | 3   | 3   | 3   | 3    | 3    | 3    | -    | -    | -    |
| 3    | 2   | 2   | 3   | 3   | 1   | 3   | 3   | 3   | 3   | 3    | 3    | 3    | -    | -    | -    |
| 4    | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 3    | -    | -    | -    |
| 5    | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3    | 3    | 3    | -    | -    | -    |
| AVg. | 2.4 | 2.8 | 3   | 3   | 1.8 | 3   | 3   | 3   | 3   | 3    | 3    | 3    | -    | -    | -    |

1-low, 2-medium, 3-high, '-"- no correlation

Note: The average value of this course to be used for program articulation matrix.

## MA3351 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

2 1 0 4

## **COURSE OBJECTIVES**

- To introduce the basic concepts of PDE for solving standard partial differential equations.
- To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems.
- To acquaint the student with Fourier series techniques in solving heat flow problems used in various situations.
- To acquaint the student with Fourier transform techniques used in wide variety of situations.
- To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems.

## UNIT I PARTIAL DIFFERENTIAL EQUATIONS

9 + 3

Formation of partial differential equations —Solutions of standard types of first order partial differential equations - First order partial differential equations reducible to standard types-Lagrange's linear equation - Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types.

## UNIT II FOURIER SERIES

9 + 3

Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series and cosine series – Root mean square value – Parseval's identity – Harmonic analysis.

## UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

9 + 3

Classification of PDE – Method of separation of variables - Fourier series solutions of one dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation of heat conduction (Cartesian coordinates only).

## UNIT IV FOURIER TRANSFORMS

9 + 3

Statement of Fourier integral theorem— Fourier transform pair — Fourier sine and cosine transforms — Properties — Transforms of simple functions — Convolution theorem — Parseval's identity.

## UNIT V Z - TRANSFORMS AND DIFFERENCE EQUATIONS

9 + 3

Z-transforms - Elementary properties - Convergence of Z-transforms - Initial and final value theorems - Inverse Z-transform using partial fraction and convolution theorem - Formation of difference equations - Solution of difference equations using Z - transforms.

**TOTAL: 60 PERIODS** 

## **COURSE OUTCOMES**

Upon successful completion of the course, students should be able to:

**CO1**:Understand how to solve the given standard partial differential equations.

**CO2**:Solve differential equations using Fourier series analysis which plays a vital role in engineering applications.

**CO3**:Appreciate the physical significance of Fourier series techniques in solving one and two dimensional heat flow problems and one dimensional wave equations.

**CO4**:Understand the mathematical principles on transforms and partial differential equations would provide them the ability to formulate and solve some of the physical problems of engineering.

**CO5**:Use the effective mathematical tools for the solutions of partial differential equations by using Z transform techniques for discrete time systems.

## **TEXT BOOKS:**

- 1. Grewal B.S., "Higher Engineering Mathematics", 44th Edition, Khanna Publishers, New Delhi. 2018.
- 2. Kreyszig E, "Advanced Engineering Mathematics ", 10<sup>th</sup> Edition, John Wiley, New Delhi, India, 2016.

## REFERENCES:

- 1. Andrews. L.C and Shivamoggi. B, "Integral Transforms for Engineers" SPIE Press, 1999.
- 2. Bali. N.P and Manish Goyal, "A Textbook of Engineering Mathematics", 10<sup>th</sup> Edition, Laxmi Publications Pvt. Ltd, 2015.
- 3. James. G., "Advanced Modern Engineering Mathematics", 4<sup>th</sup>Edition, Pearson Education, New Delhi, 2016.
- 4. Narayanan. S., Manicavachagom Pillay.T.K and Ramanaiah.G "Advanced Mathematics for Engineering Students", Vol. II & III, S.Viswanathan Publishers Pvt. Ltd, Chennai, 1998.
- 5. Ramana. B.V., "Higher Engineering Mathematics", McGraw Hill Education Pvt. Ltd, New Delhi, 2018.
- 6. Wylie. R.C. and Barrett . L.C., "Advanced Engineering Mathematics "Tata McGraw Hill Education Pvt. Ltd, 6th Edition, New Delhi, 2012.

## CO's- PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |    | PSO' | S |   |
|------|------|---|---|---|---|---|---|---|---|----|----|----|------|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1    | 2 | 3 |
| 1    | 3    | 3 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 0  | 0  | 3  | -    | - | - |
| 2    | 3    | 3 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 0  | 0  | 3  | -    | - | - |
| 3    | 3    | 3 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 0  | 0  | 3  | -    | - | - |
| 4    | 3    | 3 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 0  | 0  | 3  | -    | - | - |
| 5    | 3    | 3 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 0  | 0  | 3  | -    | - | - |
| AVg. | 3    | 3 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 0  | 0  | 3  | -    | - | - |

1 - low, 2 - medium, 3 - high, '-' - no correlation

## BM3353 FUNDAMENTALS OF ELECTRONIC DEVICES AND CIRCUITS

LT PC 3 0 0 3

## **COURSE OBJECTIVES:**

The objective of this unit is to make the student learn and understand

- Introduce the concept of diodes, Bipolar Junction Transistors and FET.
- Study the various model parameters of Transistors
- Learn the concept of special semiconductor devices, Power & Display devices
- Impart the knowledge of various configurations, characteristics, applications.
- To have knowledge of display and power devices.

## UNIT I SEMICONDUCTOR DIODE

9

PN junction diode, Current equations, Energy Band diagram, Diffusion and drift current densities, forward and reverse bias characteristics, Transition and Diffusion Capacitances, Switching Characteristics, Breakdown in PN Junction Diodes.

## UNIT II BIPOLAR JUNCTION TRANSISTORS

9

NPN -PNP -Operations-Early effect-Current equations – Input and Output characteristics of CE, CB, CC - Hybrid - $\pi$  model - h-parameter model, Ebers Moll Model- Gummel Poon- model, Multi Emitter Transistor.

## UNIT III FIELD EFFECT TRANSISTORS

9

MOSFETs – Drain and Transfer characteristics,-Current equations-Pinch off voltage and its significance- Threshold voltage -Channel length modulation, small signal Characteristics, D-MOSFET, E-MOSFET- Characteristics – Comparison of MOSFET with BJT.

## UNIT IV SPECIAL SEMICONDUCTOR DEVICES

9

Metal-Semiconductor Junction - MESFET, FINFET, PINFET, CNTFET, DUAL GATE MOSFET, Point Contact Diode, p-i-n Diode, Avalanche Photodiode, Schottky barrier diode- Zener diode-Varactor diode - Tunnel diode- Gallium Arsenide device, LASER diode, LDR.

## UNIT V POWER DEVICES AND DISPLAY DEVICES

q

UJT, Thyristor - SCR, Diac, Triac, Power BJT- Power MOSFET- DMOS-VMOS. LED, LCD, Opto Coupler, Solar cell, CCD.

## **COURSE OUTCOMES:**

At the end of the course, the student should be able to:

**CO1:** Analyze the characteristics of semiconductor diodes.

**CO2:** Analyze and solve problems of Transistor circuits using model parameters.

**CO3:** Identify and characterize diodes and various types of transistors.

**CO4:** Analyze the characteristics of special semiconductor devices.

**CO5:** Analyze the characteristics of Power and Display devices.

**TOTAL:45 PERIODS** 

## **TEXT BOOK**

- 1. Millman and Halkias, "Electronic Devices and Circuits", 4th Edition, McGraw Hill, 2015.
- 2. Mohammad Rashid, "Electronic Devices and Circuits", Cengage Learning Pvt. Ltd, 2015.
- 3. Salivahanan. S, Suresh Kumar. N, "Electronic Devices and circuits", 4th Edition, McGraw Hill, 2016.

## **REFERENCES**

1. Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory" Pearson

- Prentice Hall, 11th Edition, 2014.
- 2. Bhattacharya and Sharma, "Solid State Electronic Devices", 2nd Edition, Oxford University Press, 2014.
- 3. R.S.Sedha, "A Textbook of Electronic Devices and Circuits", 2nd Edition, S.Chand Publications, 2008.
- 4. David A. Bell, "Electronic Devices and Circuits", 5th Edition, Oxford University Press, 2008.

## CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |     |   |    |     |    | PSO' | S |   |
|------|------|---|---|---|---|---|---|-----|---|----|-----|----|------|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8   | 9 | 10 | 11  | 12 | 1    | 2 | 3 |
| 1    | 3    | 3 | 1 | - | - | - | - | -   | - | -  | -   | -  | 1    | - | - |
| 2    | 3    | 3 | 3 | - | - | - | - | -   | - | -  | -   | -  | 1    | - | - |
| 3    | 3    | 3 | 3 | - | - | - |   | -   | - | -  | -   | -  | 1    | - | - |
| 4    | 3    | 3 | 2 | - | - | - | - | -   | - | -  | -   | -  | 1    | - | - |
| 5    | 3    | 3 | 2 | - |   | - | - | -   | - | -  |     | •  | 1    | - | - |
| AVg. | 3    | 3 | 3 | - | - | - |   | - 1 | - | /  | -// | •  | 1    | - | - |

1 - low, 2 - medium, 3 - high, '-' - no correlation

BM3301

## **SENSORS AND MEASUREMENTS**

LT P C 3 0 0 3

## COURSE OBJECTIVES:

- To understand the purpose of measurement, the methods of measurements, errors associated with measurements.
- To know the principle of transduction, classifications and the characteristics of different transducers
- To learn the different bridges for measurement.
- To know the different display and recording devices.
- · To understand various type of biosensors.

## UNIT I FUNDAMENTALS OF MEASUREMENTS

9

Measurement System – Instrumentation - Classification and Characteristics of Transducers - Static and Dynamic - Errors in Measurements and their statistical analysis- methods of error analysis, uncertainty analysis-expression of uncertainty: accuracy and precision index, propagation of errors— Calibration - Primary and secondary standards.

## UNIT II DISPLACEMENT, PRESSURE, TEMPERATURE SENSORS

9

Strain Gauge: Gauge factor, sensing elements, configuration, and unbounded strain gage. Capacitive transducer - various arrangements, Inductive transducer, LVDT, Passive types: RTD materials & range, relative resistance vs. temperature characteristics, thermistor characteristics, Active type: Thermocouple - characteristics.

## UNIT III PHOTOELECTRIC AND PIEZO ELECTRIC SENSORS

9

Phototube, scintillation counter, photo multiplier tube (PMT), photovoltaic, photo conductive cells, photo diodes, phototransistor, comparison of photoelectric transducers. Optical displacement sensors and optical encoders. Piezoelectric active transducer- Equivalent circuit and its characteristics.

## UNIT IV SIGNAL CONDITIONING CIRCUITS AND METERS

Functions of signal conditioning circuits, Preamplifiers, Concepts of passive filters, Impedance matching circuits, AC and DC Bridges - wheat stone bridge, Kelvin, Maxwell, Hay, Schering, Qmeter, PMMC, MI and dynamometer type instruments - DC potentiometer- Digital voltmeter – Multi meter.

## UNIT V RECORDING DEVICES AND ADVANCED SENSORS

9

9

CRO – block diagram, CRT – vertical & horizontal deflection system, DSO, LCD monitor, PMMC writing systems, servo recorders, photographic recorder, magnetic tape recorder, Inkjet recorder, thermal recorder. Biosensors: transduction mechanism in a biosensor and Classification - Electronic nose.

## **COURSE OUTCOMES:**

On successful completion of this course, the student will be able to

**CO1:** Measure various electrical parameters with accuracy, precision, resolution.

CO2: Select appropriate passive or active transducers for measurement of physical phenomenon.

CO3: Select appropriate light sensors for measurement of physical phenomenon

CO4: Use AC and DC bridges for relevant parameter measurement.

CO5: Employ multimeter, CRO and different types of recorders for appropriate measurement.

## **TOTAL:45 PERIODS**

## **TEXT BOOKS**

- 1. A.K.Sawhney, "Electrical & Electronics Measurement and Instrumentation",10<sup>th</sup> edition, Dhanpat Rai & Co, New Delhi, 19th Revised edition 2011, Reprint 2014.
- **2.** John G. Webster, "Medical Instrumentation Application and Design", 4<sup>th</sup> edition, Wiley India Pvt Ltd, New Delhi, 2015
- **3.** Ernest O Doebelin and Dhanesh N Manik, "Measurement systems, Application and design", 6th edition, McGraw-Hill, 2012

## **REFERENCES**

- **1.** Khandpur R.S, "Handbook of Biomedical Instrumentation", 3<sup>rd</sup> edition, Tata McGraw-Hill, New Delhi. 2014.
- **2.** Leslie Cromwell, "Biomedical Instrumentation and measurement", 2<sup>nd</sup> edition, Prentice hall of India, New Delhi, 2015.
- **3.** Albert D.Helfrick and William D. Cooper. Modern Electronic Instrumentation and Measurement Techniques", Prentice Hall of India, 1<sup>st</sup> edition, 2016.

## CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |    | PSO' | S |   |
|------|------|---|---|---|---|---|---|---|---|----|----|----|------|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1    | 2 | 3 |
| 1    | 3    | 3 | 2 | 1 | - | - | - | - | - | -  | -  | -  | 1    | - | - |
| 2    | 3    | 3 | 2 | 1 | - | - | - | - | - | -  | -  | -  | 1    | - | - |
| 3    | 3    | 3 | 2 | 1 | - | - | - | - | - | -  | -  | -  | 1    | - | - |
| 4    | 3    | 3 | 3 | 2 | - | - | - | - | - | -  | -  | -  | 1    | - | - |
| 5    | 3    | 3 | 3 | 2 | - | - | - | - | - | -  | -  | -  | 1    | - | - |
| AVg. | 3    | 3 | 2 | 1 | • | - | - | - | - | -  | -  | -  | 1    | - | - |

1 - low, 2 - medium, 3 - high, '-' - no correlation

## **ELECTRIC CIRCUIT ANALYSIS**

L T P C 3 0 0 3

## **COURSE OBJECTIVES:**

- To introduce the basic concepts of DC and AC circuits behavior
- To study the transient and steady state response of the circuits subjected to step and sinusoidal excitations.
- To introduce different methods of circuit analysis using Network theorems, duality and topology

## UNIT I BASIC CIRCUITS ANALYSIS

9

Basic Components of electric Circuits, Charge, current, Voltage and Power, Voltage and Current Sources, Ohms Law, Kirchoff's Laws, Mesh current and node voltage method of analysis for D.C and A.C. circuits. The single Node – Pair Circuit, series and Parallel Connected Independent Sources, Resistors in Series and Parallel, voltage and current division, Nodal analysis, Mesh analysis.

## UNIT II NETWORK THEOREM AND DUALITY

9

Useful Circuit Analysis techniques - Linearity and superposition, Thevenin and Norton Equivalent Circuits, Maximum Power Transfer, application of Network theorems. Network reduction: voltage and current division, source transformation, Delta-Wye Conversion. Duals, Dual circuits.

## UNIT III SINUSOIDAL STEADY STATE ANALYSIS

9

Sinusoidal Steady – State analysis, Characteristics of Sinusoids, The Complex Forcing Function, The Phasor, Phasor relationship for R, L, and C, impedance and Admittance, Nodal and Mesh Analysis, Phasor Diagrams, AC Circuit Power Analysis, Instantaneous Power, Average Power, apparent Power and Power Factor, Complex Power.

## UNIT IV TRANSIENTS AND RESONANCE IN RLC CIRCUITS

9

Basic RL and RC Circuits, The Source- Free RL Circuit, The Source-Free RC Circuit, The Unit-Step Function, Driven RL Circuits, Driven RC Circuits, RLC Circuits, Frequency Response, Parallel Resonance, Series Resonance, Quality Factor.

## UNIT V COUPLED CIRCUITS AND TOPOLOGY

9

Magnetically Coupled Circuits, mutual Inductance, the Linear Transformer, the Ideal Transformer, An introduction to Network Topology, Trees and General Nodal analysis, Links and Loop analysis.

## **COURSE OUTCOMES:**

On successful completion of this course, the student will be able to

CO1: Comprehend and design ac/dc circuits.

**CO2**: Apply circuit theorems in real time.

CO3: Evaluate ac/dc circuits.

CO4: Analyse the electrical circuits

**CO5**: Develop and understand ac/dc circuits.

**TOTAL:45 PERIODS** 

## **TEXT BOOKS**

- 1. Hayt Jack Kemmerly, Steven Durbin, "Engineering Circuit Analysis", Mc Graw Hill education, 9<sup>th</sup> Edition, 2018.
- **2.** Joseph Edminister and Mahmood Nahvi, "Electric Circuits", Schaum's Outline Series, Tata McGraw Hill Publishing Company, New Delhi, Fifth Edition Reprint 2016.

## **REFERENCES**

- 1. Robert.L. Boylestead, "Introductory Circuit Analysis", Pearson Education India, 12<sup>th</sup> Edition, 2014.
- 2. John O Mallay, Schaum's Outlines "Basic Circuit Analysis", The Mc Graw Hill companies, 2<sup>nd</sup> Edition, 2011.
- 3. Charles.K.Alexander, Mathew N.O.Sadiku, "Fundamentals of Electric Circuits", McGraw Hill, 5<sup>th</sup> Edition, 2012.
- 4. Allan H.Robbins, Wilhelm C.Miller, "Circuit Analysis Theory and Practice", Cengage Learning, Fifth Edition, 1<sup>st</sup> Indian Reprint 2013.

CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |     |     |   |   |   |    |     |    | PSO' | S |   |
|------|------|---|---|---|-----|-----|---|---|---|----|-----|----|------|---|---|
|      | 1    | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11  | 12 | 1    | 2 | 3 |
| 1    | 3    | 3 | 2 | 1 | -   | -   |   | - | - | -  | -   | -  | 1    | - | - |
| 2    | 3    | 3 | 2 | 3 | -   | -   | - | - | - | -  | -   | -  | 1    | - | - |
| 3    | 3    | 3 | 2 | 3 |     | -   | - | - | - | -/ | -   | 1  | 1    | - | - |
| 4    | 3    | 3 | 3 | 2 | -   | -   | - |   | - | -  | - / | 1  | 1    | - | - |
| 5    | 3    | 3 | 3 | 2 | -   |     | \ | - | / | 7  | /-  | 1  | 1    | - | - |
| AVg. | 3    | 3 | 2 | 1 | 7-t | - 1 |   | - | - | 1  |     | 1  | 1    | - | - |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

**BM3351** 

## ANATOMY AND HUMAN PHYSIOLOGY

LT PC 3 0 24

## **COURSE OBJECTIVE**

- To integrate the individual functions of all the cells and tissues and organs into functional whole, the human body.
- Function is dependent on a structure, the curriculum lays stress on functional anatomy of the organs.
- Emphasizes on the cardiovascular, respiratory, urinary and nervous system and their interrelatedness.
- Stimulate the students to understand the basic functioning of every system and the resultant unified organization.

## UNIT I BASIC ELEMENTS OF HUMAN BODY

9

Cell – Cell Structure and organelles - Functions of each component in the cell. Cell membrane – transport across membrane - Action potential (Nernst, Goldman equation), Homeostasis. Tissue: Types, functions.

## UNIT II SKELETAL AND MUSCULAR SYSTEM

9

Skeletal: Types of Bone and function – Physiology of Bone formation – Division of Skeleton -Types of joints and function – Types of cartilage and function. –Types of muscles – Structure and Properties of Skeletal Muscle- Changes during muscle contraction- Neuromuscular junction.

## UNIT III CARDIOVASCULAR AND RESPIRATORY SYSTEM

9

Cardiovascular System: Structure – Conduction System of heart – Cardiac Cycle – Cardiac output. Blood: Composition – Functions - Haemostasis – Blood groups and typing. Blood Vessels – Structure and types - Blood pressure - Respiratory system: Parts of respiratory system – Respiratory physiology – Lung volumes and capacities – Gaseous exchange.

## UNIT IV DIGESTIVE AND EXCRETORY SYSTEMS

Structure and functions of gastrointestinal system - secretory functions of the alimentary tract - digestion and absorption in the gastrointestinal tract - structure of nephron - mechanism of urine formation - skin and sweat gland - temperature regulation.

## UNIT V NERVOUS AND SENSORY SYSTEM

9

Structure and function of nervous tissue – Brain and spinal cord – Functions of CNS – Nerve conduction and synapse – Reflex action – Somatic and Autonomic Nervous system. Physiology of Vision, Hearing, Integumentary, Olfactory systems. Taste buds.

**45 PERIODS** 

## LIST OF EXPERIMENTS

- 1. Collection of Blood Samples
- 2. Identification of Blood groups (Forward and Reverse)
- 3. Bleeding and Clotting time
- 4. Estimation of Hemoglobin
- 5. Total RBC and WBC Count
- 6. Differential count of Blood cells
- 7. Estimation of ESR, PCV, MCH, MCV, MCHC
- 8. Hearing test Tuning fork
- 9. Visual Activity Snellen's Chart and Jaeger's Chart

30 PERIODS TOTAL:75 PERIODS

## **COURSE OUTCOMES:**

Upon completion of this course, students will be able to:

CO1 Identify and explain basic elements of human body

CO2 Explain the functions of skeletal and muscular system

CO3 Describe the structure, function of cardiovascular system and respiratory system

CO4 Discuss the structure of digestive and excretory system.

CO5 Describe the physiological process of Nervous and sensory system

## **TEXT BOOKS:**

- 1. Elaine.N. Marieb, "Essential of Human Anatomy and Physiology", Ninth Edition, Pearson Education, New Delhi, 2018.
- 2. Gopal B. Saha "Physics and Radiobiology of Nuclear Medicine", Third edition Springer, 2006. (Unit 2,3,4)

## REFERENCES:

- 1. Guyton & Hall, "Text book of Medical Physiology", 13th Edition, Saunders, 2015.
- 2. Ranganathan T S, "Text book of Human Anatomy", S.Chand& Co. Ltd., New Delhi, 2012.
- 3. SaradaSubramanyam, K MadhavanKutty, Singh H D, "Textbook of Human Physiology",
  - S. Chand and Company Ltd, New Delhi, 2012.

## CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |    | PSO' | S |   |
|------|------|---|---|---|---|---|---|---|---|----|----|----|------|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1    | 2 | 3 |
| 1    | 3    | 3 | 2 | - | - | 1 | - | 1 | - | -  | -  | 1  | 1    | - | - |
| 2    | 3    | 3 | 2 | - | - | 1 | - | 1 | - | -  | -  | 1  | 1    | - | - |
| 3    | 3    | 3 | 2 | - | - | 1 | - | 1 | - | -  | -  | 1  | 1    | - | - |
| 4    | 3    | 3 | 3 | - | - | 1 | - | 1 | - | -  | -  | 1  | 1    | - | - |
| 5    | 3    | 3 | 3 | - | - | 1 | - | 1 | - | -  | -  | 1  | 1    | - | - |
| AVg. | 3    | 3 | 2 | - | - | 1 | - | 1 | - | -  | -  | 1  | 1    | - | - |

1 - low, 2 - medium, 3 - high, '-' - no correlation

## CS3391

## **OBJECT ORIENTED PROGRAMMING**

L T P C 3 0 0 3

## **COURSE OBJECTIVES:**

- To understand Object Oriented Programming concepts and basics of Java programming language
- To know the principles of packages, inheritance and interfaces
- To develop a java application with threads and generics classes
   To define exceptions and use I/O streams
- To design and build Graphical User Interface Application using JAVAFX

## UNIT I INTRODUCTION TO OOP AND JAVA

O

Overview of OOP – Object oriented programming paradigms – Features of Object Oriented Programming – Java Buzzwords – Overview of Java – Data Types, Variables and Arrays – Operators – Control Statements – Programming Structures in Java – Defining classes in Java – Constructors-Methods -Access specifiers - Static members - JavaDoc comments

## UNIT II INHERITANCE, PACKAGES AND INTERFACES

9

Overloading Methods – Objects as Parameters – Returning Objects –Static, Nested and Inner Classes. Inheritance: Basics– Types of Inheritance -Super keyword -Method Overriding – Dynamic Method Dispatch –Abstract Classes – final with Inheritance. Packages and Interfaces: Packages – Packages and Member Access –Importing Packages – Interfaces.

## UNIT III EXCEPTION HANDLING AND MULTITHREADING

9

Exception Handling basics – Multiple catch Clauses – Nested try Statements – Java's Built-in Exceptions – User defined Exception. Multithreaded Programming: Java Thread Model–Creating a Thread and Multiple Threads – Priorities – Synchronization – Inter Thread Communication-Suspending –Resuming, and Stopping Threads –Multithreading. Wrappers – Auto boxing.

## UNIT IV I/O, GENERICS, STRING HANDLING

9

I/O Basics – Reading and Writing Console I/O – Reading and Writing Files. Generics: Generic Programming – Generic classes – Generic Methods – Bounded Types – Restrictions and Limitations. Strings: Basic String class, methods and String Buffer Class.

## UNIT V JAVAFX EVENT HANDLING, CONTROLS AND COMPONENTS 9

JAVAFX Events and Controls: Event Basics – Handling Key and Mouse Events. Controls: Checkbox, ToggleButton – RadioButtons – ListView – ComboBox – ChoiceBox – Text Controls – ScrollPane. Layouts – FlowPane – HBox and VBox – BorderPane – StackPane – GridPane. Menus – Basics – Menu – Menu bars – Menultem.

## **COURSE OUTCOMES:**

On completion of this course, the students will be able to

**CO1:**Apply the concepts of classes and objects to solve simple problems

CO2: Develop programs using inheritance, packages and interfaces

CO3:Make use of exception handling mechanisms and multithreaded model to solve real world problems

**CO4:**Build Java applications with I/O packages, string classes, Collections and generics concepts **CO5:**Integrate the concepts of event handling and JavaFX components and controls for developing GUI based applications

**TOTAL:45 PERIODS** 

## **TEXT BOOKS**

- **1.** Herbert Schildt, "Java: The Complete Reference", 11 <sup>th</sup> Edition, McGraw Hill Education, New Delhi, 2019
- **2.** Herbert Schildt, "Introducing JavaFX 8 Programming", 1 st Edition, McGraw Hill Education, New Delhi, 2015

## **REFERENCES:**

1. Cay S. Horstmann, "Core Java Fundamentals", Volume 1, 11 th Edition, Prentice Hall, 2018.

## CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |       |     |   |    |     |    | PSO' | 'S |   |
|------|------|---|---|---|---|---|-------|-----|---|----|-----|----|------|----|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7     | 8   | 9 | 10 | 11  | 12 | 1    | 2  | 3 |
| 1    | 3    | 3 | 1 | 1 | 1 | - |       | -   | - | -  | -   | -  | -    | 1  | 1 |
| 2    | 3    | 3 | 1 | 1 | 1 | - | -     | -   | - | -  | -   | -  | -    | 1  | 1 |
| 3    | 3    | 3 | 1 | 1 | 1 | - | -     | -   | - | -/ |     | -  | -    | 1  | 1 |
| 4    | 3    | 3 | 1 | 2 | 1 | - | -     |     | - | -  | - / | -  | -    | 1  | 1 |
| 5    | 3    | 3 | 1 | 2 | 1 |   | 1 - 1 | - 1 | / | 7  | /-  | -  | -    | 1  | 1 |
| AVg. | 3    | 3 | 1 | 1 | 1 | ' | -     | -   | - | 14 |     | -  | -    | 1  | 1 |

1 - low, 2 - medium, 3 - high, '-' - no correlation

## BM3361 FUNDAMENTALS OF ELECTRONIC DEVICES AND CIRCUITS LABORATORY

L T P C 0 0 3 1.5

## **COURSE OBJECTIVE:**

- To supplement the theory courses Semiconductor Devices and Basic Electrical Engineering.
- To assist the students in obtaining a better understanding of the operation of electronic circuits and devices
- To provide experience in analyzing network theorems.

## LIST OF EXPERIMENTS

- 1. Characteristics of PN and zener diode.
- 2. Characteristics of CE, CB configurations.
- 3. Half wave and Full wave rectifier with capacitor filter.
- 4. Voltage regulation using zener diode.
- 5. Study of characteristics of photo diodes
- 6. Study of characteristics of SCR
- 7. Verification of KVL and KCL
- 8. Verification of Thevenin's and Norton's Theorems.
- 9. Verification of superposition Theorem.
- 10. Verification of Maximum power transfer and reciprocity theorems.
- 11. Frequency response of RLC series and parallel resonance circuits.

TOTAL: 45 PERIODS

## **COURSE OUTCOMES:**

## Upon completion of the course, students will be able to:

**CO1**:Experiment and determine the VI characteristics of given PN junction diode, Zener diode, Photo diode and Silicon Controlled Rectifier.

CO2: Experiment and determine the Input & output characteristics of BJT

CO3: Experiment and test half wave and full wave rectifier circuit using PN Junction diode and

- obtain the ripple factor, rectifier efficiency and experiment and test voltage regulation characteristics using Zener diode voltage regulator circuit.
- **CO4**:Experiment and test the given electric circuit using Kirchhoff's laws and obtain the mesh current & node voltage and obtain the load current for the given circuit using Superposition, Thevenin's, and Norton's and Reciprocity theorems.
- **CO5**:Construct and test RLC series and parallel circuits to compute the resonant frequency and bandwidth by plotting the frequency response.

## CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |     |   |     |    |    |    | PSO' | S |   |
|------|------|---|---|---|---|---|-----|---|-----|----|----|----|------|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7   | 8 | 9   | 10 | 11 | 12 | 1    | 2 | 3 |
| 1    | 3    | 2 | 1 | 2 | 1 | - | -   | - | 1   | 2  | -  | -  | -    | 1 | 1 |
| 2    | 3    | 2 | 1 | 1 | 1 | - | -   | - | 1   | 2  | -  | -  | -    | 1 | 1 |
| 3    | 3    | 2 | 1 | 1 | - | - | -   | - | 1   | 2  | -  | -  | -    | 1 | 1 |
| 4    | 3    | 2 | 1 | 2 |   | - | -   | - | 1   | 2  | -  | -  | -    | 1 | 1 |
| 5    | 3    | 2 | 1 | 1 | 1 | - | -   |   | 1   | 2  | 1  | -  | -    | 1 | 1 |
| AVg. | 3    | 2 | 1 | 1 | 1 | - | - 1 | - | 1 - | 2  | /- | -  | -    | 1 | 1 |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

## **BM3311**

## SENSORS AND MEASUREMENTS LABORATORY

L T P C 0 0 3 1.5

## COURSE OBJECTIVES:

- To introduce the relevance of this course to the existing technology through demonstrations, simulations with a futuristic vision along with socio-economic impact and issues.
- To study the characteristics of sensors, signal conditioning circuits and display devices.

## LIST OF EXPERIMENTS:

- 1. Calibration of voltmeter and ammeter using shunt type Potentiometer
- 2. Characteristics of thermistor
- 3. Characteristics of thermocouple
- 4. Characteristics of LDR
- 5. Characteristics of Photo Diode
- 6. Characteristics of Photo transistor
- 7. Characteristics of RTD
- 8. Characteristics of LVDT
- 9. Measurement of unknown Resistance using Kelvin Double Bridge and Wheatstone bridge
- 10. Measurement of unknown Capacitance using Schering Bridge
- 11. Measurement of unknown Inductance using Maxwell's & Hay's Bridge
- 12. Characteristics of Hall effect transducer
- 13. Characteristics of strain gauge
- 14. Study of Electronic nose
- 15. Demonstration of CRO & DSO
- 16. Characteristics of Piezoelectric Transducer

**TOTAL:45 PERIODS** 

## **COURSE OUTCOMES:**

On successful completion of this course, the student will be able to

CO1: design and understand characteristics and calibration of various transducers.

CO2: design and develop bridge circuits to find unknown variables.

CO3: select proper transducer for various applications.

CO4: understand various read out and display devices.

CO5: design a measurement system for various applications.

## CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |     |   |    |     |   |    |    |    | PSO | 's |   |
|------|------|---|---|---|-----|---|----|-----|---|----|----|----|-----|----|---|
|      | 1    | 2 | 3 | 4 | 5   | 6 | 7  | 8   | 9 | 10 | 11 | 12 | 1   | 2  | 3 |
| 1    | 3    | 2 | 1 | 2 | -   | - | -  | -   | 1 | 2  | -  | -  | 2   | -  | - |
| 2    | 3    | 2 | 1 | 1 | -   | - | -  | -   | 1 | 2  | -  | -  | 2   | -  | - |
| 3    | 3    | 2 | 1 | 1 | -   | - | -  | -   | 1 | 2  | -  | -  | 2   | -  | - |
| 4    | 3    | 2 | 1 | 2 | -   | - | -  | -   | 1 | 2  | 1  | -  | 2   | -  | - |
| 5    | 3    | 2 | 1 | 1 | -   | - | -  | - 1 | 1 | 2  | 1  | -  | 2   | -  | - |
| AVg. | 3    | 2 | 1 | 1 | - ` | - | Th | - 1 | 1 | 2  | 1  | -  | 2   | •  | - |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

CS3381

## **OBJECT ORIENTED PROGRAMMING LABORATORY**

L T P C 0 0 3 1.5

## **COURSE OBJECTIVES**

- To build software development skills using java programming for real-world applications.
- To understand and apply the concepts of classes, packages, interfaces, inheritance, exception handling and file processing.
- To develop applications using generic programming and event handling

## LIST OF EXPERIMENTS

- 1. Solve problems by using sequential search, binary search, and quadratic sorting algorithms (selection, insertion)
- 2. Develop stack and queue data structures using classes and objects.
- 3. Develop a java application with an Employee class with Emp\_name, Emp\_id, Address, Mail\_id, Mobile no as members. Inherit the classes, Programmer, Assistant Professor, Associate Professor and Professor from employee class. Add Basic Pay (BP) as the member of all the inherited classes with 97% of BP as DA, 10 % of BP as HRA, 12% of BP as PF, 0.1% of BP for staff club funds. Generate pay slips for the employees with their gross and net salary.
- 4. Write a Java Program to create an abstract class named Shape that contains two integers and an empty method named printArea(). Provide three classes named Rectangle, Triangle and Circle such that each one of the classes extends the class Shape. Each one of the classes contains only the method printArea() that prints the area of the given shape.
- 5. Solve the above problem using an interface.
- 6. Implement exception handling and creation of user defined exceptions.
- 7. Write a java program that implements a multi-threaded application that has three threads. First thread generates a random integer every 1 second and if the value is even, the second thread computes the square of the number and prints. If the value is odd, the third thread will print the value of the cube of the number.
- 8. Write a program to perform file operations.
- 9. Develop applications to demonstrate the features of generics classes.

- 10. Develop applications using JavaFX controls, layouts and menus.
- 11. Develop a mini project for any application using Java concepts.

Lab Requirements: for a batch of 30 students

Operating Systems: Linux / Windows

Front End Tools: Eclipse IDE / Netbeans IDE

## **COURSE OUTCOMES:**

On completion of this course, the students will be able to

CO1: Design and develop java programs using object oriented programming concepts

 ${\sf CO2} \; : \; {\sf Develop \; simple \; applications \; using \; package, \; exceptions, \; multithreading, \; and \; generics \; }$ 

concepts

CO3: Create GUIs and event driven programming applications for real world problems

## CO's- PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |     | PSO | 's  |   |
|------|------|---|---|---|---|---|---|---|---|----|----|-----|-----|-----|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12  | 1   | 2   | 3 |
| 1    | 3    | 3 | 1 | 1 | 1 |   | - | - |   | 1  | 1  |     | -   | 1   | 1 |
| 2    | 3    | 3 | 1 | 1 | 1 | - | - | - | - | 1  | 1  | , F | -   | 1   | 1 |
| 3    | 3    | 3 | 1 | 1 | 1 | - | - | - | 4 | 1  | 1, |     | -   | . 1 | 1 |
| 4    | 3    | 3 | 1 | 1 | 1 | - | - | - | - | 1  | 1  | 1   | -   | 1   | 1 |
| 5    | 3    | 3 | 1 | 1 | 1 | - | - |   | - | 1  | 1  | -   | -   | 1   | 1 |
| AVg. | 3    | 3 | 1 | 1 | 1 |   |   | - | - | 1  | 1  | -   | -   | 1   | 1 |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

**GE3361** 

## PROFESSIONAL DEVELOPMENT

LTPC 0 021

**TOTAL: 45 PERIODS** 

## **COURSE OBJECTIVES:**

To be proficient in important Microsoft Office tools: MS WORD, EXCEL, POWERPOINT.

- To be proficient in using MS WORD to create quality technical documents, by using standard templates, widely acceptable styles and formats, variety of features to enhance the presentability and overall utility value of content.
- To be proficient in using MS EXCEL for all data manipulation tasks including the common statistical, logical, mathematical etc., operations, conversion, analytics, search and explore, visualize,interlink, and utilizing many more critical features offered
- To be able to create and share quality presentations by using the features of MS PowerPoint, including: organization of content, presentability, aesthetics, using media elements and enhance the overall quality of presentations.

MS WORD: 10 Hours

Create and format a document

Working with tables

Working with Bullets and Lists

Working with styles, shapes, smart art, charts

Inserting objects, charts and importing objects from other office tools

Creating and Using document templates

Inserting equations, symbols and special characters

Working with Table of contents and References, citations

Insert and review comments

Create bookmarks, hyperlinks, endnotes footnote

Viewing document in different modes

Working with document protection and security

Inspect document for accessibility

MS EXCEL: 10 Hours

Create worksheets, insert and format data

Work with different types of data: text, currency, date, numeric etc.

Split, validate, consolidate, Convert data

Sort and filter data

Perform calculations and use functions: (Statistical, Logical, Mathematical, date, Time etc.,)

Work with Lookup and reference formulae

Create and Work with different types of charts

Use pivot tables to summarize and analyse data

Perform data analysis using own formulae and functions

Combine data from multiple worksheets using own formulae and built-in functions to generate results

Export data and sheets to other file formats

Working with macros

Protecting data and Securing the workbook

MS POWERPOINT: 10 Hours

Select slide templates, layout and themes

Formatting slide content and using bullets and numbering

Insert and format images, smart art, tables, charts

Using Slide master, notes and handout master

Working with animation and transitions

Organize and Group slides

Import or create and use media objects: audio, video, animation

**TOTAL: 30 PERIODS** 

# **COURSE OUTCOMES:**

On successful completion the students will be able to

**CO1**:Use MS Word to create quality documents, by structuring and organizing content for their day to day technical and academic requirements

CO2:Use MS EXCEL to perform data operations and analytics, record, retrieve data as per requirements and visualize data for ease of understanding

**CO3**:Use MS PowerPoint to create high quality academic presentations by including common tables, charts, graphs, interlinking other elements, and using media objects.

# MA3355 RANDOM PROCESSES AND LINEAR ALGEBRA L T P (

#### **COURSE OBJECTIVES:**

- To introduce the basic notions of vector spaces which will then be used to solve related problems.
- To understand the concepts of vector space, linear transformations, inner product spaces and orthogonalization..
- To provide necessary basic concepts in probability and random processes for applications such as random signals, linear systems in communication engineering.
- To provide necessary basics in probability that are relevant in applications such as random signals, linear systems in communication engineering.
- To understand the basic concepts of probability, one and two dimensional random
- variables and to introduce some standard distributions applicable to engineering which can describe real life phenomenon.

# UNIT - I: PROBABILITY AND RANDOM VARIABLES

9 +

Axioms of probability – Conditional probability – Baye's theorem - Discrete and continuous random variables – Moments – Moment generating functions – Binomial, Poisson, Geometric, Uniform, Exponential and Normal distributions - Functions of a random variable.

# UNIT - II: TWO - DIMENSIONAL RANDOM VARIABLES

9+3

Joint distributions – Marginal and conditional distributions – Covariance – Correlation and linear regression – Transformation of random variables – Central limit theorem (for independent and identically distributed random variables).

# UNIT - III: RANDOM PROCESSES

9 + 3

Classification – Stationary process – Markov process - Poisson process - Discrete parameter Markov chain – Chapman Kolmogorov equations (Statement only) - Limiting distributions .

# UNIT - IV: VECTOR SPACES

9+3

Vector spaces – Subspaces – Linear combinations and linear system of equations – Linear independence and linear dependence – Bases and dimensions.

# UNIT - V: LINEAR TRANSFORMATION AND INNER PRODUCT SPACES 9+3

Linear transformation - Null spaces and ranges - Dimension theorem - Matrix representation of a linear transformations - Inner product - Norms - Gram Schmidt orthogonalization process - Adjoint

**TOTAL: 60 PERIODS** 

#### **COURSE OUTCOMES:**

Upon successful completion of the course, students will be able to:

CO1:Explain the fundamental concepts of advanced algebra and their role in modern mathematics and applied contexts.

CO2:Demonstrate accurate and efficient use of advanced algebraic techniques.

CO3:Apply the concept of random processes in engineering disciplines.

CO4:Understand the fundamental concepts of probability with a thorough knowledge of standard distributions that can describe certain real-life phenomenon.

CO5:Understand the basic concepts of one and two dimensional random variables and apply them to model engineering problems.

# **TEXT BOOKS:**

- 1. Gross, D., Shortle, J.F, Thompson, J.M and Harris. C.M., "Fundamentals of Queueing Theory", Wiley Student 4th Edition, 2014.
- 2. Ibe, O.C., "Fundamentals of Applied Probability and Random Processes", Elsevier,1st Indian Reprint, 2007.
- 3. Friedberg. A.H., Insel. A.J. and Spence. L., "Linear Algebra", Prentice Hall of India, New Delhi, 4<sup>th</sup> Edition, 2004.

# **REFERENCE BOOKS:**

- 1. Hsu, "Schaum's Outline of Theory and Problems of Probability, Random Variables and Random Processes", Tata McGraw Hill Edition, New Delhi, 2004.
- 2. Trivedi, K.S., "Probability and Statistics with Reliability, Queueing and Computer Science Applications", 2nd Edition, John Wiley and Sons, 2002.
- 3. Yates, R.D. and Goodman. D. J., "Probability and Stochastic Processes", 2nd Edition, Wiley India Pvt. Ltd., Bangalore, 2012.
- 4. Kolman. B. Hill. D.R., "Introductory Linear Algebra", Pearson Education, New Delhi, First Reprint, 2009.
- 5. Kumaresan. S., "Linear Algebra A Geometric Approach", Prentice Hall of India, New Delhi, Reprint, 2010.
- 6. Strang. G., "Linear Algebra and its applications", Thomson (Brooks/Cole), New Delhi, 2005.

# CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |    | PSO' | S |   |
|------|------|---|---|---|---|---|---|---|---|----|----|----|------|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1    | 2 | 3 |
| 1    | 3    | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0  | 0  | 2  | -    | - | - |
| 2    | 3    | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0  | 0  | 2  | -    | - | - |
| 3    | 3    | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0  | 0  | 2  | -    | - | - |
| 4    | 3    | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0  | 0  | 2  | -    | - | - |
| 5    | 3    | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0  | 0  | 2  | -    | - | - |
| AVg. | 3    | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0  | 0  | 2  | -    | - | - |

1 - low, 2 - medium, 3 - high, '-' - no correlation

#### BM3491

# **BIOMEDICAL INSTRUMENTATION**

L T P C 3 0 0 3

# **COURSE OBJECTIVES:**

- To understand the origin of various biological signals and electrode configurations specific to bio-potential measurements.
- To understand the characteristics of Bio signals.
- To understand the design of bioamplifiers
- To explain the different techniques used for measurement of non-electrical bioparameters
- To explain the biochemical measurement techniques as applicable for diagnosis and treatment.

# UNIT I ELECTRODE CONFIGURATIONS

9

Bio signals characteristics – Origin of bio potential and its propagation. Frequency and amplitude ranges. Electrode configurations: Electrode-electrolyte interface, electrode-skin interface impedance, polarization effects of electrode – non-polarizable electrodes. Unipolar and bipolar configuration, classification of electrodes.

# UNIT II BIOSIGNAL CHARACTERISTICS

9

Bio signals characteristics – ECG-frequency and amplitude ranges – Einthoven's triangle, standard 12 lead system. EEG - EEG – 10-20 electrode system, unipolar, bipolar and average mode. EMG– unipolar and bipolar mode. EMG - Electrode configuration -unipolar and bipolar mode.

#### UNIT III BIOAMPLIFIERS

9

Need for bio-amplifier - Differential bio-amplifier - Single ended amplifier - Band pass filtering, isolation amplifiers - transformer and optical isolation - isolated DC amplifier and AC carrier amplifier. Chopper amplifier. Power line interference

# UNIT IV MEASUREMENT OF BIO SIGNALS

9

Temperature, respiration rate and pulse rate measurements. Blood Pressure - indirect methods: auscultatory method, oscillometric method, direct methods: electronic manometer, Pressure amplifiers - systolic, diastolic, mean detector circuit. Blood flow and cardiac output measurement: Indicator dilution, thermal dilution and dye dilution method, Electromagnetic and ultrasound blood flow measurements

# UNIT V BIOCHEMICAL MEASUREMENTS

9

Biochemical sensors - pH, pO2 and pCO2, Ion selective Field effect Transistor (ISFET), Immunologically sensitive FET (IMFET), Blood glucose sensors. Blood gas analyzers, colorimeter, flame photometer, spectrophotometer, blood cell counter, auto analyzer.

# **COURSE OUTCOMES:**

On successful completion of this course, the student will be able to

CO1: Illustrate the origin of various biological signals and their characteristics.

CO2: Gain knowledge on characteristics of bio signals.

CO3: Gain knowledge on various amplifiers involved in monitoring and transmission of biosignals.

CO4: Explain the different measurement techniques for non-electrical bio-parameters

CO5: Explain the biochemical measurement techniques as applicable for diagnosis and further treatment.

**TOTAL:45 PERIODS** 

#### **TEXT BOOKS:**

- 1. Leslie Cromwell, "Biomedical Instrumentation and measurement", 2nd edition, Prentice hall of India, New Delhi, 2015.
- 2. John G. Webster, "Medical Instrumentation Application and Design", 4th edition, Wiley India Pvt Ltd, New Delhi, 2015.
- 3. Khandpur R.S, "Handbook of Biomedical Instrumentation", Tata McGraw Hill, New Delhi. 2003.

# **REFERENCE BOOKS**

- 1. John Enderle, Susan Blanchard, Joseph Bronzino, "Introduction to Biomedical Engineering", second edition, Academic Press, 2005.
- 2. Joseph J. Carr and John M. Brown, "Introduction to Biomedical Equipment Technology", Pearson Education, 2004.

# CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |               |     |     |   |   |     |     |    | PSO | 's |   |
|------|------|---|---|---|---------------|-----|-----|---|---|-----|-----|----|-----|----|---|
|      | 1    | 2 | 3 | 4 | 5             | 6   | 7   | 8 | 9 | 10  | 11  | 12 | 1   | 2  | 3 |
| 1    | 3    | 2 | 1 | 1 | -             |     | 1-1 | - | / | -   | /-/ | -  | 2   | 1  | - |
| 2    | 3    | 2 | 1 | 1 | <b>7</b> - 11 | - 1 | -   | - |   | 141 |     | -  | 2   | 1  | - |
| 3    | 3    | 2 | 1 | 1 |               | μ.  | _   | - | - | -4, | 3-7 | 1  | 2   | 1  | - |
| 4    | 3    | 2 | 1 | 2 | 37            |     | -   | - | ( | -   | 1   |    | 2   | 1  | - |
| 5    | 3    | 2 | 1 | 1 | -             | -   | -   | - | - | -   | 1   | 1  | 2   | 1  | - |
| AVg. | 3    | 2 | 1 | 1 | 7 -           | -   | -   | - | - | -   | 1   | -  | 2   | 1  | - |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

BM3402

# **ANALOG AND DIGITAL INTEGRATED CIRCUITS**

L T P C 3 0 0 3

# **COURSE OBJECTIVES:**

- To study the circuit configuration and introduce practical applications of linear integrated circuits.
- To introduce the concept of application of ADC and DAC in real time systems and Phase Locked Loop with applications.
- To introduce the design of various combinational digital circuits using logic gates
- To bring out the analysis and design procedures for synchronous and asynchronous sequential circuits

# UNIT I INTRODUCTION TO OPERATIONAL AMPLIFIER AND ITS APPLICATIONS 9

Operational amplifier -ideal characteristics, Performance Parameters, Linear and Nonlinear Circuits and their analysis- voltage follower, Inverting amplifier, Non-inverting Amplifiers, Differentiator, Integrator, Voltage to Current converter, Instrumentation amplifier, Low pass, High pass filter and band pass filters, Comparator, Multivibrator and Schmitt trigger, Triangular wave generator.

# UNIT II DIGITAL TO ANALOG AND ANALOG TO DIGITAL CONVERTERS AND PLL 9

Analog switches, High speed sample and hold circuit and IC's, Types of D/A converter -Weighted resistor, R-2R ladder DAC, D/A Accuracy and Resolution. A/D converter - Flash, Dual slope, Successive approximation, A/D Accuracy and Resolution. Voltage controlled oscillator, Voltage to Frequency converters. PLL-Closed loop analysis of PLL, Frequency multiplication/ division, FSK demodulator.

# UNIT III THE BASIC GATES AND COMBINATIONAL LOGIC CIRCUITS

Number Systems – Decimal, Binary, Octal, Hexadecimal, 1's and 2's complements, Codes – Binary, BCD, 84-2-1, 2421, Excess 3, Biquinary, Gray, Alphanumeric codes, Boolean theorems, Logic gates, Universal gates, Sum of products and product of sums, Minterms and Maxterms, Karnaugh map and Tabulation methods. Logic families- TTL, MOS, CMOS, BiCMOS - Comparison of Logic families.

# UNIT IV COMBINATIONAL LOGIC CIRCUITS

9

Problem formulation and design of combinational circuits - Code-Converters, Half and Full Adders, Binary Parallel Adder - Carry look ahead Adder, BCD Adder, Magnitude Comparator, Decoder, Encoder, Priority Encoder, Mux/Demux.

# UNIT V SEQUENTIAL LOGIC CIRCUITS

9

Flip flops – SR, JK, T, D, Master/Slave FF, Triggering of FF, Analysis and design of clocked sequential circuits – state minimization, state assignment, circuit implementation. Counters, Ripple Counters, Ring Counters. Types of Registers, Serial In - Serial Out, Serial In - Parallel out, Parallel In - Parallel Out, Universal Shift Register.

#### **COURSE OUTCOMES:**

On successful completion of this course, the student will be able to

CO1: design new analog linear circuits and develop linear IC based Systems.

CO2: Apply the concept of ADC and DAC in real time systems and Phase Locked Loop with applications.

CO3: Use Boolean algebra and apply it to digital systems.

CO4: Design various combinational digital circuits using logic gates.

CO5: Bring out the analysis and design procedures for synchronous and asynchronous sequential circuits.

**TOTAL:45 PERIODS** 

# **TEXT BOOKS**

- 1. Sergio Franco, "Design with operational amplifiers and analog integrated circuits", Mc Graw Hill Education, 3<sup>rd</sup> Edition, 2017
- 2. John.F.Wakerly, "Digital design principles and practices", Pearson Education, 5<sup>th</sup> Edition, 2018

# **REFERENCES**

- 1. Taub and Schilling, "Digital Integrated Electronics", Mc Graw Hill, 2017.
- 2. Charles H.Roth, Jr, "Fundamentals of Logic Design", Jaico Books, 7th Edition, 2013.
- 3. M. Morris Mano and Michael D.Ciletti, "Digital Design", Pearson, 5th Edition, 2013.
- 4. S Salivahanan and V S Kanchana Bhaaskaran, Linear Integrated Circuits, McGraw Hill Education, 3rd Edition, 2018

# CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |    | PSO' | S |   |
|------|------|---|---|---|---|---|---|---|---|----|----|----|------|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1    | 2 | 3 |
| 1    | 3    | 2 | 1 | 1 | - | - | - | - | - | -  | -  | -  | 2    | - | - |
| 2    | 3    | 2 | 1 | 1 | - | - | - | - | - | -  | -  | -  | 2    | - | - |
| 3    | 3    | 2 | 1 | 1 | - | - | - | - | - | -  | -  | -  | 2    | - | - |
| 4    | 3    | 2 | 1 | 1 | 1 | - | - | - | - | -  | -  | -  | 2    | - | - |
| 5    | 3    | 2 | 1 | 1 | 1 | - | - | - | - | -  | -  | -  | 2    | - | - |
| AVg. | 3    | 2 | 1 | 1 | 1 | - | - | - | - | -  | -  | -  | 2    | - | - |

1 - low, 2 - medium, 3 - high, '-' - no correlation

#### BM3451

#### **BIO CONTROL SYSTEMS**

LTPC 3 0 0 3

#### **COURSE OBJECTIVES**

The objective of this course is to enable the student to

- Understand the concept behind feedback and continuum in various systems and subsystems and the need for mathematical modeling of various systems.
- Analyze the systems in time and frequency domains
- Understand the concept of stability of various systems.
- Apply mathematical modeling principles in understanding the various fundamental biological systems.

#### UNIT I INTRODUCTION

9

Open and Closed loop Systems, Mathematical Modeling of systems, Block diagram and signal flow graph representation of systems - reduction of block diagram and signal flow graph, Introduction to Physiological control systems- Illustration, Linear models of physiological systems, Difference between engineering and physiological control systems.

# UNIT II TIME RESPONSE ANALYSIS

9

Step and impulse responses of first order and second order systems - time domain specifications of first and second order systems - steady state error constants.

# UNIT III STABILITY ANALYSIS

9

Definition of stability, Routh- Hurwitz criteria of stability, Root locus technique - construction of root locus and study of stability.

# UNIT IV FREQUENCY RESPONSE ANALYSIS

q

Frequency domain specifications - Polar plots - Bode plots - Nyquist plot - Nyquist stability criterion, closed loop stability - Constant M and N circles - Nichol's chart.

# UNIT V BIOLOGICAL CONTROL SYSTEM ANALYSIS

9

**TOTAL: 45 PERIODS** 

Simple models of muscle stretch reflex action - steady state analysis of muscle stretch reflex action, transient response analysis of neuromuscular reflex model action, frequency response of circulatory control model, Stability analysis of Pupillary light reflex.

# COURSE OUTCOMES

Upon successful completion of the course, students will be able to

CO1: Interpret the need for mathematical modeling of various systems, representation of systems in block diagrams and signal flow graphs and are introduced to biological control systems

CO2: Determine the time response of various systems

CO3: discuss the concept of system stability

CO4: Examine the frequency response characteristics of various systems using different charts

CO5: Appraise the concept of modeling basic physiological systems

#### **TEXT BOOKS**

- 1. I.J. Nagarath and M. Gopal, Control Systems Engineering, New Age International Publishers, 1<sup>st</sup> September, 2018.
- 2. Michael C K Khoo, Physiological Control Systems, IEEE Press, Prentice Hall India, 2005.

#### **REFERENCES:**

- 1. Salivahanan S. Rengaraj R. and Venkatakrishnan G. R., Control Systems Engineering, Pearson Education India, 2015.
- 2. Benjamin C. Kuo, Automatic Control Systems, Prentice Hall of India, 1995.
- 3. Ogata, Katsuhiko and Yanjuan Yang, Modern control engineering, Vol 4, Prentice-Hall, 2002.

# **ONLINE RESOURCES**

- 1. https://nptel.ac.in/courses/108/101/108101037/
- 2. https://nptel.ac.in/content/storage2/courses/112104158/lecture14.pdf
- 3. <a href="https://nptel.ac.in/content/storage2/courses/112104158/lecture16.pdf">https://nptel.ac.in/content/storage2/courses/112104158/lecture16.pdf</a>
- 4. <a href="https://nptel.ac.in/content/storage2/courses/112104158/lecture17.pdf">https://nptel.ac.in/content/storage2/courses/112104158/lecture17.pdf</a>

# CO's- PO's & PSO's MAPPING

| CO's | PO's |   |   |   |          |   |       |     |   |     |      |        | PSO' | S |   |
|------|------|---|---|---|----------|---|-------|-----|---|-----|------|--------|------|---|---|
|      | 1    | 2 | 3 | 4 | 5        | 6 | 7     | 8   | 9 | 10  | 11   | 12     | 1    | 2 | 3 |
| 1    | 3    | 2 | 2 | 2 | <b>1</b> | - | ) - 1 | - 1 | - | (3) |      | -      | 2    | 1 | - |
| 2    | 3    | 2 | 2 | 2 | - I      | ٠ | -     | -   | - |     | rib, | -      | 2    | 1 | - |
| 3    | 3    | 2 | 2 | 2 | 37       | - | -     | -   | 1 | -   |      | $\sim$ | 2    | 1 | - |
| 4    | 3    | 2 | 2 | 2 | 1        | - | -     | -   | 7 | -   | 1    |        | 2    | 1 | - |
| 5    | 3    | 2 | 2 | 2 | 1        | - | -     | -   | - | -   | - 1  | 1      | 2    | 1 | - |
| AVg. | 3    | 2 | 2 | 2 | 1        |   | 4     |     | - | -   | -    | -      | 2    | 1 | - |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

**BM3401** 

SIGNAL PROCESSING

L T P C 3 0 2 4

# **COURSE OBJECTIVES:**

- To understand about the continuous time and discrete time signals and systems.
- To learn the analysis of LTI systems using Laplace and Z transform.
- To represent the signal in frequency domain using FFT.
- To gain knowledge about the design of IIR and FIR filters.

# UNIT I FUNDAMENTALS OF SIGNALS AND SYSTEMS

9

Classification of systems: Continuous, discrete, linear, causal, stability, dynamic, recursive, time variance; classification of signals: continuous and discrete, energy and power; mathematical representation of signals; spectral density; sampling techniques, quantization, quantization error, Nyquist rate, aliasing effect.

# UNIT II ANALYSIS OF LTI SYSTEMS

9

Fourier Series - Fourier Transform and Properties, Analysis of Continuous Time LTI Systems - Z Transform - Properties of ROC- Inverse Z Transform - DTFT - Analysis of Discrete Time LTI Systems

# UNIT III DISCRETE FOURIER TRANSFORM

9

DFT and its properties, magnitude and phase representation-Linear Convolution- Correlation-Circular Convolution, Overlap-add and overlap-save methods. FFT - Decimation in Time Algorithm, Decimation in Frequency Algorithm. Use of FFT in Linear Filtering.

#### UNIT IV INFINITE IMPULSE RESPONSE FILTERS

Analog filters – Butterworth filters, Chebyshev Type I filters (upto 3rd order), Analog Transformation of prototype LPF to BPF /BSF/ HPF. Transformation of analog filters into equivalent digital filters using Impulse invariant method and Bilinear Z transform method - Realization structures for IIR filters – direct, cascade and parallel forms.

# UNIT V FINITE IMPULSE RESPONSE FILTERS AND MULTIRATE SIGNAL PROCESSING

9

9

Design of linear phase FIR filters - windowing and Frequency sampling methods. Realization structures for FIR filters - Transversal and Linear phase structures, Comparison of FIR and IIR. Introduction to DSP processors. Introduction to Multirate signal Processing - Decimation and Interpolation.

#### **COURSE OUTCOMES:**

CO1: To classify the continuous time and discrete time signals and systems.

CO2: To analyze the signals in both continuous time and discrete time

CO3: To apply DFT for the analysis of digital signals & systems

CO4: To design IIR filter to process real world signals.

CO5: To design FIR filter to process real world signals.

**45 PERIODS** 

#### PRACTICALS:

- 1. Construction of signals with different Frequencies.
- 2. Analyse the stability of a CT System with various inputs.
- 3. Analyse the stability of a DT System with various inputs.
- 4. Reconstruct a signal from samples and study the effect of Aliasing.
- 5. Spectrum Analysis using FFT
- 6. Filter Design & Analysis.
- 7. Finite word length effect.
- 8. Multirate Signal Processing.
- 9. DSP Processor Implementation. (Linear and Convolution, FFT implementation, IIR and FIR filters implementation)

# **Equipment required for 30 students**

- 1. Computers with MATLAB / Equivalent software- 15 Numbers
- 2. TMS320C5416 Processors 5 Numbers

**30 PERIODS** 

**TOTAL:75 PERIODS** 

# **TEXT BOOKS**

- 1. Allan V.Oppenheim, S.Wilsky and S.H.Nawab, "Signals and Systems", Pearson, Indian Reprint, 2nd Edition, 2015.
- **2.** John G Proakis and Manolakis, "Digital Signal Processing Principles, Algorithms and Applications", Pearson, 4 th Edition, 2014.

#### **REFERENCES**

- 1. S. Haykin and B. Van Veen, "Signals and Systems", Wiley, 2 nd Edition, 2007
- 2. B. P. Lathi, "Principles of Linear Systems and Signals", Oxford, 2nd Edition, 2009.
- **3.** Emmanuel Ifeachor, Barrie Jervis, "Digital Signal Processing- A practical approach", Pearson, 2 nd Edition, 2002.
- **4.** M. H. Hayes, "Digital Signal Processing, Schaum's outlines", Tata McGraw Hill, 2nd Edition, 2011.

80

CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |    | PSC | 's |   |
|------|------|---|---|---|---|---|---|---|---|----|----|----|-----|----|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1   | 2  | 3 |
| 1    | 3    | 2 | 2 | 2 | - | - | - | - | - | 1  | -  | -  | 2   | 1  | - |
| 2    | 3    | 2 | 2 | 2 | - | - | - | - | - | 1  | -  | -  | 2   | 1  | - |
| 3    | 3    | 2 | 2 | 2 | - | - | - | - | 1 | 1  | -  | -  | 2   | 1  | - |
| 4    | 3    | 2 | 2 | 2 | 1 | - | - | - | 1 | 1  | 1  | -  | 2   | 1  | - |
| 5    | 3    | 2 | 2 | 2 | 1 | - | - | - | 1 | 1  | 1  | -  | 2   | 1  | - |
| AVg. | 3    | 2 | 2 | 2 | 1 | - | - | - | 1 | 1  | 1  | -  | 2   | 1  | - |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

# GE3451 ENVIRONMENTAL SCIENCES AND SUSTAINABILITY

LTPC 2002

#### **COURSE OBJECTIVES:**

- To introduce the basic concepts of environment, ecosystems and biodiversity and emphasize on the biodiversity of India and its conservation.
- To impart knowledge on the causes, effects and control or prevention measures of environmental pollution and natural disasters.
- To facilitate the understanding of global and Indian scenario of renewable and nonrenewable resources, causes of their degradation and measures to preserve them.
- To familiarize the concept of sustainable development goals and appreciate the interdependence of economic and social aspects of sustainability, recognize and analyze climate changes, concept of carbon credit and the challenges of environmental management.
- To inculcate and embrace sustainability practices and develop a broader understanding on green materials, energy cycles and analyze the role of sustainable urbanization.

# UNIT I ENVIRONMENT AND BIODIVERSITY

6

Definition, scope and importance of environment – need for public awareness. Eco-system and Energy flow– ecological succession. Types of biodiversity: genetic, species and ecosystem diversity– values of biodiversity, India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity: In-situ and ex-situ.

# UNIT II ENVIRONMENTAL POLLUTION

9

Causes, Effects and Preventive measures of Water, Soil, Air and Noise Pollutions. Solid, Hazardous and E-Waste management. Case studies on Occupational Health and Safety Management system (OHASMS). Environmental protection, Environmental protection acts .

# UNIT III RENEWABLE SOURCES OF ENERGY

6

Energy management and conservation, New Energy Sources: Need of new sources. Different types new energy sources. Applications of- Hydrogen energy, Ocean energy resources, Tidal energy conversion. Concept, origin and power plants of geothermal energy.

# UNIT IV SUSTAINABILITY AND MANAGEMENT

Development, GDP, Sustainability- concept, needs and challenges-economic, social and aspects of sustainability-from unsustainability to sustainability-millennium development goals, and protocols-Sustainable Development Goals-targets, indicators and intervention areas Climate change- Global, Regional and local environmental issues and possible solutions-case studies. Concept of Carbon Credit, Carbon Footprint. Environmental management in industry-A case study.

# UNIT V SUSTAINABILITY PRACTICES

6

6

Zero waste and R concept, Circular economy, ISO 14000 Series, Material Life cycle assessment, Environmental Impact Assessment. Sustainable habitat: Green buildings, Green materials, Energy efficiency, Sustainable transports. Sustainable energy: Non-conventional Sources, Energy Cyclescarbon cycle, emission and sequestration, Green Engineering: Sustainable urbanization- Socioeconomical and technological change.

# **TOTAL: 30 PERIODS**

# **COURSE OUTCOMES:**

**CO1**:To recognize and understand the functions of environment, ecosystems and biodiversity and their conservation.

**CO2**:To identify the causes, effects of environmental pollution and natural disasters and contribute to the preventive measures in the society.

**CO3**:To identify and apply the understanding of renewable and non-renewable resources and contribute to the sustainable measures to preserve them for future generations.

**CO4**:To recognize the different goals of sustainable development and apply them for suitable technological advancement and societal development.

**CO5**:To demonstrate the knowledge of sustainability practices and identify green materials, energy cycles and the role of sustainable urbanization.

# **TEXT BOOKS:**

- 1. Anubha Kaushik and C. P. Kaushik's "Perspectives in Environmental Studies", 6th Edition, New Age International Publishers ,2018.
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, 2016.
- 3. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, 2004.
- 4. Allen, D. T. and Shonnard, D. R., Sustainability Engineering: Concepts, Design and Case Studies, Prentice Hall.
- 5. Bradley. A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable design and development, Cengage learning.
- 6. Environment Impact Assessment Guidelines, Notification of Government of India, 2006.
- 7. Mackenthun, K.M., Basic Concepts in Environmental Management, Lewis Publication, London, 1998.

#### **REFERENCES:**

- 1. R.K. Trivedi, 'Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards', Vol. I and II, Enviro Media. 38. edition 2010.
- 2. Cunningham, W.P. Cooper, T.H. Gorhani, 'Environmental Encyclopedia', Jaico Publ., House, Mumbai, 2001.
- 3. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India PVT. LTD, New Delhi, 2007.

- 4. Rajagopalan, R, 'Environmental Studies-From Crisis to Cure', Oxford University Press, Third Edition, 2015.
- 5. Erach Bharucha "Textbook of Environmental Studies for Undergraduate Courses" Orient Blackswan Pvt. Ltd. 2013.

#### CO's-PO's & PSO's MAPPING

| CO's | PO's |     |   |   |   |     |     |   |   |    |    |     | PSO' | S |   |
|------|------|-----|---|---|---|-----|-----|---|---|----|----|-----|------|---|---|
|      | 1    | 2   | 3 | 4 | 5 | 6   | 7   | 8 | 9 | 10 | 11 | 12  | 1    | 2 | 3 |
| 1    | 2    | 1   | - | - | - | 2   | 3   | - | - | -  | -  | 2   | -    | - | - |
| 2    | 3    | 2   | - | - | - | 3   | 3   | - | - | -  | -  | 2   | -    | - | - |
| 3    | 3    | -   | 1 | - | - | 2   | 2   | - | - | -  | -  | 2   | -    | - | - |
| 4    | 3    | 2   | 1 | 1 | - | 2   | 2   | - | - | -  | -  | 2   | -    | - | - |
| 5    | 3    | 2   | 1 | - | - | 2   | 2   | - | - | -  | -  | 1   | -    | - | - |
| AVg. | 2.8  | 1.8 | 1 | 1 | - | 2.2 | 2.4 | - | - | -  | -  | 1.8 | -    | - | - |

1 - low, 2 - medium, 3 - high, '-' - no correlation

BM3411 BIOMEDICAL INSTRUMENTATION LABORATORY

L T P C 0 0 3 1.5

# **COURSE OBJECTIVES:**

# The student should be made to

- To study and design Bio amplifiers.
- To provide hands on training on Measurement of physiological parameters.

# **LIST OF EXPERIMENTS:**

- 1. Design of pre amplifiers to acquire bio signals along with impedance matching circuit using suitable IC's
- 2. Design of ECG Amplifiers with appropriate filter to remove power line and other artifacts.
- 3. Design of EMG amplifier
- 4. Design a suitable circuit to detect QRS complex and measure heart rate
- 5. Design of frontal EEG amplifier
- 6. Design of EOG amplifier to detect eye blink
- 7. Design a right leg driven ECG amplifier.
- 8. Design and study the characteristics of optical Isolation amplifier
- 9. Design a Multiplexer and Demultiplexer for any two biosignals.
- 10. Measurement of pulse-rate using Photo transducer.
- 11. Measurement of pH and conductivity.
- 12. Measurement of blood pressure using sphygmomanometer.
- 13. Measurement and recording of peripheral blood flow
- 14. Design a PCB layout for any bio amplifier using suitable software tool.

**TOTAL: 45 PERIODS** 

#### **COURSE OUTCOMES:**

# On successful completion of this course, the student will be able to

CO1: Design the amplifier for Bio signal measurements

CO2: Measure heart rate and heart sounds.

CO3: Record and analyze pulse rate and respiration rate

CO4: Measure blood pressure and blood flow

CO5: Design isolation amplifier

# CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |     |     |   |    |    |    | PSO' | S |   |
|------|------|---|---|---|---|---|-----|-----|---|----|----|----|------|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7   | 8   | 9 | 10 | 11 | 12 | 1    | 2 | 3 |
| 1    | 3    | 3 | 1 | 1 | 1 | 1 | -   | -   | 1 | 1  | 1  | -  | 1    | - | 1 |
| 2    | 3    | 3 | 1 | 1 | 1 | 1 | -   | -   | 1 | 1  | 1  | -  | 1    | - | 1 |
| 3    | 3    | 3 | 1 | 1 | 1 | 1 | -   | -   | 1 | 1  | 1  | -  | 1    | - | 1 |
| 4    | 3    | 3 | 1 | 1 | 1 | 1 | -   | -   | 1 | 1  | 1  | -  | 1    | - | 1 |
| 5    | 3    | 3 | 1 | 1 | 1 | 1 | -   |     | 1 | 1  | 1  | -  | 1    | - | 1 |
| AVg. | 3    | 3 | 1 | 1 | 1 | 1 | - 1 | - 1 | 1 | 1  | 1  | -  | 1    | - | 1 |

1 - low, 2 - medium, 3 - high, '-' - no correlation

# BM3412 ANALOG AND DIGITAL INTEGRATED CIRCUITS LABORATORY

L T P C 0 0 3 1.5

# **COURSE OBJECTIVES:**

# The student should be made to

- To design digital logic and circuits
- To learn the function of different ICs
- To understand the applications of operation amplifier.
- To learn the working of multivibrators
- To design circuits for generating waveforms using ICs.

# LIST OF EXPERIMENTS:

- 1. Inverting, non-inverting amplifier and comparator
- 2. Integrator and Differentiator
- 3. Design and analysis of active filters using opamp
- 4. Schmitt trigger using operational amplifier
- 5. Instrumentation amplifier using operational amplifier
- 6. RC and LC oscillators
- 7. Multivibrators using IC555 Timer
- 8. Study of logic gates, Half adder and Full adder
- 9. Encoder and BCD to 7 segment decoder
- 10. Multiplexer and demultiplexer using digital ICs
- 11. Universal shift register using flip flops
- 12. Design of mod-N counter
- 13. Simulation and analysis of circuits using software

**TOTAL: 45 PERIODS** 

#### **COURSE OUTCOMES:**

# On successful completion of this course, the student will be able to

CO1: Design Combinational Circuits using logic gates

CO2: Design and implement arithmetic circuits for different applications using opamp

CO3: Design Sequential Circuits using logic gates

CO4: Design wave form generators and analyse their characteristics

CO5: Simulate and analyse circuits using ICs

#### CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |    | PSO | 's |   |
|------|------|---|---|---|---|---|---|---|---|----|----|----|-----|----|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1   | 2  | 3 |
| 1    | 3    | 3 | 1 | 1 | 1 | - | - | - | 1 | 1  | -  | -  | 1   | -  | - |
| 2    | 3    | 3 | 1 | 1 | 1 | - | - | - | 1 | 1  | -  | -  | 1   | -  | - |
| 3    | 3    | 3 | 1 | 1 | 1 | - | - | - | 1 | 1  | 1  | -  | 1   | -  | - |
| 4    | 3    | 3 | 1 | 1 | 1 | - | - | - | 1 | 1  | 1  | -  | 1   | -  | - |
| 5    | 3    | 3 | 1 | 1 | 1 | - | - | - | 1 | 1  | 1  | -  | 1   | -  | - |
| AVg. | 3    | 3 | 1 | 1 | 1 | - | - | - | 1 | 1  | 1  | -  | 1   | -  | - |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

#### BM3551

#### **EMBEDDED SYSTEMS AND IOMT**

LTPC 3 0 0 3

# **COURSE OBJECTIVES:**

The objective of this course is to enable the student to

- Acquire knowledge and understand fundamental embedded systems design paradigms, architectures, possibilities, and challenges, both with respect to software and hardware.
- Understand the hardware architecture and features of embedded microcontrollers and peripherals.
- Understand programming aspects of embedded system design.
- Understand IoT architecture and Build simple IoT Systems using embedded target boards.
- Understand IoMT infrastructure for healthcare applications.

# UNIT I INTRODUCTION TO EMBEDDED SYSTEM DESIGN

9

Introduction to embedded processors- Application Areas- Categories of embedded processors- Challenges in Embedded System Design, Design Process- Requirements- Specifications- Hardware architecture- Software architecture-Introduction to Harvard & Von Neuman architectures- CISC & RISC Architectures. CPU Bus- Bus Protocols- Bus Organisation, Memory Devices, and their Characteristics- RAM, EEPROM-Flash Memory- DRAM. BIOS, POST, Device Drivers

# UNIT II PERIPHERAL INTERFACING

9

I/O Devices-Timers and Counters- Watchdog Timers, Interrupt Controllers- A/D and D/A, Interfacing- Memory interfacing with a case study- I/O Device Interfacing with case Study-Programmed IO-Memory Mapped IO, Interfacing Protocols-SPI, I<sup>2</sup>C, USB, CAN, Ethernet/WiFi, Bluetooth

#### UNIT III EMBEDDED SYSTEM SOFTWARE DESIGN

9

Application Software, System Software, Design techniques – State diagrams, sequence diagrams, flowcharts, etc., Model-based system engineering (MBSE), Use of High-Level Languages-embedded C / C++ Programming, Integrated Development Environment tools- Editor- Compiler-Linker- Automatic Code Generators- Debugger- Board Support Library- Chip Support Library, Analysis and Optimization-Execution Time- Energy & Power.

#### **UNIT IV DESIGN AND DEVELOPMENT OF IOT**

Definition and characteristics of IoT, Technical Building blocks of IoT, Communication Technologies, Physical design of IoT - system building blocks - sensors and sensor Node and interfacing using any Embedded target boards (Raspberry Pi / Intel Galileo/ARM Cortex/ Arduino). Benefits and impact of IoMT. Cybersecurity – vulnerability, penetration & encryption technologies

# UNIT V INTERNET OF MEDICAL THINGS

Case studies - Novel Symmetrical Uncertainty Measure (NSUM) Technique for Diabetes Patients, Healthcare Monitoring system through Cyber-physical system, An IoT Model for Neuro sensors, AdaBoost with feature selection using IoT for somatic mutations evaluation in Cancer, A Fuzzy-Based expert System to diagnose Alzheimer's Disease, Secured architecture for IoT enabled Personalized Healthcare Systems, Healthcare Application Development in Mobile and Cloud Environments.

**TOTAL: 45 PERIODS** 

#### COURSE OUTCOME:

At the end of this course, the student should be able to

CO1: Explain fundamental embedded systems design paradigms, architectures, possibilities, and challenges, both with respect to software and hardware.

CO2: Describe the hardware architecture and features of embedded microcontrollers and peripherals.

CO3: Explain software design tools and embedded system design programming phases.

CO4: Describe IoT Architectures and Build simple IoT Systems using embedded target boards.

CO5: Exhibit understanding of IoMT infrastructure for healthcare applications.

# **TEXT BOOKS:**

- 1. Embedded Systems A Contemporary Design Tool, James K Peckol, , John Weily, 2008, ISBN: 0-444-51616-6.
- 2. David Hanes, Gonzalo Salqueiro, Patrick Grossetete, Rob Barton and Jerome Henry, "loT Fundamentals: Networking Technologies, Protocols and Use Cases for Internet of Things, Cisco Press. 2017.
- 3. Venkata Krishna, Sasikumar Gurumoorthy, Mohammad S. Obaidat, "Internet of Things and Personalized Healthcare Systems", Springer Briefs in Applied Sciences, and Technology, Forensic and Medical Bioinformatics, 2019.

THE PROPERTY OF STREET

# **REFERENCE BOOKS:**

- 1. Introduction to Embedded Systems, Shibu K V, Tata McGraw Hill Education Private Limited, 2009, ISBN: 10: 0070678790 3.
- 2. Embedded Software Primer, David E.Simon, ,Addison Wesley, ISBN-13: 978-0201615692
- 3. The Intel Microprocessors, Architecture, Programming and Interfacing" Barry B.Brey, 6th Edition, Pearson Education.
- 4. Arshdeep Bahga, Vijay Madisetti, "Internet of Things A hands-on approach", Universities Press, 2015
- 5. Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things Key applications and Protocols", Wiley, 2012.
- 6. Jan Holler, Vlasios Tsiatsis, Catherine Mulligan, Stamatis, Karnouskos, Stefan Avesand. David Boyle, "From Machine-to-Machine to the Internet of Things - Introduction to a New

- Age of Intelligence", Elsevier, 2014.
- 7. Dieter Uckelmann, Mark Harrison, Michahelles, Florian (Eds), "Architecting the Internet of Things", Springer, 2011.
- 8. Michael Margolis, Arduino Cookbook, "Recipes to Begin, Expand, and Enhance Your Projects", OReilly Media, 2nd Edition.

CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |    | PSO' | S |   |
|------|------|---|---|---|---|---|---|---|---|----|----|----|------|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1    | 2 | 3 |
| 1    | 3    | 2 | 1 | 1 | 1 | - | - | - | - | -  | -  | 1  | 1    | 1 | - |
| 2    | 3    | 2 | 1 | 1 | 1 | - | - | - | - | -  | -  | 1  | 1    | 1 | - |
| 3    | 3    | 2 | 1 | 1 | 1 | - | - | - | - | -  | -  | 1  | 1    | 1 | - |
| 4    | 3    | 2 | 1 | 1 | 1 | - | - | - | - | -  | -  | 1  | 1    | 1 | - |
| 5    | 3    | 2 | 1 | 1 | 1 | - |   | - | - | -  | -  | 1  | 1    | 1 | - |
| AVg. | 3    | 2 | 1 | 1 | 1 | - | - | - | - | -  | -  | 1  | 1    | 1 | - |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

# BM3591 DIAGNOSTIC AND THERAPEUTIC EQUIPMENT

LTPC 3 003

# **COURSE OBJECTIVES:**

The student should be made to:

- Understand the devices for measurement of parameters related to cardiology.
- Illustrate the recording and measurement of EEG
- Demonstrate EMG recording unit and its uses.
- Explain diagnostic and therapeutic devices related to respiratory parameters.
- Understand the various sensory measurements that hold clinical importance.

# UNIT I CARDIAC EQUIPMENT

Ç

Electrocardiograph, Normal and Abnormal Waves, Heart rate monitor, Holter Monitor, Phonocardiography, ECG machine maintenance and troubleshooting, Cardiac Pacemaker-Internal and External Pacemaker- Batteries, AC and DC Defibrillator- Internal and External, Defibrillator Protection Circuit, Cardiac ablation catheter.

# UNIT II NEUROLOGICAL EQUIPMENT

9

Clinical significance of EEG, Multi-channel EEG recording system, Epilepsy, Evoked Potential–Visual, Auditory and Somatosensory, MEG (Magneto Encephalo Graph). EEG Bio Feedback Instrumentation. EEG system maintenance and troubleshooting.

# UNIT III MUSCULAR AND BIOMECHANICAL EQUIPMENT

9

Recording and analysis of EMG waveforms, fatigue characteristics, Muscle stimulators, nerve stimulators, Nerve conduction velocity measurement, EMG Bio Feedback Instrumentation. Static Measurement – Load Cell, Pedobarograph. Dynamic Measurement – Velocity, Acceleration, GAIT, Limb position.

# UNIT IV RESPIRATORY MEASUREMENT AND ASSIST SYSTEM

9

Instrumentation for measuring the mechanics of breathing – Spirometer -Lung Volume and vital capacity, measurements of residual volume, Pneumotachometer – Airway resistance measurement, Whole body Plethysmograph, Intra-Alveolar and Thoracic pressure measurements, Apnoea Monitor. Types of Ventilators – Pressure, Volume, and Time controlled. Flow, Patient

# UNIT V SENSORY DIAGNOSTIC EQUIPMENT

Psychophysiological Measurements – polygraph, basal skin resistance (BSR), galvanic skin resistance (GSR), Sensory responses - Audiometer-Pure tone, Speech, Eye Tonometer, Applanation Tonometer, slit lamp, auto refractometer.

# **COURSE OUTCOMES:**

# On successful completion of this course, the student will be able to

- CO1: Describe the working and recording setup of all basic cardiac equipment.
- CO2: Understand the working and recording of all basic neurological equipment's.
- CO3: Discuss the recording of diagnostic and therapeutic equipment's related to EMG.
- CO4: Explain about measurements of parameters related to respiratory system.
- CO5: Describe the measurement techniques of sensory responses.

#### **TOTAL:45 PERIODS**

9

#### **TEXT BOOKS**

- 1. John G. Webster, "Medical Instrumentation Application and Design", 4<sup>th</sup> edition, Wiley India PvtLtd,New Delhi, 2015
- 2. Joseph J. Carr and John M. Brown, "Introduction to Biomedical Equipment Technology", Pearson education, 2012

#### REFERENCES

- 1. L.A Geddes and L.E.Baker, "Principles of Applied Biomedical Instrumentation", 3rd Edition, 2008.
- 2. Khandpur. R.S., "Handbook of Biomedical Instrumentation". Second Edition. Tata McGrawHill Pub. Co., Ltd. 2003.
- 3. Antony Y.K.Chan,"Biomedical Device Technology, Principles and design", Charles Thomas Publisher Ltd, Illinois, USA, 2008.
- 4. Leslie Cromwell, "Biomedical Instrumentation and Measurement", Pearson Education, New Delhi, 2007.

CO's- PO's & PSO's MAPPING

| CO's | PO's |   |     |   |     |    |       |      |    |      |     |    | PSO | 's |   |
|------|------|---|-----|---|-----|----|-------|------|----|------|-----|----|-----|----|---|
|      | 1    | 2 | 3   | 4 | 5   | 6  | 7     | 8    | 9  | 10   | 11  | 12 | 1   | 2  | 3 |
| 1    | 3    | 2 | 1   | - | 1   | -  | -     | -    |    | -    |     | 1  | 2   |    | 1 |
| 2    | 3    | 2 | 1   | - | 1   | -  | -     | -    | -  | -    | -   | 1  | 2   |    | 1 |
| 3    | 3    | 2 | ppn | - | [1] | 71 | JB/   | 1110 | 나내 | 'NtO | W-1 | 1  | 2   |    | 1 |
| 4    | 3    | 2 | MAG | - | 1   | 1  | 112.0 | 4    |    | III  | 77. | 1  | 2   |    | 1 |
| 5    | 3    | 2 | 1   | - | 1   | -  | -     | -    | -  | -    | -   | 1  | 2   |    | 1 |
| AVg. | 3    | 2 | 1   | - | 1   | •  | -     | •    | -  | •    | -   | 1  | 2   |    | 1 |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

### BM3562 EMBEDDED SYSTEMS AND IOMT LAB

L T P C 0 31.5

#### **COURSE OBJECTIVES:**

# The student should be made to:

- Acquire knowledge and understand the hardware architecture and programming aspects of embedded system design.
- Understand IoT architecture and Build simple IoT Systems using embedded target

boards.

• Understand IoMT infrastructure for healthcare applications.

# LIST OF EXPERIMENTS

- 1. Explore AVR/ARM based controllers using Embedded C.
- 2. Write Basic and arithmetic Programs Using Embedded C.
- 3. Write Embedded C program to test interrupt and timers.
- 4. Develop Real time applications clock generation, waveform generation, counter using embedded C.
- 5. Explore different communication methods with IoT devices.
- 6. To interface LED/Buzzer with platform/ Aurdino /Raspberry Pi. and write an embedded C program to turn on / off LED/Buzzer with specified delay.
- 7. To interface DC/stepper motor using relay with open platform/ Aurdino /Raspberry Pi. and write an embedded C program to turn on motor if push button is pressed.
- 8. Develop simple application testing infrared sensor IoT Applications using open platform/Raspberry Pi.
- 9. Develop simple application to interface DHT11 sensor with and write a program to display temperature humidity readings in LCD.
- 10. Develop IoMT Application using open platform/ Aurdino. /Raspberry Pi. and sensors such as temperature, ECG, Pulse etc.
- 11. Deploy IoMT applications using platforms.
- 12. Mini Project.

**TOTAL: 45 PERIODS** 

# **COURSE OUTCOMES:**

On completion of the course, the student should be able to:

CO1: Explain hardware architecture of embedded systems and use of software design tools.

CO2: Describe IoT Architectures and Build simple IoT Systems using embedded target boards.

CO3: Exhibit understanding of IoMT infrastructure for healthcare with simple applications.

# CO's-PO's & PSO's MAPPING

| CO's | PO's |   |      |   |   |   |   |   |   |    |    |    | PSO's | 3 |   |
|------|------|---|------|---|---|---|---|---|---|----|----|----|-------|---|---|
|      | 1    | 2 | 3    | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1     | 2 | 3 |
| 1    | 3    | 3 | 1    | 1 | 1 | - | - | - | 1 | 1  |    | -  | 1     | - | - |
| 2    | 3    | 3 | 1    | 1 | 1 | - |   |   | 1 | 1  | -  | -  | 1     | - | - |
| 3    | 3    | 3 | R1)( | 1 | 1 |   | ( |   | 1 | 1  | 1  | )  | 1     | - | - |
| 4    | 3    | 3 | 1    | 1 | 1 | - | - | - | 1 | 1  | 1  | -  | 1     | - | - |
| 5    | 3    | 3 | 1    | 1 | 1 | _ | _ | _ | 1 | 1  | 1  | _  | 1     | _ | - |
| AVg. | 3    | 3 | 1    | 1 | 1 | - | - | - | 1 | 1  | 1  | -  | 1     | - | - |

1 - low, 2 - medium, 3 - high, '-' - no correlation

# BM3561 DIAGNOSTIC AND THERAPEUTIC EQUIPMENT LAB

LT PC 0 04 2

# **COURSE OBJECTIVES:**

The student should be made to

- To demonstrate recording and analysis of different Bio potentials
- To examine different therapeutic modalities.

# **LIST OF EXPERIMENTS:**

- 1. Measurement of visually and auditory evoked potential.
- 2. Galvanic skin resistance (GSR) measurement.
- 3. Measurement of output intensity from shortwave and ultrasonic diathermy.
- 4. Measurement of various physiological signals using biotelemetry.
- 5. Electrical safety measurements.
- 6. Measurement of various physiological signals using biotelemetry.
- 7. Measurement of stimulation current waveforms used in medical stimulator.
- 8. Analyze the working of ESU-cutting and coagulation modes.
- 9. Recording of Audiogram.
- 10. Study the working of Defibrillator and pacemakers.
- 11. Study of ECG, EEG and EMG electrodes.
- 12. Study of ventilators and Ultrasound Scanners.
- 13. Study of speech signals using speech signal trainer kit.
- 14. Measurement of Oxygen Saturation and Heart Rate using Pulse-oximeter.
- 15. Study of heart lung machine model.

## **TOTAL: 60 PERIODS**

# **COURSE OUTCOMES:**

# On successful completion of this course, the student will be able to

CO1: Measure the different bioelectrical signals.

CO2: Record the various physiological signals using telemetry.

CO3: Demonstrate various diagnostic and therapeutic techniques.

CO4: Examine the electrical safety measurements.

CO5: Analyse the different bio signals using suitable tools.

# **ONLINE RESOURCES**

http://bmsp-coep.vlabs.ac.in/List%20of%20experiments.html?domain=Biotechnology

# CO's- PO's & PSO's MAPPING

| CO's | PO's |   |     |   |   |     |       |   |   |    |     |    | PSO' | S |   |
|------|------|---|-----|---|---|-----|-------|---|---|----|-----|----|------|---|---|
|      | 1    | 2 | 3   | 4 | 5 | 6   | 7     | 8 | 9 | 10 | 11  | 12 | 1    | 2 | 3 |
| 1    | 3    | 3 | 1   | 1 | 1 | -   | -     | - | 1 | 1  | -// | 1  | 2    | - | 1 |
| 2    | 3    | 3 | 1   | 1 | 1 | -   | -     | - | 1 | 1  | -   | 1  | 2    | - | 1 |
| 3    | 3    | 3 | 1   | 1 | 1 | -   | -     |   | 1 | 1  | 1   | 1  | 2    | - | 1 |
| 4    | 3    | 3 | 1 ( | 1 | 1 | - 1 | 1 - ( |   | 1 | 1  | 1   | 1  | 2    | - | 1 |
| 5    | 3    | 3 | 1   | 1 | 1 |     | -     | - | 1 | 1  | 1   | 1  | 2    | - | 1 |
| AVg. | 3    | 3 | 1   | 1 | 1 | -   | -     | • | 1 | 1  | 1   | 1  | 2    | - | 1 |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

# CS3491 ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

LTP C 3 0 2 4

#### **COURSE OBJECTIVES:**

# The main objectives of this course are to:

- Study about uninformed and Heuristic search techniques.
- Learn techniques for reasoning under uncertainty.
- Introduce Machine Learning and supervised learning algorithms.
- Study about ensembling and unsupervised learning algorithms.
- Learn the basics of deep learning using neural networks.

# UNIT I PROBLEM SOLVING

9

Introduction to AI - AI Applications - Problem solving agents - search algorithms - uninformed search strategies - Heuristic search strategies - Local search and optimization problems - adversarial search - constraint satisfaction problems (CSP).

#### UNIT II PROBABILISTIC REASONING

9

Acting under uncertainty – Bayesian inference – naïve bayes models. Probabilistic reasoning – Bayesian networks – exact inference in BN – approximate inference in BN – causal networks.

#### UNIT III SUPERVISED LEARNING

9

Introduction to machine learning – Linear Regression Models: Least squares, single & multiple variables, Bayesian linear regression, gradient descent, Linear Classification Models: Discriminant function – Probabilistic discriminative model - Logistic regression, Probabilistic generative model – Naive Bayes, Maximum margin classifier – Support vector machine, Decision Tree, Random forests.

# UNIT IV ENSEMBLE TECHNIQUES AND UNSUPERVISED LEARNING

9

Combining multiple learners: Model combination schemes, Voting, Ensemble Learning - bagging, boosting, stacking, Unsupervised learning: K-means, Instance Based Learning: KNN, Gaussian mixture models and Expectation maximization.

#### UNIT V NEURAL NETWORKS

9

Perceptron - Multilayer perceptron, activation functions, network training - gradient descent optimization - stochastic gradient descent, error backpropagation, from shallow networks to deep networks -Unit saturation (aka the vanishing gradient problem) - ReLU, hyperparameter tuning, batch normalization, regularization, dropout.

45 PERIODS 30 PERIODS

# PRACTICAL EXERCISES:

- 1. Implementation of Uninformed search algorithms (BFS, DFS).
- 2. Implementation of Informed search algorithms (A\*, memory-bounded A\*).
- 3. Implement naïve Bayes models.
- 4. Implement Bayesian Networks.
- Build Regression models.
- 6. Build decision trees and random forests.
- 7. Build SVM models.
- 8. Implement ensembling techniques.
- 9. Implement clustering algorithms.
- 10. Implement EM for Bayesian networks.
- 11. Build simple NN models.
- 12. Build deep learning NN models.

# **COURSE OUTCOMES:**

# At the end of this course, the students will be able to:

- CO1: Use appropriate search algorithms for problem solving.
- CO2: Apply reasoning under uncertainty.
- CO3: Build supervised learning models.
- CO4: Build ensembling and unsupervised models.
- CO5: Build deep learning neural network models.

**TOTAL:75 PERIODS** 

#### **TEXT BOOKS:**

- 1. Stuart Russell and Peter Norvig, "Artificial Intelligence A Modern Approach", Fourth Edition, Pearson Education, 2021.
- 2. Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, Fourth Edition, 2020.

### **REFERENCES**

- 1. Dan W. Patterson, "Introduction to Al and ES", Pearson Education, 2007.
- 2. Kevin Night, Elaine Rich, and Nair B., "Artificial Intelligence", McGraw Hill, 2008.
- 3. Patrick H. Winston, "Artificial Intelligence", Third Edition, Pearson Education, 2006.
- 4. Deepak Khemani, "Artificial Intelligence", Tata McGraw Hill Education, 2013 (http://nptel.ac.in/).
- 5. Christopher M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.
- 6. Tom Mitchell, "Machine Learning", McGraw Hill, 3rd Edition, 1997.
- 7. Charu C. Aggarwal, "Data Classification Algorithms and Applications", CRC Press, 2014.
- 8. Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of Machine Learning", MIT Press, 2012.
- 9. Ian Goodfellow, Yoshua Bengio, Aaron Courville, "Deep Learning", MIT Press, 2016.

# CO's-PO's & PSO's MAPPING

| CO's |   |   |   |   |          |   |     |   |   |    |    |    |   |   | PSO's |  |  |  |
|------|---|---|---|---|----------|---|-----|---|---|----|----|----|---|---|-------|--|--|--|
|      | 1 | 2 | 3 | 4 | 5        | 6 | 7   | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3     |  |  |  |
| 1    | 3 | 2 | 3 | 3 | <b>'</b> | - | -   | - | 1 | 3  | 3  | 3  | 1 | 2 | 2     |  |  |  |
| 2    | 1 | 1 | 1 | 3 | 1        | - | -4- |   | 1 | 2  | 1  | 3  | 2 | 3 | 2     |  |  |  |
| 3    | 2 | 1 | 2 | 1 | 1        | _ |     | - | 2 | 1  | 1  | 3  | 1 | 1 | 1     |  |  |  |
| 4    | 3 | 1 | 3 | 1 | -        | - | -   | - | 2 | 1  | 2  | 1  | 2 | 2 | 2     |  |  |  |
| 5    | 3 | 1 | 1 | 2 | 2        | - | -   | - | 3 | 1  | 2  | 3  | 2 | 1 | 2     |  |  |  |
| AVg. | 2 | 1 | 2 | 2 | 1        | - | -   | - | 2 | 2  | 2  | 3  | 2 | 2 | 2     |  |  |  |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-"- no correlation

# BM3651 FUNDAMENTALS OF HEALTHCARE ANALYTICS

L T P C 3 0 0 3

# **COURSE OBJECTIVES:**

# The objective of this course is to enable the student to

- Understand the statistical methods for the design of biomedical research.
- Comprehend the fundamental of mathematical and statistical theory in the application of
  Healthcare
- Apply the regression and correlation analyze in the healthcare data.
- Understand the Meta analysis and variance analysis.
- Interpret the results of the investigational methods.

# UNIT I INTRODUCTION

9

Introduction, Computers and bio statistical analysis, Introduction to probability, likelihood & odds, distribution variability. Finding the statistical distribution using appropriate software tool like R/ Python.

# UNIT II STATISTICAL PARAMETERS

9

Statistical parameters p-values, computation, level chi square test and distribution and hypothesis testing -single population proportion, difference between two population proportions, single population variance, tests of homogeneity. Testing of statistical parameters using appropriate

# UNIT III REGRESSION AND CORRELATION ANALYSIS

9

Regression model, evaluating the regression equation, correlation model, correlation coefficient. Finding regression, correlation for the data using appropriate software like R / Python.

# UNIT IV ANALYSIS OF VARIANCE

9

META analysis for research activities, purpose and reading of META analysis, kind of data used for META analysis, completely randomized design, randomized complete block design, repeated measures design, factorial experiment. Testing the variance using appropriate software tool like R / Python.

# UNIT V CASE STUDIES

9

Epidemical reading and interpreting of epidemical studies, application in community health, Case study on Medical Imaging like MRI, CT. Case study on respiratory data, Case study on ECG data.

**TOTAL: 45 PERIODS** 

#### **COURSE OUTCOMES**

# On successful completion of this course, the student will be able to

CO1:Define the new and existing statistical methodology for their research problem.

CO2: Explain p- values for different statistical test.

CO3: Analyze the biomedical research data and able to report the study results.

CO4: Enumerate the Meta analysis and variance analysis.

**CO5**:Describe problems of human health and disease for the interest of advancing the public's Health.

# **TEXT BOOKS:**

- 1. Wayne W. Daniel, Biostatistics-A Foundation for Analysis in the Health Sciences, John Wiley & Sons Publication, 10th Edition, 2013.
- 2. Peter Armotage, Geoffrey Berry and J.N.S.Mathews, Statistical methods in Medical Research, Wiley-Blackwell, 4th Edition, 2001.
- 3. Bernard Rosner. Fundamentals of biostatistics. Nelson Education, 8th Edition 2015 ISBN:978-1-305-26892-0

# **REFERENCES:**

- 1. Marcello Pagano and Kimberlee Gauvreu, Principles of Biostatistics, Chapman and Hall/CRC, 2ndEdition, 2018.
- 2. Ronald N Forthofer and EunSul Lee, Introduction to Biostatistics, Academic Press, 1<sup>st</sup> Edition, 2014.
- 3. Animesh K. Dutta, Basic Biostatistics and its Applications, New Central Book Agency, 1<sup>st</sup> Edition, 2006.

CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   | PSO's |   |   |   |   |   |    |    |    |   |   |   |
|------|------|---|---|-------|---|---|---|---|---|----|----|----|---|---|---|
|      | 1    | 2 | 3 | 4     | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 |
| 1    | 3    | 3 | 1 | 1     | 1 | - | - | - | - | -  | -  | 1  | 1 | - | 1 |
| 2    | 3    | 3 | 1 | 1     | 1 | - | - | - | - | -  | -  | 1  | 1 | - | 1 |
| 3    | 3    | 3 | 1 | 1     | 1 | - | - | - | - | -  | -  | 1  | 1 | - | 1 |
| 4    | 3    | 3 | 1 | 1     | 1 | - | - | - | - | -  | -  | 1  | 1 | - | 1 |
| 5    | 3    | 3 | 1 | 1     | 1 | - | - | - | - | -  | -  | 1  | 1 | - | 1 |
| AVg. | 3    | 3 | 1 | 1     | 1 | - | - | - | - | -  | -  | 1  | 1 | - | 1 |

1 - low, 2 - medium, 3 - high, '-' - no correlation

#### BM3652

#### MEDICAL IMAGE PROCESSING

LTPC 3 0 2 4

#### **COURSE OBJECTIVES**

The objective of this course is to enable the student to

- Learn the fundamental concepts of medical Image Processing techniques.
- Understand the concepts of various image intensity transformation and filtering operations.
- Be familiar in the techniques of segmentation and restoration of medical images.
- Gain knowledge in medical image registration and visualization.
- Be familiar with the application of medical image analysis.

# UNIT I FUNDAMENTALS OF MEDICAL IMAGE PROCESSING AND TRANSFORMS

9+3

Overview of Image Processing system and human Visual system- Image representation – pixel and voxels, Gray scale and color models- Medical image file formats- DICOM, ANALYZE 7.5, NIFTI and INTERFILE- Discrete sampling model and Quantization- Relationship between the pixels, Arithmetic and logical operations- Image quality and Signal to Noise ratio- Image Transforms- 2D DFT, DCT, KLT. Interpret the basics of image models, Digitization of images and the transformations of medical images using Matlab.

# UNIT II ENHANCEMENT TECHNIQUES

9+3

Gray level transformation- Log transformation, Power law transformation, Piecewise linear transformation. Histogram processing- Histogram equalization, Histogram Matching. Spatial domain Filtering-Smoothing filters, sharpening filters. Frequency domain filtering- Smoothing filters, Sharpening filters- Homomorphic filtering -Medical image enhancement using Hybrid filters- Performance measures for enhancement techniques. Experiment with various filtering techniques for noise reduction and enhancement in medical images using Matlab.

# UNIT III SEGMENTATION AND RESTORATION TECHNIQUES

9+3

ROI definition -Detection of discontinuities—Edge linking and boundary detection — Region based segmentation—Morphological processing, Active contour models. Image Restoration—Noise models—Restoration in the presence of Noise — spatial filtering, Periodic noise reduction by frequency domain filtering—linear position—Invariant degradation—Estimation of degradation function, Inverse filter, Weiner filtering. Analyze the segmentation techniques to extract the region of interest and restoration of degraded images using Matlab.

# UNIT IV REGISTRATION AND VISUALISATION

9+3

Registration–Rigid body transformation, principal axes registration, and feature based. Visualisation-Orthogonal and perspective projection in medicine, Surface based rendering, Volume visualization in medical image. Explain the significance of registration of various imaging modalities and appraise the concepts of image visualization in healthcare using Matlab

#### UNIT V APPLICATIONS OF MEDICAL IMAGE ANALYSIS

9+3

Medical Image compression- DCT and Wavelet transform based image compression, Preprocessing of medical images -Retinal images, Ultrasound -liver, kidney, Mammogram. Segmentation of ROI -blood vessels, lesions, tumour, lung nodules, feature extraction- shape and texture, Computer aided diagnosis system – performance measures (confusion matrix, ROC, AUC).

**TOTAL: 75 PERIODS** 

# **COURSE OUTCOMES**

Upon successful completion of the course, students will be able to

- CO1: Explain and apply the fundamental concepts of image processing techniques for the analysis of medical images.
- CO2: Identify and apply suitable filtering and intensity transformation techniques for given medical applications.
- CO3: Identify and segment the Region of Interest from the given medical image.
- CO4: Explore and apply current research in registration and visualization for medical image analysis.
- CO5: Explain and apply the image compression techniques.
- CO6: Design and evaluate the use of image processing fundamentals in healthcare applications, as well as their impact on health and society, and any underlying ethical issues, then communicate effectively through reflections, reports, and presentations (Target CO).

# **TEXT BOOKS**

- 1. Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, Pearson Education, 3rd edition, 2016.
- 2. Isaac N. Bankman, Handbook of Medical Image Processing and Analysis, 2<sup>nd</sup> Edition, Elsevier, 2009.
- 3. Wolfgang Birkfellner, Applied medical Image Processing: A Basic course, CRC Press, 2011

# **REFERENCES**

- 1. Atam P.Dhawan, Medical Image Analysis, Wiley-Interscience Publication, NJ, USA 2003
- 2. <u>Rangaraj M. "Rangayyan</u>, Biomedical Image Analysis", 1st Edition, CRC Press, Published December 30, 2004.
- 3. Joseph V.Hajnal, Derek L.G.Hill, David J Hawkes, "Medical image registration", Biomedical Engineering series, CRC press, 2001
- 4. Milan Sonka, Image Processing, Analysis And Machine Vision, Brookes/Cole, Vikas Publishing House, 2<sup>nd</sup> edition, 1999.
- 5. Anil Jain K, Fundamentals of Digital Image Processing, PHI Learning Pvt. Ltd., 2011.

CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   | PSO's |   |   |   |   |   |    |    |    |   |   |   |
|------|------|---|---|-------|---|---|---|---|---|----|----|----|---|---|---|
|      | 1    | 2 | 3 | 4     | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 |
| 1    | 3    | 3 | 1 | 1     | 1 | - | - | - | - | -  | -  | 1  | 1 | - | 1 |
| 2    | 3    | 3 | 1 | 1     | 1 | - | - | - | - | -  | -  | 1  | 1 | - | 1 |
| 3    | 3    | 3 | 1 | 1     | 1 | - | - | - | - | -  | -  | 1  | 1 | - | 1 |
| 4    | 3    | 3 | 1 | 1     | 1 | - | - | - | - | -  | -  | 1  | 1 | - | 1 |
| 5    | 3    | 3 | 1 | 1     | 1 | - | - | - | - | -  | -  | 1  | 1 | - | 1 |
| AVg. | 3    | 3 | 1 | 1     | 1 | - | - | - | - | -  | -  | 1  | 1 | - | 1 |

#### **COURSE OBJECTIVES:**

#### The student should be made to

- Observe medical professionals at work in the wards and the roles of Allied Health Professionals;
- Provide access to healthcare Professionals to get a better understanding of their work;
- Demonstrate patient-care in a hospital setting.

#### ASSESSMENT:

- Students need to complete training in any leading Multi-speciality hospital for a period of 15 days. They need to prepare an extensive report and submit to their respective course in-charges during the session.
- Out of the following departments, it is mandatory to complete training in any 10. The students can give a presentation of the remaining departments during laboratory hours.

| S.No. | Departments for visit             |
|-------|-----------------------------------|
| 1     | Cardiology                        |
| 2     | ENT                               |
| 3     | Ophthalmology                     |
| 4     | Orthopaedic and Physiotherapy     |
| 5     | ICU/CCU                           |
| 6     | Operation Theatre                 |
| 7     | Neurology                         |
| 8     | Nephrology                        |
| 9     | Radiology                         |
| 10    | Nuclear Medicine                  |
| 11    | Pulmonology                       |
| 12    | Urology                           |
| 13    | Obstetrics and Gynaecology        |
| 14    | Emergency Medicine                |
| 15    | Biomedical Engineering Department |
| 16    | Histo Pathology                   |
| 17    | Biochemistry                      |
| 18    | Paediatric/Neonatal               |
| 19    | Dental                            |
| 20    | Oncology                          |
| 21    | PAC's                             |
| 22    | Medical Records / Telemetry       |

**TOTAL: 60 PERIODS** 

# **COURSE OUTCOMES:**

# At the end of the course, the student should be able to:

- Advocate a patient-centred approach in healthcare
- Communicate with other health professionals in a respectful and responsible manner
- Recognize the importance of inter-professional collaboration in healthcare.
- Propose a patient-centred inter-professional health improvement plan based upon the patient's perceived needs

• Use the knowledge of one's own role and those of other professions to address the healthcare needs of populations and patients served.

BM3811

# **PROJECT WORK / INTERNSHIP**

L T P C 0 0 20 10

#### **COURSE OBJECTIVES:**

To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same. To train the students in preparing project reports and to face reviews and viva voce examination.

The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepares a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department.

A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Headof the Department.

TOTAL: 300 PERIODS

# COURSE OUTCOMES:

On Completion of the project work students will be in a position to take up any challenging practical problems and find solution by formulating proper methodology.

PROGRESS THROUGH KNOWLEDGE

# **VERTICALS**

# CBM337 BIOMATERIALS

L T P C 3 0 0 3

# **COURSE OBJECTIVES:**

#### The student should be made to:

- Learn characteristics and classification of Biomaterials
- Understand different metals, ceramics and its nanomaterial's characteristics as biomaterials
- Learn polymeric materials and its combinations that could be used as a tissue replacement implants
- Get familiarized with the concepts of Nano Science and Technology
- Understand the concept of biocompatibility and the methods for biomaterials testing

## UNIT I INTRODUCTION TO BIO-MATERIALS

9

Definition and classification of bio-materials, mechanical properties, visco elasticity, biomaterial performance, body response to implants, wound healing, blood compatibility, Nano scale phenomena.

# UNIT II METALLIC AND CERAMIC MATERIALS

9

Metallic implants - Stainless steels, co-based alloys, Ti-based alloys, shape memory alloy, nanostructured metallic implants, degradation and corrosion, ceramic implant – bio inert, biodegradable or bioresorbable, bioactive ceramics, nanostructured bio ceramics.

# UNIT III POLYMERIC IMPLANT MATERIALS

9

Polymerization, factors influencing the properties of polymers, polymers as biomaterials, biodegradable polymers, Bio polymers: Collagen, Elastin and chitin. Medical Textiles, Materials for ophthalmology: contact lens, intraocular lens. Membranes for plasma separation and Blood oxygenation, electro spinning: a new approach.

#### UNIT IV TISSUE REPLACEMENT IMPLANTS

9

Small intestinal sub mucosa and other decullarized matrix biomaterials for tissue repair: Extra cellular Matrix. Softtissue replacements, sutures, surgical tapes, adhesive, Percutaneous and skin implants, maxillofacial augmentation, Vascular grafts, hard tissue replacement Implants, joint replacements, tissue scaffolding and engineering using Nano biomaterials.

#### UNIT V TESTING OF BIOMATERIALS

ç

Biocompatibility, blood compatibility and tissue compatibility tests, Toxicity tests, sensitization, carcinogenicity, mutagenicity and special tests, Invitro and Invivo testing; Sterilisation of implants and devices: ETO, gamma radiation, autoclaving. Effects of sterilization.

# **COURSE OUTCOMES:**

# On successful completion of this course, the student will be able to

CO1: Analyze different types of Biomaterials and its classification and apply the concept of nanotechnology towards biomaterials use.

CO2: Identify significant gap required to overcome challenges and further development in metallic and ceramic materials

CO3: Identify significant gap required to overcome challenges and further development in polymeric materials

CO4: Create combinations of materials that could be used as a tissue replacement implant.

CO5: Understand the testing standards applied for biomaterials.

**TOTAL:45 PERIODS** 

#### **TEXTBOOKS**

- 1. Sujata V. Bhatt, "Biomaterials", Second Edition, Narosa Publishing House, 2005.
- 2. JoonB.Park Joseph D. Bronzino, "Biomaterials Principles and Applications", CRC press, 2003

#### **REFERENCES**

- 1. Sreeram Ramakrishna, MuruganRamalingam, T. S. Sampath Kumar, and Winston O. Soboyejo, "Biomaterials: A Nano Approach", CRC Press, 2010.
- 2. Monika Saini, Yashpal Singh, Pooja Arora, Vipin Arora, and KratiJain. "Implant biomaterials: A comprehensive review", World Journal of Clinical Cases, 2015.
- 3. Biomaterials- Basic Theory with Engineering Applications C.Mauli Agarwal, Joo L.Ong, Mark R. Appleford, Gopinath Mani. Cambrige University Press, New York- 2016.

# CO's-PO's & PSO's MAPPING

| CO's | PO's | PO's |   |   |   |   |     |   |      |    |      |    |   |   |   |
|------|------|------|---|---|---|---|-----|---|------|----|------|----|---|---|---|
|      | 1    | 2    | 3 | 4 | 5 | 6 | 7   | 8 | 9    | 10 | 11   | 12 | 1 | 2 | 3 |
| 1    | 3    | 3    | 1 | 1 | 1 |   | 1-1 | - | / -E | -  | -    | 1  | - | - | - |
| 2    | 3    | 3    | 1 | 1 | 1 | 1 | -   | - | -    | /  |      | 1  | - | - | - |
| 3    | 3    | 3    | 1 | 1 | 1 |   | -   | - | 3    | -1 | 3-7  | 1  |   | - | - |
| 4    | 3    | 3    | 1 | 1 | 1 | - | -   | - | (    | -  |      | 1  | - | - | - |
| 5    | 3    | 3    | 1 | 1 | 1 | - | -   | - | -    | -  | - 1  | 1  | - | - | - |
| AVg. | 3    | 3    | 1 | 1 | 1 | - | -   | - | -    | -  | - `` | 1  | - | - | - |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

**CBM332** 

# ARTIFICIAL ORGANS AND IMPLANTS

LT PC 3 0 0 3

# **COURSE OBJECTIVES:**

The student should be made to:

- To have an overview of artificial organs & transplants
- To describe the principles of implant design with a case study
- To explain the implant design parameters and solution in use
- To study about various blood interfacing implants
- To study about soft tissue replacement and hard tissue replacement

#### UNIT I ARTIFICIAL ORGANS & TRANSPLANTS

9

ARTIFICIAL ORGANS:-Introduction, outlook for organ replacements, design consideration, evaluation process.

TRANSPLANTS:-Overview, Immunological considerations, Blood transfusions, individual organs – kidney, liver, heart and lung, bone marrow, cornea.

# UNIT II PRINCIPLES OF IMPLANT DESIGN

9

Principles of implant design, Clinical problems requiring implants for solution, Permanent versus absorbable devices, the missing organ and its replacement, Tissue engineering, scaffolds, cells and regulators criteria for materials selection, Case study of organ regeneration.

# UNIT III IMPLANT DESIGN PARAMETERS AND ITS SOLUTION

Biocompatibility, local and systemic effects of implants, Design specifications for tissue bonding

and modulus matching, Degradation of devices, natural and synthetic polymers, corrosion, wear and tear, Implants for Bone, Devices for nerve regeneration.

# UNIT IV BLOOD INTERFACING IMPLANTS

9

Neural and neuromuscular implants, heart valve implants, heart and lung assist devices, artificial heart, cardiac pacemakers, artificial kidney- dialysis membrane and artificial blood.

#### UNIT V IMPLANTABLE MEDICAL DEVICES AND ORGANS

9

Gastrointestinal system, Dentistry, Maxillofacial and craniofacial replacement, Soft tissue repair, replacement and augmentation, recent advancement and future directions.

# **COURSE OUTCOMES:**

# On successful completion of this course, the student will be able to

CO1: Gain adequate knowledge about artificial organs & transplants

CO2: Get clear idea about implant design and its parameters and solution

CO3: Have in-depth knowledge about blood interfacing implants

CO4: Explain different types of soft tissue replacement and hard tissue replacement

CO5: Assess compatibility and functioning of artificial organs inside the living system.

**TOTAL:45 PERIODS** 

#### **TEXT BOOK**

1. Kopff W.J, Artificial Organs, John Wiley and sons, New York, 1st edition, 1976

# **REFERENCES**

- 1. J D Bronzino, Biomedical Engineering handbook Volume II, (CRC Press / IEEE Press), 2000.
- 2. R S Khandpur, Handbook of Biomedical Instrumentation, Tata McGraw Hill, 2003
- 3. Yannas, I. V, "Tissue and Organ Regeneration in Adults", New York, NY: Springer, 2001. ISBN:9780387952147.
- 4. John Enderle, Joseph D.Bronzino, Susan M.Blanchard, ""Introduction to Biomedical Engineering", Elsevier, 2005.

# CO's-PO's & PSO's MAPPING

| CO's | PO's |   |        | PSO's |      |     |      |     |       |      |              |    |    |   |   |
|------|------|---|--------|-------|------|-----|------|-----|-------|------|--------------|----|----|---|---|
|      | 1    | 2 | 3      | 4     | 5    | 6   | 7    | 8   | 9     | 10   | 11           | 12 | 1  | 2 | 3 |
| 1    | 3    | 3 | 1      | 1     | -    | -   | -    | -   | -     | -    | -            | 1  | -  | - | - |
| 2    | 3    | 3 | un.h.z | 1     | -24  | -   | 15.7 | HIM | i fil | nio. | 11.71        | 1  |    | - | - |
| 3    | 3    | 3 | 1.     | 1     | E-5% | - 1 |      | - 3 | - 1   |      | / <b>-</b> L | 1  | jΕ | - | - |
| 4    | 3    | 3 | 1      | 1     | -    | -   | -    | -   | -     | -    | -            | 1  | -  | - | - |
| 5    | 3    | 3 | 1      | 1     | 1    | -   | -    | -   | -     | -    | -            | 1  | -  | - | - |
| AVg. | 3    | 3 | 1      | 1     | 1    | -   | -    | -   | •     | -    | -            | 1  | -  | • | - |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

# **CBM339**

# **BIOMEDICAL OPTICS AND BIOPHOTONICS**

LT PC 2 0 2 3

# **COURSE OBJECTIVES**

- To acquire knowledge about the physical properties of light and optical properties of tissues
- Learn the design and working principle of various optical components.

- Understand the principles and applications of optical biosensors.
- Understand the engineering and practical applications of optics related to diagnostic and surgical applications.
- Understand the phenomenon of laser tissue interaction and practical applications of optics related to therapeutic applications.

#### UNIT I OPTICAL PROPERTIES

6

Basic principles of light - Reflection - Refraction - Absorption - Polarization - Interference - Coherence, Basic laws of light - Beer Lambert law - Snell's law, Optical properties of tissues - Absorption - Scattering - Anisotropy.

#### UNIT II OPTICAL INSTRUMENTATION

6

Working principle of light sources - Lasers - LEDs, Working principle of optical detectors - Photodiode - Spectrometer - CMOS and CCD cameras - Lens - Optical filters - Optical fibers.

#### UNIT III OPTICAL BIOSENSORS

6

Principles of Optical biosensing - Immobilization of bio-recognition elements, Types of optical biosensor - Fiber optic - Planar waveguide - Evanescent - Interferometric - Surface plasmon resonance - Advantages and disadvantages - Applications.

# UNIT IV APPLICATIONS OF LASERS

6

Diagnostic - Optical coherence tomography, Fluorescence, Raman, Photoacoustic tomography, Laser induced breakdown spectroscopy (LIBS), Hyperspectral imaging.

Surgical - Lasers in dentistry, Dermatology, Ophthalmology.

# UNIT V LASER TISSUE INTERACTION

6

Laser tissue interactions via photochemical, Photothermal, Photomechanical techniques, Photodynamic therapy (PDT) - Oncological and non-oncological applications, Low level laser therapy (LLLT) - Biostimulation applications.

30 PERIODS

# Lab course/Mini projects/Hospital visit - Presentations (30 hours)

Students need to visit Hospitals/Research Institutes/Industry and understand the working and applications of various Optical Techniques in the Biomedical field.

- Lab course/Mini projects on interferometry techniques (Young's double slit, Michelson and Mach-zehnder interferometry).
- Lab course/Mini projects on various spectroscopic techniques (absorption/transmission, scattering and emission spectroscopy).
- Lab course/Mini projects on optical simulations and image processing MATLAB, COMSOL, optical softwares.
- Mini projects on Laser based Biomedical Applications
- Hospital visit to understand the working of Optical Coherence Tomography technique

Hospital visit to understand the clinical applications of Lasers used in ophthalmology, dermatology, dentistry, etc.,

**30 PERIODS** 

**TOTAL: 60 PERIODS** 

# **COURSE OUTCOMES**

# On successful completion of this course, the student will be able to

- CO1: Explain the various physical properties of light and optical properties of tissues.
- CO2: Consolidate the working principles of optical components.
- CO3: Discuss the various applications of biosensors in medicine.
- CO4: Summarize the diagnostic and surgical applications of lasers in medicine.
- CO5: Explain the laser tissue interaction and various therapeutic applications of lasers.

#### **TEXT BOOKS**

- 1. Tuan Vo Dinh, "Biomedical Photonics –Handbook, CRC Press, Bocaraton, 2014.
- 2. Jurgen Popp, Valery V. Tuchin, Arthur Chiou and Stefen Heinemann, Handbook of Biophotonics, Vol 2: Photonics for Healthcare, John Wiley and Sons, 1<sup>st</sup> Edition, 2011.

### **REFERENCES**

- 1. Markolf H. Niemz, "Laser-Tissue Interaction Fundamentals and Applications" Springer, 2007.
- 2. Splinter R and Hooper B. A., "An Introduction to Biomedical Optics", Taylor and Francis, 2006.
- 3. Mark E. Brezinski, "Optical Coherence Tomography: Principles and Applications", Academic Press, 2006.
- 4. Paras N. Prasad, "Introduction to Biophotonics", A. John Wiley and sons, Inc. Publications, 2003.

# **ONLINE RESOURCES**

- 1. https://nptel.ac.in/courses/127/105/127105225/
- 2. https://onlinecourses.nptel.ac.in/noc21\_ge13/preview

# CO's- PO's & PSO's MAPPING

| CO's |   |   |   |   |      |   |     |     |      |      |       |    |     |   | PSO's |  |  |  |
|------|---|---|---|---|------|---|-----|-----|------|------|-------|----|-----|---|-------|--|--|--|
|      | 1 | 2 | 3 | 4 | 5    | 6 | 7   | 8   | 9    | 10   | 11    | 12 | 1   | 2 | 3     |  |  |  |
| 1    | 3 | 2 | 3 | 1 | - 1  | - | -   | _   | -    | - /  | -     | 1  | -/  | - | -     |  |  |  |
| 2    | 3 | 2 | 3 | 1 | -    | - | -   | -   | -    |      | - //  | 1  | -   | - | -     |  |  |  |
| 3    | 3 | 2 | 3 | 1 |      | - | -   | 1   | 1    | _    |       | 1  | _   | - | -     |  |  |  |
| 4    | 3 | 2 | 3 | 1 |      | - |     | 1   | 1    | i.   |       | 1  | _   | - | -     |  |  |  |
| 5    | 3 | 2 | 3 | 1 | E-53 |   | 141 | - 5 | H- F | N-[] | -   _ | 1  | j E | - | -     |  |  |  |
| AVg. | 3 | 2 | 3 | 1 | -    | - | -   | -   | -    | -    | -     | 1  | -   | - | -     |  |  |  |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

#### CBM359 NEURAL ENGINEERING

L T P C 3 0 0 3

# **COURSE OBJECTIVES:**

# The student should be made to:

- To be familiar with the nervous system development
- To be exposed to neuronal diseases and disorders
- To be familiar with nerve reconstruction and repairing

# UNIT I BASICS OF NEURON STRUCTURE AND FUNCTIONS

Nervous system development. Trophic factors, extra cellular matrix components in nervous system development. Neuron: structure – function – classification. Glial cells – myelination. Neurotransmitter – types and functions. Synapses - Transport of materials and impulse in neurons.

# UNIT II BRAIN, BRAIN STEM AND SPINAL CORD

9

9

Brain: structures – lobes – functional areas. Brain stem: structures – functional areas. Spinal cord: structure – functions. Concepts of nuclei – sensory and motor Tracts - Reticular formation. Blood supply to Brain and spinal cord.

#### UNIT III NEURONAL DISEASES AND DISORDERS

C

Neuro degeneration: Degenerative, Demyelinated and injury related disorders associated with nervous system. Wallerian Degeneration. Neuronal plasticity – CNS acting drugs and their pharmacokinetics. Alzheimer's, Parkinson's and Prion diseases

## UNIT IV NEUROPHYSIOLOGY & NEURORADIOLOGY

9

Physiology of nerve conduction. Peripheral nerves – structure & Functions. Synaptic transmission and cellular signaling of Neurons. Electrical activity of the Brain and recording of brain waves. Evoked potentials. Visualization of nervous system. Neuromotor-machine interface: human voluntary motor control system.

#### UNIT V NERVE RECONSTRUCTION AND REHABILITATION

9

Neural plasticity; Neurological dysfunctions - Regeneration of the peripheral nervous system. Neural tissue engineering; Nerve graft; Drug delivery system in CNS. Rehabilitation: Mechanisms for Neuromotor rehabilitation; Robotics and virtual reality in physical therapy; Transcranial magnetic stimulation

# **COURSE OUTCOMES:**

# On successful completion of this course, the student will be able to

- CO1: Explain the basic structure and functions of human nervous system.
- CO2: Understand diseases and degeneration related to nervous system.
- CO3: Analyze visualization and radiological assessment of nervous system.
- CO4: Apply neural tissue engineering for rehabilitation.
- CO5: Discuss about Regeneration of nervous system.

**TOTAL:45 PERIODS** 

#### **TEXT BOOKS**

- 1. Mathews G.G., "Neurobiology", 2nd edition, Blackwell Science, UK, 2000
- 2. Malcom Carpenter, "Textbooks of Neuroanatomy", Mc. Graw hill Edition, 1996

#### **REFERENCES**

- 1. W. Mark Saltzman, "Tissue Engineering Engineering principles for design of replacement organs and tissue", Oxford University Press Inc New York, 2004.
- 2. Park J.B., "ACS Biomaterials Science and Engineering", Plenum Press, 2014. Saunders, 2006.

# **CBM362**

#### PRINCIPLES OF TISSUE ENGINEERING

LTPC 3 0 0 3

# **COURSE OBJECTIVES:**

- To study the cell types and differentiation.
- To study basics about stem cells and its applications
- To understand the methods and design involved in tissue engineering

#### UNIT I INTRODUCTION TO CELL BIOLOGY

9

Cell types - Progenitor cells - Cell growth and differentiation - Cell culture: Expansion - Transfer - Storage and Characterization - Cell signalling molecules - Growth factors - Cell attachment: Differential cell adhesion, Receptor-ligand binding - Cell surface markers.

# UNIT II FUNDAMENTALS OF TISSUE ENGINEERING

9

History and scope of tissue engineering - Tissue organization - Tissue types: Epithelial, Connective - Vascularity and angiogenesis - Wound healing - Extra Cellular Matrix: Matrix molecules and their ligands - Tissue culture – Materials in tissue engineering.

# UNIT III STEM CELLS

9

Definition of stem cells – Types of stem cells – Differentiation, dedifferentiation maturation, proliferation, pleuripotency and immortalization - Sources of stem cells: Haematopoetic – Fetal - cord blood – Placenta - Bone marrow - Primordial germ cells - Cancer stem cells - Induced pleuripotent stem cells.

# UNIT IV ENGINEERING METHODS AND DESIGN

9

Soft lithography - Self-assembled monolayer, Micro contact printing, Micro fluidic patterning - Laminar flow patterning - Cell interaction with Polymer scaffolds and gels - Polymer scaffolds fabrications: Electro spinning - Solvent casting and particulate leaching - Micro fabrication of cell seeded scaffolds.

# UNIT V APPLICATION OF TISSUE ENGINEERING

9

Replacement Engineering: Bone, cartilage, skin, blood, pancreas, kidney, heart valve and liver - Regenerative engineering: Peripheral Nerve regeneration, Cardiac tissue regeneration, Muscle regeneration – Regulation, Commercialization and Patenting.

# **COURSE OUTCOMES:**

At the end of the course, the student should be able to:

CO1: Understand the basic concepts of tissue engineering

CO2: Acquire ability to function on multi-disciplinary teams

**CO3**: Apply the knowledge of professional and ethical responsibility in use of stem cells and gene therapy in creating tissue engineered therapies

CO4: Design and develop different biomaterial in tissue engineering application

CO5: Gain knowledge in research or clinical application on tissue repair/ engineering

**TOTAL:45 PERIODS** 

#### **TEXT BOOK**

- 1. Robert P lanza, Robert Langer, Joseph Vacanti, "Principles of Tissue Engineering", Academic Press, United States, 2020.
- 2. Donglu Shi, Qing Liu, "Tissue Engineering and Nanotheranostics", World Scientific Publications, Singapore, 2018.

#### **REFERENCES**

- 1. Gary E. Wnek, Gary L Browlin, "Encyclopedia of Biomaterials and Biomedical Engineering", Marcel Dekker Inc, New York, 2008.
- 2. R. Lanza, Anthony Atala (Eds), "Essential of Stem Cell Biology", Academic Press, USA, 2013.
- 3. R. Lanza, Anthony Atala, "Handbook of Stem Cells", Academic Press, USA, 2012.

# CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |    |   |     |     |    |   |   | PSO's |  |  |  |
|------|------|---|---|---|---|---|---|----|---|-----|-----|----|---|---|-------|--|--|--|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8  | 9 | 10  | 11  | 12 | 1 | 2 | 3     |  |  |  |
| 1    | 3    | 2 | 3 | 1 | - | - | - | -  | - | -   | -   | 1  | - | - | -     |  |  |  |
| 2    | 3    | 2 | 3 | 1 | - | - | - | -  | - | -   | -   | 1  | - | - | -     |  |  |  |
| 3    | 3    | 2 | 3 | 1 | - | - | - | 1_ | 1 | -   | -   | 1  | - | - | -     |  |  |  |
| 4    | 3    | 2 | 3 | 1 | - | - | - | 1  | 1 | -   | -   | 1  | - | - | -     |  |  |  |
| 5    | 3    | 2 | 3 | 1 | 4 | - | - | -  | - | - / |     | 1  | - | - | -     |  |  |  |
| AVg. | 3    | 2 | 3 | 1 | - | - | - |    |   |     | -// | 1  | - | - | -     |  |  |  |

1 - low, 2 - medium, 3 - high, '-' - no correlation

CBM349 GENETIC ENGINEERING

LTPC

3 0 0 3

# **COURSE OBJECTIVES:**

- To discuss the gene cloning methods and the tools and techniques involved in gene cloning and genome analysis and genomics.
- To explain the heterologous expression of cloned genes in different hosts.

#### UNIT I BASICS OF RECOMBINANT DNA TECHNOLOGY

c

Manipulation of DNA – Restriction and Modification enzymes - Design of linkers and adaptors - Characteristics of cloning and expression vectors - Introduction of recombinant DNA in to host cells and selection methods.

#### UNIT II DNA LIBRARIES

9

Construction of genomic and cDNA libraries, Artificial chromosomes – Bacteria, Yeast - Chromosomal walking.

# UNIT III SEQUENCING AND AMPLIFICATION OF DNA

9

Maxam Gilbert's and Sanger's methods of DNA sequencing – PCR: Inverse PCR, Nested PCR, Allele specific PCR, Hot start PCR, Colony PCR, single cell PCR, Real-time PCR/qPCR – SYBR green assay, Tagman assay, Molecular beacons. Site directed mutagenesis.

# UNIT IV ORGANIZATION AND STRUCTURE OF GENOMES

(

9

Organization and structure of genomes - Genome sequencing methods: Conventional and shotgun genome sequencing methods, Next generation sequencing technologies - Ordering the genome sequence - Genetic maps and Physical maps, STS content based mapping, Hybridization mapping, Optical mapping.

# UNIT V CURRENT STATUS OF GENOME SEQUENCING PROJECTS

Introduction to Functional genomics – Microarrays - Serial Analysis of Gene expression (SAGE), Subtractive hybridization, Comparative Genomics, Proteogenomics, Web resources for Genomics, Applications of genome analysis and genomics.

#### **COURSE OUTCOMES:**

At the end of the course, the student should be able to:

CO1: Would be aware of how to clone commercially important genes.

**CO2**: The students would be aware of how to produce the commercially important recombinant proteins.

CO3: Will be familiarized with gene and genome sequencing techniques

CO4: Will be aware of microarrays, Analysis of Gene expression and proteomics.

CO5: Acquire ability to function on multi-disciplinary teams

**TOTAL:45 PERIODS** 

#### **TEXT BOOK**

- 1. Old RW, Primrose SB, "Principles of Gene Manipulation, An Introduction to Genetic Engineering", Blackwell Science Publications, 1993.
- 2. Principles of Genome Analysis and Genomics by S.B.Primrose and R.M.Twyman, 3rd Ed. (Blackwell Publishing).

#### REFERENCES

- 1. Isil Aksan Kurnaz, "Techniques in Genetic Engineering", CRC Press, 2015.
- 2. Oksana Ableitner, "Introduction to Molecular Biology: Working with DNA and RNA (essentials)", Springer International, 2022.
- 3. Arun K. Shukla, "Proteomics in Biology", Academic Press, 2017.

# CBM348 FOUNDATION SKILLS IN INTEGRATED PRODUCT DEVELOPMENT L T P C 3 0 0 3

# **COURSE OBJECTIVES:**

- To understand the global trends and development methodologies of various types of products and services
- To conceptualize, prototype and develop product management plan for a new product based on the type of the new product and development methodology integrating the hardware, software, controls, electronics and mechanical systems
- To understand requirement engineering and know how to collect, analyze and arrive at requirements for new product development and convert them in to design specification
- To understand system modeling for system, sub-system and their interfaces and arrive at the optimum system specification and characteristics
- To develop documentation, test specifications and coordinate with various teams to validate and sustain up to the EoL (End of Life) support activities for engineering customer

# UNIT I BASICS OF PRODUCT DEVELOPMENT

9

Global Trends Analysis and Product decision - Social Trends - Technical Trends- Economical Trends - Environmental Trends - Political/Policy Trends - Introduction to Product Development Methodologies and Management - Overview of Products and Services - Types of Product Development - Overview of Product Development methodologies - Product Life Cycle - Product Development Planning and Management.

# UNIT II REQUIREMENTS AND SYSTEM DESIGN

9

Requirement Engineering - Types of Requirements - Requirement Engineering - traceability Matrix and Analysis - Requirement Management - System Design & Modeling - Introduction to System Modeling - System Optimization - System Specification - Sub-System Design - Interface Design.

# UNIT III DESIGN AND TESTING

9

**TOTAL: 45 PERIODS** 

Conceptualization - Industrial Design and User Interface Design - Introduction to Concept generation Techniques - Challenges in Integration of Engineering Disciplines - Concept Screening & Evaluation - Detailed Design - Component Design and Verification - Mechanical, Electronics and Software Subsystems - High Level Design/Low Level Design of S/W Program - Types of Prototypes, S/W Testing- Hardware Schematic, Component design, Layout and Hardware Testing - Prototyping - Introduction to Rapid Prototyping and Rapid Manufacturing - System Integration, Testing, Certification and Documentation

# UNIT IV SUSTENANCE ENGINEERING AND END-OF-LIFE (EOL) SUPPORT 9

Introduction to Product verification processes and stages - Introduction to Product Validation processes and stages - Product Testing Standards and Certification - Product Documentation - Sustenance - Maintenance and Repair - Enhancements - Product EoL - Obsolescence Management - Configuration Management - EoL Disposal

## UNIT V BUSINESS DYNAMICS – ENGINEERING SERVICES INDUSTRY 9

The Industry - Engineering Services Industry - Product Development in Industry versus Academia –The IPD Essentials - Introduction to Vertical Specific Product Development processes - Manufacturing/Purchase and Assembly of Systems - Integration of Mechanical, Embedded and Software Systems – Product Development Trade-offs - Intellectual Property Rights and Confidentiality – Security and Configuration Management.

# **COURSE OUTCOMES:**

Upon completion of the course, the students will be able to:

CO1:Define, formulate, and analyze a problem

CO2: Solve specific problems independently or as part of a team

CO3:Gain knowledge of the Innovation & Product Development process in the Business Context

CO4: Work independently as well as in teams

CO5: Manage a project from start to finish

# **TEXT BOOKS:**

- 1. Book specially prepared by NASSCOM as per the MoU.
- 2. Karl T Ulrich and Stephen D Eppinger, "Product Design and Development", Tata McGraw Hill, Fifth Edition, 2011.
- 3. John W Newstorm and Keith Davis, "Organizational Behavior", Tata McGraw Hill, Eleventh Edition, 2005.

## **REFERENCES:**

- 1. Hiriyappa B, "Corporate Strategy Managing the Business", Author House, 2013.
- 2. Peter F Drucker, "People and Performance", Butterworth Heinemann [Elsevier], Oxford, 2004.
- 3. Vinod Kumar Garg and Venkita Krishnan N K, "Enterprise Resource Planning Concepts", Second Edition, Prentice Hall, 2003.
- 4. Mark S Sanders and Ernest J McCormick, "Human Factors in Engineering and Design", McGraw Hill Education, Seventh Edition, 2013

#### CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |    |   |   |   |
|------|------|---|---|---|---|---|---|---|---|----|----|----|---|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 |
| 1    | 3    | 2 | 3 | 1 | - | - | - | - | - | 1  | -  | 1  | - | - | - |
| 2    | 3    | 2 | 3 | 1 | - | - | - | - | - | 1  | -  | 1  | - | - | - |
| 3    | 3    | 2 | 3 | 1 | 1 | - | - | 1 | 1 | 1  | -  | 1  | - | - | - |
| 4    | 3    | 2 | 3 | 1 | 1 | - | - | 1 | 1 | 1  | -  | 1  | - | - | - |
| 5    | 3    | 2 | 3 | 1 | 1 | - | - | 1 | 1 | 1  | -  | 1  | - | - | - |
| AVg. | 3    | 2 | 3 | 1 | 1 | - | - | 1 | 1 | 1  | -  | 1  | - | - | - |

1 - low, 2 - medium, 3 - high, '-' - no correlation

**CBM353** 

#### MEDICAL DEVICE DESIGN

L T PC 3 0 0 3

# **COURSE OBJECTIVES:**

#### The student should be made to:

- Introduce the Medical device standards and requirements.
- Illustrate the design procedure of medical devices.
- Outline the quality assessment in design.
- Describe about the design realization.
- Understand the validation and verification of various medical devices

# UNIT I NEEDS FINDING AND CONCEPT GENERATION

9

Strategic Focus – observation and problem identification – Need statement development. Ideation and Brainstorming – concept screening, concept selection: intellectual property basics – reimbursement basics – business models – prototyping – final concept selection.

Safety and Risk Management - Tools, Documents and Deliverables.

# UNIT II MEDICAL DEVICES STANDARDS AND REQUIREMENTS

9

FDA, Medical devices classification, Medical Devices Directive Process – Harmonized Standards, ISO13485, ISO 14971, IEC60601-1, IEC 62304. Reliability, Concept of failure, Product Design and Development Process.

# UNIT III DESIGN ENGINEERING

9

Hardware Design, Hardware Risk Analysis, Design and Project Metrics, Design for Six Sigma, Software Design, Software Coding, Software Risk Analysis, Software Metrics.

#### UNIT IV TESTING AND VALIDATION

ç

Basis and Types of Testing, Hardware Verification and Data Analysis, Software Verification and Data Analysis.

### UNIT V DESIGN TRANSFER AND MANUFACTURING

c

Transfer to Manufacturing, Hardware Manufacturing, Software Manufacturing, Configuration Management, Intellectual Property-Copy Rights-Trademarks-Trade Secrets. Case Study.

# **COURSE OUTCOMES:**

# On successful completion of this course, the student will be able to

CO1: Define the medical devices standards and requirements.

CO2: Summarise the concept of medical device development.

CO3: Recall the engineering design and project metrics.

CO4: Demonstrate the testing and validation of medical equipment.

CO5: Interpret the various design transfer and manufacturing methods.

**TOTAL: 45 PERIODS** 

## **TEXT BOOKS**

- 1. Zenios, Makower and Yock, —Biodesign The process of innovating medical technologiesl, Canbridge University Press, 2009
- 2. Theodore R. Kucklick , The Medical Device R&D Handbook, Second Edition, CRC Press, 2012
- 3. Peter Ogrodnik, Medical Device Design Innovation from Concept to Market, Elsevier, 2013

#### **REFERENCES**

- 1. Richard C. Fries and Marcel Dekker AG, Handbook of Medical Device Design,2ndedition, 2005.
- 2. Gail Baura, Medical Device Technologies: A Systems Based Overview Using Engineering, Elsevier science, 2012.
- 3. Matthew Bret Weinger, Michael E. Wiklund, Daryle Jean Gardner-Bonneau'Handbook of Human Factors in Medical Device Design',CRC press,2010.
- 4. Jagdish Chaturvedi, Inventing medical devices: A perspective from India, Create Space Independent Publishing Platform, 1st edition, 2015.

# CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |     |    | PSO | 's |   |
|------|------|---|---|---|---|---|---|---|---|----|-----|----|-----|----|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11  | 12 | 1   | 2  | 3 |
| 1    | 3    | 2 | 1 | 1 | 1 | - | - | - | - | 1  | -   | 1  | -   | -  | - |
| 2    | 3    | 2 | 1 | 1 | 1 | - | - | - | - | 1  | -   | 1  | -   | -  | - |
| 3    | 3    | 2 | 1 | 1 | 1 | - | - | 1 | 1 | 1  | -   | 1  | -   | -  | - |
| 4    | 3    | 2 | 1 | 1 | 1 |   | - | 1 | 1 | 1  | -   | 1  | -   | -  | - |
| 5    | 3    | 2 | 1 | 1 | 1 | 1 | - | 1 | 1 | 1  | - / | 1  | -   | -  | - |
| AVg. | 3    | 2 | 1 | 1 | 1 | - |   | 1 | 1 | 1  | -// | 1  | -   | -  | - |

1 - low, 2 - medium, 3 - high, '-' - no correlation

**CBM360** 

# PATIENT SAFETY, STANDARDS AND ETHICS

L T P C 3 0 0 3

## **COURSE OBJECTIVE:**

- To understand the importance of patient safety against electrical hazards
- To explain the patient safety laws and regulations
- To understand the standards and testing of patient
- To know the patient safety specialities in clinical
- To know about the health care organization

#### UNIT -I EFFECTS OF ELECTRICITY

9

Physiological effects of electricity - important susceptibility parameters - microshock - macroshock hazards -patients electrical environment - isolated power system - conductive surfaces

# UNIT II PATIENT SAFETY LAWS AND REGULATIONS

9

Mandatory Reporting systems. Anatomy of a patient safety Law: Compliance Tips, Federal patient safety Legislation Initiatives, Medical Device Reporting, Clinical trials and Adverse-Event

Reporting, Patient safety Goals and standards, The Quality Assessment and performance Improvement rule.

#### UNIT III STANDARDS AND TESTING

9

Guidelines and safety practices to improve patient safety, Electrical safety codes and standards - IEC 60601-1 2005 standard, Basic Approaches to protection against shock, protection equipment design, Electrical safety analyser - Testing the electric system

#### UNIT IV PATIENT SAFETY IN MAIN CLINICAL SPECIALITIES

9

Intensive care and Anesthesiology, safety surgery save lives, Emergency department clinical risk, Obstetric safety patient, Patient safety in internal medicine, Patient safety in Radiology.

## UNIT V MEDICAL ETHICS

9

Definition of Medical ethics, Scope of ethics in medicine, American medical Association code of ethics, CMA code of ethics- Fundamental Responsibilities, The Doctor and The Patient, The Doctor and The Profession, Professional Independence, The Doctor And Society, Case Studies.

TOTAL: 45 PERIODS

## **COURSE OUTCOME:**

# At the end of this course, the student will be able to

CO1:Outline the importance of patient safety against electrical hazards.

CO2:Brief out the patient safety laws and regulations

CO3:explain the standards and testing of patient

CO4:Understand the concept of the patient safety specialities in clinical

CO5:know about various health care organization

## **TEXT BOOKS:**

- 1. John G.Webster, "Medical Instrumentation Application and design", 4th edition, Wiley India PvtLtd, New Delhi, 2015.
- 2. Liam Donaldson, Walter Ricciardi, "Textbook of patient safety and clinical Risk management", Springer.
- 3. Fay A. Rozovsky, James R. Woods, Jr, "The Handbook of Patient Safety Compliance", 2016

## CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |    | PSO | 's |   |
|------|------|---|---|---|---|---|---|---|---|----|----|----|-----|----|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1   | 2  | 3 |
| 1    | 3    | 2 | 1 | 1 | 1 | - | - | 2 | - | 1  | -  | 1  | 1   | -  | - |
| 2    | 3    | 2 | 1 | 1 | 1 | - | - | 2 | - | 1  | -  | 1  | 1   | -  | - |
| 3    | 3    | 2 | 1 | 1 | 1 | - | - | 2 | - | 1  | -  | 1  | 1   | -  | - |
| 4    | 3    | 2 | 1 | 1 | 1 | - | - | 2 | - | 1  | -  | 1  | 1   | -  | - |
| 5    | 3    | 2 | 1 | 1 | 1 | - | - | 2 | - | 1  | -  | 1  | 1   | -  | - |
| AVg. | 3    | 2 | 1 | 1 | 1 | - | - | 2 | - | 1  | -  | 1  | 1   | -  | - |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

# COURSE OBJECTIVES:

## The objective of this course is to enable the student to

- To study the regulation of medical devices, process of development, ethical and quality considerations.
- To learn the various ISO standards of quality and risk management for regulatory purposes
- To explore the process of approval and marketing of medical devices.
- To comprehend the regulatory process for medical devices in India, US, and EU.
- To familiarize with clinical evaluation and investigation of medical devices.

# UNIT I MEDICAL DEVICE REGULATIONS

Ç

History of medical device regulation, regulatory affairs professional's roles, required competencies, medical device classification: scope, definitions, main classifications, Risk based classification, practical examples, labeling of medical devices: definition, elements, risk management, clinical evaluation and labeling, language level and intended users. differentiating medical devices IVDs and combination products from that of pharmaceuticals.

#### UNIT II ISO STANDARDS

9

ISO 13485:2016: Requirements for regulatory purposes: Quality Management Systems, certification process. ISO 14971: Application of Risk management to medical Devices.

## UNIT III IEC, REGULATORY SYSTEMS IN USA & EU

9

IEC international standards and conformity assessment for medical devices, Good submission process, medical device regulatory system in the USA and European Union.

# UNIT IV INDIAN REGULATORY SYSTEM

9

India: Medical device regulatory system: market environment, functions undertaken by DGGI, central government, FDA and state governments, guidance documents, details of key regulators, IMDRF and CDSCO, regulatory overview in India, product registration on conformity assessment, quality system regulation, technical material and labeling requirements, commercial aspects, upcoming regulation changes.

# UNIT V CLINICAL TRIALS AND DIGITAL REGULATIONS

9

Regulatory strategy and competitive advantage, Preclinical and Clinical Trial Design for Medical Devices in India; FDA approved devices, post-market surveillance/vigilance, Digital health regulations: Connected care, intelligent design control, reducing design time and cost with in-silico clinical trials

#### **COURSE OUTCOMES:**

# On completion of the course, the student should be able to:

CO1: Define and explain the basic concepts of medical device regulations.

CO2: Decipher the meaning of ISO standards from a regulatory perspective.

CO3: Explain US-FDA, IEC and European regulations.

CO4: Discuss regulations in India

CO5: Explain the regulatory aspects of clinical trials and digital alternatives

**TOTAL:45 PERIODS** 

#### **TEXTBOOKS:**

1. Medical Regulatory Affairs: An International Handbook for Medical Devices and Healthcare Products, 3rd Edition, Taylor & Francis Group, 2021

#### REFERENCES:

- 1. Reliable Design of Medical Devices, Second Edition by Richard Fries, CRC Press, 2006
- 2. Medical Device Quality Assurance and Regulatory Compliance by Richard C Fries, CRC Press, 1998.
- 3. Product Safety in the European Union by GaborCzitan, Attila Gutassy, Ralf Wilde, TUVRheinlandAkademia, 2008.

#### **ONLINE RESOURCES**

- Regulatory requirements for medical devices including in vitro diagnostics in India (Version 2.0), IIT Madras, Prof. Arun B.Ramteke, Prof. Aseem Sahu, Prof. Malay Mitra. https://nptel.ac.in/courses/127106136
- 2. World Health Organization. (2003). Medical device regulations: global overview and guiding principles. World Health Organization. <a href="https://apps.who.int/iris/handle/10665/42744">https://apps.who.int/iris/handle/10665/42744</a>
- 3. FOOD AND DRUG ADMINISTRATION USA,

http://www.fda.gov/medicaldevices/deviceregulationandguidance/default.htm

#### CO's- PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |     |    | PSO' | S |   |
|------|------|---|---|---|---|---|---|---|---|----|-----|----|------|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11  | 12 | 1    | 2 | 3 |
| 1    | 3    | 2 | 1 | 1 | 1 | - | - | 2 | - | 1  | -   | 1  | 1    | - | - |
| 2    | 3    | 2 | 1 | 1 | 1 | - | - | 2 | - | 1  | -   | 1  | 1    | - | - |
| 3    | 3    | 2 | 1 | 1 | 1 | - | - | 2 | - | 1  | -   | 1  | 1    | - | - |
| 4    | 3    | 2 | 1 | 1 | 1 | - | - | 2 | - | 1  | -   | 1  | 1    | - | - |
| 5    | 3    | 2 | 1 | 1 | 1 |   | - | 2 | - | 1  | - / | 1  | 1    | - | - |
| AVg. | 3    | 2 | 1 | 1 | 1 |   |   | 2 | - | 1  | /   | 1  | 1    | - | - |

1 - low, 2 - medium, 3 - high, '-' - no correlation

CBM372 MEDICAL INNOVATION AND ENTREPRENEURSHIP

LTPC 3 0 0 3

## **COURSE OBJECTIVES:**

# The student should be made to:

- · To learn fundamentals of entrepreneurship
- To apply the methods of entrepreneurship in medical field
- To evaluate the medical devices and market trends

## UNIT I CREATIVITY, INNOVATION AND IPR

9

The role of creativity – The innovation Process – Sources of New Ideas – Methods of Generating Ideas – Creative Problem Solving – Entrepreneurial Process. Patents – Copyright - Trademark-Geographical indications – Ethical and social responsibility and challenges.

## UNIT II SCOPE FOR BIOMEDICAL ENGINEERING ENTREPRENEURSHIP

Definition— Characteristics and Functions of an Entrepreneur — Common myths about entrepreneurs. Fundamentals and models, Advancements in biomedical field, Supporting societies and professional activities. Impact of innovation in medical devices. Case study.

## UNIT III NEW VENTURE

Developing an Effective Business Model: The Importance of a Business Model – Starting a small-scale industry - Components of an Effective Business Model. Assessing the venture, establish venture invention, market research, presenting the business plan. Forms of Business Organization: Sole Proprietorship – Partnership – Limited liability partnership - Joint Stock Companies and Cooperatives. case study.

## UNIT IV FINANCING THE NEW VENTURE AND GLOBALIZATION 9

Evaluating Various options and future investments – Medical Device entrepreneurship incentives and subsidies – Determining Financial Needs – Sources of Financing: support for product development, funding agencies, collaborative initiatives, and angel investors. Impact of Globalization: Medical product manufacturing, marketing, leadership, quality management. Case studies.

#### UNIT V MARKETING FUNCTION

9

9

Industry Analysis – Competitor Analysis – Marketing Research for the New Venture – Defining the Purpose or Objectives – Gathering Data from Secondary Sources – Gathering Information from Primary Sources – Analyzing and Interpreting the Results – The Marketing Process. Case study.

## **COURSE OUTCOMES:**

# On successful completion of this course, the student will be able to

- CO1: Describe the role of biomedical engineers in entrepreneurship
- CO2: Interpret the background for biomedical engineers in entrepreneurship
- CO3: Acquire the skills and techniques required towards innovation
- CO4: Categorize the resources and funding agencies and judge the right product based on market needs
- CO5: Compile and quantify the opportunities and challenges

**TOTAL: 45 PERIODS** 

## **TEXT BOOKS**

- **1.** Jen-Shih Lee "Biomedical Engineering Entrepreneurship", World Scientific Publishing, USA. 2010
- 2. Vasant Desai, —The Dynamics of Entrepreneurial Development and Managementll, Himalaya Publishing House, 2010.

# **REFERENCES**

- 1. Brant Cooper, Patrick Vlaskovits, "The Lean Entrepreneur", Wiley, 2nd edition, New Jersy, 2016.
- 2. Nathan Furr, Jeff Dyer, "The Innovator's Method: Bringing the Lean Start-up into Your Organization", Harvard Business Press, Boston, 2014.
- 3. Donald F.Kuratko and Richard M. Hodgetts, "Entrepreneurship", South-Western.
- 4. Gupta S.L., Arun Mittal, "Entrepreneurship Development", International Book House, 2012.
- 5. Prasanna Chandra, "Projects- Planning, Analysis, Financing, Implementation and reviewl, TATA McGraw Hill, 2012.
- 6. Sudha G. S., "Management and Entrepreneurship Development", Indus Valley Publication, 2009.

#### CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |    | PSO' | S |   |
|------|------|---|---|---|---|---|---|---|---|----|----|----|------|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1    | 2 | 3 |
| 1    | 3    | 2 | 1 | 1 | 1 | - | - | 2 | - | 1  | -  | 1  | -    | - | - |
| 2    | 3    | 2 | 1 | 1 | 1 | - | - | 2 | - | 1  | -  | 1  | -    | - | - |
| 3    | 3    | 2 | 1 | 1 | 1 | - | - | 2 | - | 1  | -  | 1  | -    | - | - |
| 4    | 3    | 2 | 1 | 1 | 1 | - | - | 2 | - | 1  | -  | 1  | -    | - | - |
| 5    | 3    | 2 | 1 | 1 | 1 | - | - | 2 | - | 1  | -  | 1  | -    | - | - |
| AVg. | 3    | 2 | 1 | 1 | 1 | - | - | 2 | - | 1  | -  | 1  | -    | ı | - |

1 - low, 2 - medium, 3 - high, '-' - no correlation

CBM363 RAPID PROTOTYPING L T P C 3 0 0 3

## **COURSE OBJECTIVES:**

#### The student should be made to:

- Learn the need and fundamentals of rapid prototyping
- Understand the concepts of design and assembling of various parts
- Study the process and material selection for UV and Laser based AM
- Investigate the process of fused deposition moulding and sheet lamination
- Explore droplet formation and beam deposition process

## UNIT I INTRODUCTION

g

Overview –Need -Development of Additive Manufacturing Technology -Principle – AM Process Chain-Classification –Rapid Prototyping-Rapid Tooling –Rapid Manufacturing – Applications-Benefits –Case studies.

# UNIT II DESIGN FOR ADDITIVE MANUFACTURING

9

Design tools: Data processing -CAD model preparation —Part orientation and support structure generation —Model slicing —Tool path generation-Design for Additive Manufacturing: Concepts and objectives-AM unique capabilities —DFAM for part quality improvement-Customised design and fabrication for medical applications.

## UNIT III PHOTO POLYMERIZATION AND POWDER BED FUSION PROCESSES 9

Photo polymerization: SLA-Photo curable materials –Process -Advantages and Applications. Powder Bed Fusion: SLS-Process description –powder fusion mechanism –Process Parameters – Typical Materials and Application. Electron Beam Melting.

#### UNIT IV EXTRUSION BASED AND SHEET LAMINATION PROCESSES 9

Extrusion Based System: FDM-Introduction –Basic Principle –Materials –Applications and Limitations –Bio extrusion. Sheet Lamination Process: LOM-Gluing or Adhesive bonding –Thermal bonding.

## UNIT V PRINTING PROCESSES AND BEAM DEPOSITION PROCESSES

Droplet formation technologies –Continuous mode –Drop on Demand mode –Three Dimensional Printing –Advantages –Bioplotter -Beam Deposition Process: LENS-Process description –Material delivery –Process parameters –Materials –Benefits –Applications.

## **COURSE OUTCOMES:**

# On successful completion of this course, the student will be able to

CO1: Demonstrate the basics of Additive manufacturing.

CO2: Design and assembly of various parts for the desired task.

CO3: Explain the process involved in laser and UV based AM

CO4: Illustrate the process of fused deposition moulding and sheet lamination

CO5: Support design and manufacturing, case studies relevant to mass customized manufacturing, and some of the important research challenges associated with AM and its data processing tools.

**TOTAL:45 PERIODS** 

#### **TEXT BOOKS**

- **1.** Chua C.K., Leong K.F., and Lim C.S., Rapid prototyping: Principles and applications, World Scientific Publishers, Third edition, 2010.
- **2.** Liou L.W. and Liou F.W., Rapid Prototyping and Engineering applications: A tool box for prototype development, CRC Press, 2007.
- 3. Kamrani A.K. and Nasr E.A., Rapid Prototyping: Theory and practice, Springer, 2006.

#### **REFERENCES**

- 1. Ian Gibson, David W.Rosen, Brent Stucker, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, Springer, 2010.
- 2. Tom Page Design for Additive Manufacturing, LAP Lambert Academic Publishing, 2012.
- 3. Hilton, P.D. and Jacobs, P.F., Rapid Tooling: Technologies and Industrial Applications, CRC press, 2005.

## CO's-PO's & PSO's MAPPING

| CO's | PO's |   |    |   |   |   |   |   |   |     |     |    | PSO' | S |   |
|------|------|---|----|---|---|---|---|---|---|-----|-----|----|------|---|---|
|      | 1    | 2 | 3  | 4 | 5 | 6 | 7 | 8 | 9 | 10  | 11  | 12 | 1    | 2 | 3 |
| 1    | 3    | 2 | 1  | 1 | 1 | - | - | - | - | -   | -   | 1  | -    | - | - |
| 2    | 3    | 2 | 1  | 1 | 1 | - | - | - | - | -   | -   | 1  | -    | - | - |
| 3    | 3    | 2 | 1  | 1 | 1 |   | - | T | - | -   | -   | 1  | -    | - | - |
| 4    | 3    | 2 | 1  | 1 | 1 | - | - | : | - | -   | -/  | 1  | -    | - | - |
| 5    | 3    | 2 | _1 | 1 | 1 | - | - |   | - | -   | - / | 1  | -    | - | - |
| AVg. | 3    | 2 | 1  | 1 | 1 |   | - | 4 | - | - 4 | /-  | 1  | /    | - | - |

1 - low, 2 - medium, 3 - high, '-' - no correlation

**CBM343** 

# **CLINICAL ENGINEERING**

LTPC 3 003

# **COURSE OBJECTIVES:**

- This course will provide a basic understanding of the clinical engineering profession, qualifications, roles, activities, and expectations.
- This course will enhance students to practice medical equipment and analyze challenges with their healthcare technology.
- This course will engage the students to work as a team to address problems and errors in medical devices.
- This course will help students to design better medical devices with computerized approaches.
- This course will expose students to explore the Health Technology Management systems with medical devices and supportive services with advanced application.

## UNIT - I INTRODUCTION

Clinical engineering: Definition, Evolution, Role, Responsibilities, Functional status, History of clinical engineering and Technology in Health Care System, Enhancing patient safety.

## UNIT – II MEDICAL TECHNOLOGY MANAGEMENT PRACTICES

9

Strategic Medical Technology Planning, Scope , Clinical necessity operational support, strategic planning process – Technology assessment: Technology audit, Budget strategies, Prerequist for medical technology assessment – Management Practice for Medical Equipment - Device evaluation, Risk reduction, Asset management, ESHTA.

## UNIT – III ESSENTIAL HEALTH CARE TECHNOLOGY PACKAGE (EHTP)

9

Introduction – Health care technology management – Package development: Methodology, Logical framework, Implementation, Information promotion and dissemination – EHTP Justification – EHTP matrix – EHTP advantages – Impact Analysis.

#### UNIT – IV CLINICAL ENGINEERING PROGRAM INDICATOR

9

Clinical engineering: program services, Program database – Clinical Engineering Program management, Program indicator, Managing clinical engineering performance using program indicators – Indicator management process.

#### UNIT – V ADVANCED TECHNOLOGY FOR PATIENT SAFETY

9

Factors Contributing to Medical Errors: Heath Care Reimbursement, Health Care Failure Mode and Effect Analysis (HFMEA), Patient Safety Best Practices Model: Bar coding, Computerized Physician Order Entry (CPOE), and Clinical data repositories – Process analysis, Methodology. Computerized medical equipment management systems.

# **TOTAL: 45 PERIODS**

## **COURSE OUTCOMES:**

#### At the end of the course the student will be able to:

**CO1:**State the role of clinical engineers and discuss the basic concepts of medical and healthcare technology

CO2: Give the program and framework to recognize the errors of medical equipment

CO3: State the issues or errors in patient safety and formulate patient safety package system

CO4: Define the problem precisely and examine the possible issues using program indicators.

CO5: Demonstrate computer based equipment with automated system by using CPOE method.

## TEXT BOOKS:

- 1. Ernesto ladanza, Joseph Dyro, "Clinical Engineering Handbook", Elsevier Academic Press, 2014
- 2. Robert Miniati, "Clinical Engineering from Devices to Systems", Academic Press, 23-Dec-2015 - Technology & Engineering

CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |    | PSO' | S |   |
|------|------|---|---|---|---|---|---|---|---|----|----|----|------|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1    | 2 | 3 |
| 1    | 3    | 2 | 1 | - | - | 1 | - | 1 | - | -  | -  | -  | -    | - | - |
| 2    | 3    | 2 | 1 | - | - | 1 | - | 1 | - | -  | -  | -  | -    | - | - |
| 3    | 3    | 2 | 1 | - | - | 1 | - | 1 | - | -  | -  | -  | -    | - | - |
| 4    | 3    | 2 | 1 | - | - | 1 | - | 1 | - | -  | -  | -  | -    | - | - |
| 5    | 3    | 2 | 1 | - | • | 1 | - | 1 | - | -  | -  | -  | -    | - | - |
| AVg. | 3    | 2 | 1 | - | • | 1 | - | 1 | - | -  | -  | -  | -    | - | - |

1 - low, 2 - medium, 3 - high, '-' - no correlation

LTPC 3 0 0 3

## **COURSE OBJECTIVES:**

## To Study about:

- To introduce the relevance of this course to the existing technology through demonstrations, case studies, simulations, contributions of scientist, national/international policies with a futuristic vision along with socio-economic impact and issues
- The student should be made to understand the principles, practices and areas of application in Hospital management.

#### UNIT I OVERVIEW OF HOSPITAL ADMINISTRATION

9

Distinction between Hospital and Industry, Challenges in Hospital Administration –Hospital Planning – Equipment Planning - AMC – Functional Planning - Current Issues in Hospital Management - Telemedicine - Bio-Medical Waste Management

## UNIT II HUMAN RESOURCE MANAGEMENT IN HOSPITAL

9

Principles of HRM – Functions of HRM – Profile of HRD Manager – Tools of HRD –Human Resource Inventory – Manpower Planning. Different Departments of Hospital, Recruitment, Selection, Training Guidelines –Methods of Training – Evaluation of Training – Leadership grooming and Training, Promotion – Transfer.

## UNIT III MARKETING RESEARCH & CONSUMER BEHAVIOUR

9

Marketing information systems - assessing information needs, developing & disseminating information - Market Research process - Other market research considerations - Consumer Markets & Consumer Buyer behaviour - Model of consumer behaviour - Types of buying decision behaviour - The buyer decision process - Model of business buyer behaviour - Major types of buying situations - global marketing in the medical sector - WTO and its implications.

## UNIT IV HOSPITAL INFORMATION SYSTEMS & SUPPORTIVE SERVICES 9

Management Decisions and Related Information Requirement - Clinical Information Systems - Administrative Information Systems - Support Service Technical Information Systems - Medical Transcription, Medical Records Department - Central Sterilization and Supply Department - Pharmacy- Food Services - Laundry Services.

## UNIT V QUALITY AND SAFETY ASPECTS IN HOSPITAL

9

Quality system – Elements, implementation of quality system, Documentation, Quality auditing, International Standards ISO 9000 – 9004 – Features of ISO 9001 – ISO 14000 – ISO 13485, Environment Management Systems. NABA, JCI, NABL, NABH. Security – Loss Prevention – Fire Safety – Alarm System – Safety Rules. Health Insurance & Managing Health Care - Medical Audit – Hazard and Safety in a hospital Setup.

#### **COURSE OUTCOMES:**

# On successful completion of this course, the student will be able to

CO1: Explain the principles, practices and areas of application in Hospital Management.

CO2: Understand the biomedical waste disposal concept.

CO3: Explain the importance of supportive services.

CO4: Comprehend the quality aspect specified by the international standards.

CO5: Knowledge on Hospital safety.

**TOTAL:45 PERIODS** 

#### **TEXT BOOKS**

- 1. R.C.Goyal, "Hospital Administration and Human Resource Management", PHI-4th Edition, 2006.
- 2. G.D.Kunders. "Hospitals Facilities Planning and Management". TMH. New Delhi 5th edition Reprint 2007.
- 3. Cesar A.Caceres and Albert Zara, "The Practice of Clinical Engineering", Academic Press, New York.1977

#### **REFERENCES**

- 1. Peter Berman, "Health Sector Reform in Developing Countries", Harvard University Press,
- 2. Norman Metzger, "Handbook of Health Care Human Resources Management", Aspen Publication Inc. Rockville, Maryland, USA, 2nd Edition 1990.
- 3. Arnold D. Kalcizony & Stephen M.Shortell, "Health Care Management", 6th Edition, 2011.
- 4. Blane, David, Brunner, Eric, "Health and Social organization: Towards a health policy for the 21st century", Calrendon Press, 1994.

## CO's- PO's & PSO's MAPPING

| CO's | PO's |   |   |       |     |    |   |   |   |    |    |    | PSO' | S |   |
|------|------|---|---|-------|-----|----|---|---|---|----|----|----|------|---|---|
|      | 1    | 2 | 3 | 4     | 5   | 6  | 7 | 8 | 9 | 10 | 11 | 12 | 1    | 2 | 3 |
| 1    | 3    | 2 | 1 | J- 4. | W   | -1 | - | 1 | - | 1  | 4  |    | - 1  | - | - |
| 2    | 3    | 2 | 1 | -     | 7./ | 1  | - | 1 | - | 1  | Y  | *  | -    | - | - |
| 3    | 3    | 2 | 1 |       | 7 - | 1  | - | 1 | - | 1  | -  | -  | -    | - | - |
| 4    | 3    | 2 | 1 |       | -   | 1  | - | 1 |   | 1  | 1  | -  | -    | - | - |
| 5    | 3    | 2 | 1 | -     | -   | 1  | - | 1 | - | 1  | 1  | -  | -    | - | - |
| AVg. | 3    | 2 | 1 | -     | -   | 1  | _ | 1 | - | 1  | 1  | -  | -    | - | - |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

**CBM358** 

# MEDICAL WASTE MANAGEMENT

LTPC 3 0 0 3

## **COURSE OBJECTIVES:**

# The student should be made to:

- Understand the hazardous materials used in hospital and its impact on health
- Understand various waste disposal procedures and management.

#### HEALTHCARE HAZARD CONTROL AND UNDERSTANDING ACCIDENTS **UNIT I**

Healthcare Hazard Control: Introduction, Hazard Control, Hazard Control Management, Hazard Control Responsibilities, Addressing Behaviors, Hazard Control Practice, Understanding Hazards, Hazard Analysis, Hazard Control and Correction, Personal Protective Equipment, Hazard Control Committees, Hazard Control Evaluation, Hazards, System Safety, Ergonomics. Understanding Accidents: Accident Causation Theories, Human Factors, Accident Deviation Models, Accident Reporting, Accident Investigations, Accident Analysis, Organizational Functions That Support Accident Prevention, Workers' Compensation, Orientation, Education, and Training.

#### **UNIT II BIOMEDICAL WASTE MANAGEMENT**

9

Biomedical Waste Management: Types of wastes, major and minor sources of biomedical waste, Categories and classification of biomedical waste, hazard of biomedical waste, need for disposal of biomedical waste, waste minimization, waste segregation and labeling, waste handling, collection, storage and transportation, treatment and disposal.

## UNIT III HAZARDOUS MATERIALS

Hazardous Materials: Hazardous Substance Safety, OSHA Hazard Communication Standard, DOT Hazardous Material Regulations, Healthcare Hazardous Materials, Medical Gas Systems, Hazardous Waste Operations and Emergency Response Standard, Respiratory Protection.

#### UNIT IV FACILITY SAFETY

q

9

Facility Safety: Introduction, Facility Guidelines Institute, Administrative Area Safety, Slip, Trip, and Fall Prevention, Safety Signs, Colors, and Marking Requirements, Scaffolding, Fall Protection, Tool Safety, Machine Guarding, Compressed Air Safety, Electrical Safety, Control of Hazardous Energy, Permit Confined Spaces, OSHA Hearing Conservation Standard, Heating, Ventilating, and Air-Conditioning Systems, Assessing IAQ, Landscape and Grounds Maintenance, Fleet and Vehicle Safety.

## UNIT V INFECTION CONTROL, PREVENTION AND PATIENT SAFETY

9

Healthcare Immunizations, Centers for Disease Control and Prevention, Disinfectants, Sterilants, and Antiseptics, OSHA Bloodborne Pathogens Standard, Tuberculosis, Healthcare Opportunistic Infections, Medical Waste. Patient Safety: An Organizational Function, Errors and Adverse Events, Safety Cultures, Patient-Centered Healthcare, Quality Improvement Tools and Strategies, Healthcare-Associated Infections, Medication Safety.

#### **COURSE OUTCOMES:**

# On successful completion of this course, the student will be able to

- CO1: Analyse various hazards, accidents and its control
- CO2: Design waste disposal procedures for different biowastes
- CO3: Categorise different biowastes based on its properties
- CO4: Design different safety facility in hospitals
- CO5: Propose various regulations and safety norms

**TOTAL:45 PERIODS** 

#### **TEXT BOOKS**

- Anantpreet Singh, Sukhjit Kaur, Biomedical Waste Disposal, Jaypee Brothers Medical Publishers (P) Ltd (2012)
- 2. Tweedy, James T., Healthcare hazard control and safety management-CRC Press\_Taylor and Francis (2014).

## **REFERENCES**

- 1. R.C.Goyal, "Hospital Administration and Human Resource Management", PHI Fourth Edition, 2006
- 2. V.J. Landrum. "Medical Waste Management and disposal". Elsevier. 1991

## CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |    | PSO' | S |   |
|------|------|---|---|---|---|---|---|---|---|----|----|----|------|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1    | 2 | 3 |
| 1    | 3    | 2 | 1 | - | - | 1 | 2 | 1 | - | -  | -  | 1  | -    | - | - |
| 2    | 3    | 2 | 1 | - | - | 1 | 2 | 1 | - | -  | -  | 1  | -    | - | - |
| 3    | 3    | 2 | 1 | - | - | 1 | 2 | 1 | - | -  | -  | 1  | -    | - | - |
| 4    | 3    | 2 | 1 | - | - | 1 | 2 | 1 | - | -  | -  | 1  | -    | - | - |
| 5    | 3    | 2 | 1 | - | - | 1 | 2 | 1 | - | -  | -  | 1  | -    | - | - |
| AVg. | 3    | 2 | 1 | - | - | 1 | 2 | 1 | - | -  | -  | 1  | -    | - | - |

1 - low, 2 - medium, 3 - high, '-' - no correlation

## **CBM345**

## **ECONOMICS AND MANAGEMENT FOR ENGINEERS**

LTPC 3 003

#### **COURSE OBJECTIVE:**

- To understand the concepts of Economics with respect to the demand and supply analysis.
- To analyze the theory of production and the analysis of the cost parameter by using the Elasticity.
- To manage and plan the situation with the help of the available strategies to support the decision making process.

## UNIT I INTRODUCTION TO ECONOMICS

9

Introduction to Economics – Scope of Economics – Positive and Normative Science – Methodology of Economics – Economic Laws - Economy and its basic problems: Economy and its working – Kinds of economy systems – Basic problems of economy.

## UNIT II DEMAND AND SUPPLY ANALYSIS

9

The Law of Demand – The Law of Supply – Elasticities of Demand and Supply: Price Elasticity of Demand - Price Elasticity and Consumption Expenditure- Cross Elasticity of Demand – Income Elasticity of Demand – The Elasticity of Price Expectations – The uses of Elasticity – Price Elasticity of Supply.

# UNIT III THEORY OF PRODUCTION AND ANALYSIS OF COST

9

Meaning of Production – Production concepts – Production Function – Laws of Production – Cost Concepts - Short-Run Cost Output Relations – Long Run Cost output relations – Economics of Scale.

## UNIT IV INTRODUCTION TO MANAGEMENT

9

Management: Overview - Management Defined - Managerial skills - Managerial roles - Management responsibilities - Management functions. Evolution of Management: Classical approaches to Management - Contemporary Management Perspectives.

#### UNIT V PLANNING

9

TOTAL: 45 PERIODS

Planning and Forecasting: Importance of Planning – Principles of effective Planning – Planning process – Types of Plans. Strategic Planning: Strategic Planning process – Rational decision making.

# COURSE OUTCOMES:

Upon completion of the course, students will be able to:

**CO1**:Summarize how to solve economics principles to solve economic problems in engineering discipline by satisfying the economic laws.

**CO2**:Discuss the demand and supply process for a market analysis using Price elasticity, Cross elasticity and Income elasticity.

CO3:Interpret short run and long run costs in the process of production for carrying out a business.

**CO4**:Apply managerial skills to make decisions and solve problems for achieving organizational objectives.

**CO5**:Express the principles of effective planning for survival and success of all organizations using standing and single use planning methods.

#### **TEXT BOOKS:**

- 1. D.N.Dwivedi, "Principles of Economics", Second Edition, Vikas Publishing House (P) Limited, New Delhi, 2012.
- 2. J.S.Chandan, "Management Concepts and Strategies", Vikas Publishing House (P) Limited, New Delhi. 2003.

#### REFERENCES:

- 1. RanbirSingh, "Principles of Engineering Economics and Management", S.K.Kataria& Sons, New Delhi, 2013.
- 2. Manish Varshney and VidhanBanerjee, "Engineering and Managerial Economics", First Edition, CBS Publishers and Distributors Pvt. Ltd., 2015.

#### CO's-PO's & PSO's MAPPING

| CO's | PO's |     |   |    |      |     |   |     |      |      |    |    | PSO' | S |   |
|------|------|-----|---|----|------|-----|---|-----|------|------|----|----|------|---|---|
|      | 1    | 2   | 3 | 4  | 5    | 6   | 7 | 8   | 9    | 10   | 11 | 12 | 1    | 2 | 3 |
| 1    | 3    | -   | 2 | -  |      | -   | 1 | -   | -    | - // | 1  | 1  | 1    | - | - |
| 2    | 3    | -   | 2 |    | -    |     | 1 |     | -    |      | 1  | 1  | 1    | - | - |
| 3    | 3    | -   | 2 | -  | - '  |     | 1 | - 1 | / -E | -    | 1  | 1  | 1    | - | - |
| 4    | 3    | -   | 2 | -  | 7-1  | - 1 | 1 | -   | -    | 14   | 1  | 1  | 1    | - | - |
| 5    | 3    | -   | 2 | -  | 35.1 | ۲.  | 1 | -   | -    | -4   | 1  | 1  | 1    | - | - |
| AVg. | 3    | -// | 2 | -, | 7    | -   | 1 | -   | 4-   | -    | 1  | 1  | 1    | - | - |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

CBM336

# **BIOSTATISTICS**

LT PC 2 0 23

#### **COURSE OBJECTIVES**

The objective of this course is to enable the student to

- Understand the statistical methods for the data.
- Comprehend the fundamental of mathematical and statistical theory in the application of biomedical field.
- Apply the regression and correlation analyze in the physiological data.
- Understand the source of Medical data
- Understand the Visual analytics of Healthcare data.

#### UNIT I INTRODUCTION

6

Introduction, Some basic concepts, Measurement and Measurement Scales, Simple random sample, Computers and medical data analysis, Introduction to probability, likelihood & odds, distribution variability.

## UNIT II STATISTICAL PARAMETERS

6

Statistical parameters p-values, computation, level chi square test and distribution and hypothesis testing -single population proportion, difference between two population proportions, single population variance, ratio of two population variances and tests of goodness of fit, tests of independence, tests of homogeneity.

## UNIT III REGRESSION AND CORRELATION ANALYSIS

6

Introduction, regression model, sample regression equation, evaluating the regression equation,

using the regression equation, correlation model, correlation coefficient.

#### UNIT IV INTERPRETING DATA

6

Interpreting life tables clinical trials, epidemical reading and interpreting of epidemical studies, application in community health.

## UNIT V ANALYSIS OF VARIANCE

6

META analysis for research activities, purpose and reading of META analysis, kind of data used for META analysis, completely randomized design, randomized complete block design, repeated measures design, factorial experiment.

30 PERIODS 30 PERIODS

LAB COMPONENT

Students need to use appropriate software tools to implement the following,

- 1. Identify quantitative, ordinal, and categorical measurements from the data
- 2. Construct and interpret stem plots and histograms,
- 3. Construct and interpret frequency tables, calculate and interpret means, standard deviations, medians, and quartiles
- 4. Calculate and interpret Normal probabilities and values.
- 5. Calculate and interpret confidence intervals for means
- 6. Calculate hypothesis test means and power or sample size estimates when testing means.
- 7. Tests of goodness of fit tests of independence, tests of homogeneity
- 8. Calculate the regression equation
- 9. Calculate correlation coefficient
- 10. Interpreting life tables clinical trials
- 11. Calculate and interpret relative risks and confidence intervals for relative risks
- 12. Data can be downloaded from following or from any known data source https://hbiostat.org/data/

https://biolincc.nhlbi.nih.gov/teaching/

https://libguides.denison.edu/c.php?g=776168&p=5661119

https://guides.lib.berkeley.edu/publichealth/healthstatistics/rawdata

**TOTAL: 60 PERIODS** 

## **COURSE OUTCOMES**

## Upon successful completion of the course, students will be able to

- CO1: Define the new and existing statistical methodology for their research problem.
- CO2: Explain p- values for different statistical tests.
- CO3: Analyze the biomedical research data and be able to report the study results.
- CO4: Describe the various sources of medical data
- CO5: Demonstrate the visual analytical procedure of Medical Data.

# **TEXT BOOKS**

- 1. Wayne W. Daniel, Biostatistics-A Foundation for Analysis in the Health Sciences, John Wiley & Sons Publication, 10th Edition, 2013.
- 2. Peter Armotage, Geoffrey Berry and J.N.S.Mathews, Statistical methods in Medical Research, Wiley-Blackwell, 4<sup>th</sup> Edition, 2001.
- 3. Bernard Rosner. Fundamentals of biostatistics. Nelson Education, 8<sup>th</sup> Edition 2015 ISBN: 978-1-305-26892-0
- 4. Editors: Chandan K. Reddy, Charu C. Agarwal, Healthcare Data Analytics, CRC Press,

#### **REFERENCES**

- 1. Marcello Pagano and Kimberlee Gauvreu, Principles of Biostatistics, Chapman and Hall/CRC, 2<sup>nd</sup>Edition, 2018.
- 2. Ronald N Forthofer and EunSul Lee, Introduction to Biostatistics, Academic Press, 1<sup>st</sup> Edition, 2014.
- 3. Animesh K. Dutta, Basic Biostatistics and its Applications, New Central Book Agency, 1<sup>st</sup> Edition, 2006.

#### **ONLINE RESOURCES**

- 1. https://nptel.ac.in/courses/106/107/106107220/
- 2. https://onlinecourses.nptel.ac.in/noc21 cs45/preview

## CO's-PO's & PSO's MAPPING

| CO's | PO's |   |     |   |         |   |      |   |   |     |     |    | PSO' | S |   |
|------|------|---|-----|---|---------|---|------|---|---|-----|-----|----|------|---|---|
|      | 1    | 2 | 3   | 4 | 5       | 6 | 7    | 8 | 9 | 10  | 11  | 12 | 1    | 2 | 3 |
| 1    | 3    | 2 | -   | - | , rt. \ | 1 | -    | 1 | 1 | -// | 1   | 1  | -    | - | - |
| 2    | 3    | 2 | -   | - | - '     | 1 | 7-14 | 1 | 1 | /   | 1   | 1  | -    | - | - |
| 3    | 3    | 2 | -   | - | ъ.      | 1 | J- 1 | 1 | 1 |     | 1   | 1  | -    | - | - |
| 4    | 3    | 2 | -   |   | · •     | 1 | -    | 1 | 1 | -   | . 1 | 1  | -    | - | - |
| 5    | 3    | 2 | A-1 | - | 1       | 1 | -    | 1 | 1 | -   | 1   | 1  |      | - | - |
| AVg. | 3    | 2 | -   | - | 7/      | 1 | -    | 1 | 1 | -   | 1   | 1  |      | - | - |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

**CBM347** 

# FORENSIC SCIENCE IN HEALTHCARE

LT PC 3 0 0 3

# **COURSE OBJECTIVE:**

# By the end of the course each student will be familiar with:

- the history of the forensic sciences and its place in popular culture
- the roles of different types of professionals involved in evaluating a crime scene and the collected evidence
- forensic microscope and Anthropology
- The Blood stain identification
- the methodology of collecting & interpreting data for fingerprint application

# UNIT I BASICS OF FORENSIC SCIENCE

C

Forensic science, Introduction to the Forensic Sciences, History and Development of Forensic Science, Deductive Reasoning, Organization of a Crime Laboratory Case Studies: The Enrique Camarena Case. A Forensic Nightmare Organization of forensic science laboratories of center and state -NCRA AND NICFS, fundamental rights, criminal profiling, concept of quality control management in forensic institutions.

# UNIT- II OBSERVATION AND CRIME SCENE

9

Observational Skills - Sherlock Holmes and Deductive Reasoning - Observations by Witnesses. Case Studies. The Crime Scene -Locard's Exchange Principle, Securing and Recording the Crime Scene, Legal Considerations at the Crime Scene, Evidence Collection and Recordation Techniques. Mock Crime Scene: Processing and Documenting a Crime Scene

## UNIT III FORENSIC MICROSCOPE AND ANTHROPOLOGY

Forensic Use of the Microscope -The Compound, Comparison, and Stereoscopic Microscope, The Scanning Electron Microscope (SEM). Forensic Anthropology- Introduction, Human Anatomy—The Skeletal System, Skeletal Determination of Demographic Data from Skeletal Remains, Determining Types of Trauma and Disease from Skeletal Remains, Case Studies.

# UNIT IV BLOOD STAIN IDENTIFICATION

9

Detection and identification of Blood stains, Determination of species of origin, Blood Group systems, Techniques of Determination of Blood groups of Blood stains, Determination of seminal and other fluids and their Blood Grouping, DNA, DNA Phenotyping and RNA Profiling & their applications. Wildlife forensics.

## UNIT V FINGERPRINT APPLICATION

9

Fingerprints -Fundamental Principles of Fingerprint Analysis, Classification of Fingerprints, Collection of Fingerprint Evidence, Automated Fingerprint Identification Systems (AFIS), Track marks, Case Studies.

## **COURSE OUTCOMES:**

# Upon successful completion of the course, students will be able to

- CO1: Define the significance of forensic sciences
- CO2: Observe and document crime scenes
- CO3: Determine Trauma and Diseases.
- CO4: Describe the various sources of medical data related to forensic science.
- CO5: Demonstrate the visual analytical procedure of finger print application.

## **TEXT BOOKS**

- 1. Nanda, B.B. and Tewari, R.K. (2001) Forensic Science in India: A vision for the twenty first century Select Publisher, New Delhi.
- 2. James, S.H and Nordby, J.J. (2003) Forensic Science: An introduction to scientific and investigative techniques CRC Press,

#### **REFERENCES**

- 1. Saferstein: Criminalistics (1976) Prentice Hall Inc., USA.
- 2. Deforest, Gansellen & Lee: Introduction to Criminalistics.
- 3. Sharma, B.R. (1974) Forensic Science in Criminal Investigation and Trials, Central Law Agency, Allahabad, 1974

# CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |    | PSO' | S |   |
|------|------|---|---|---|---|---|---|---|---|----|----|----|------|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1    | 2 | 3 |
| 1    | 3    | 1 | 1 | - | - | 1 | - | 1 | - | -  | -  | -  | 1    | - | • |
| 2    | 3    | 1 | 1 | - | - | 1 | - | 1 | - | -  | -  | -  | 1    | - | - |
| 3    | 3    | 1 | 1 | - | - | 1 | - | 1 | - | -  | -  | -  | 1    | - | - |
| 4    | 3    | 1 | 1 | - | 1 | 1 | - | 1 | - | -  | -  | -  | 1    | - | - |
| 5    | 3    | 1 | 1 | - | 1 | 1 | - | 1 | - | -  | -  | -  | 1    | - | - |
| AVg. | 3    | 1 | 1 | - | 1 | 1 | - | 1 | - | -  | -  | -  | 1    | - | - |

1 - low, 2 - medium, 3 - high, '-' - no correlation

#### **COURSE OBJECTIVES**

The objective of this course is to enable the student to

- Learn the fundamental concepts of the principles of mechanics.
- Understand the basics of biofluid mechanics.
- Review the mechanical properties of musculoskeletal elements.
- Study the biomechanics of joints and implants.
- Learn the application of biomechanics into modelling and ergonomic design.

#### UNIT I INTRODUCTION TO MECHANICS

9

Introduction – Scalars and vectors, Statics –Resolution and composition of forces, Moments, couple, Resultant, equilibrium of coplanar forces, Dynamics – Linear motion, Newton's laws of motion, Velocity and acceleration, Kinematics – Models, Transducers Constitutive equations –Non-viscous fluid, Newtonian Viscous fluid and Hookean Elastic solid

# UNIT II BIOFLUID MECHANICS

9

Intrinsic fluid properties, Rheological properties of blood, Pressure-flow relationship for Non-Newtonian Fluids, Fluid mechanics in straight tube, Structure of blood vessels, Material properties and modelling of Blood vessels, Heart – Cardiac muscle characterization, Native heart valves, Prosthetic heart valve fluid dynamics.

#### UNIT III MUSCULOSKELETAL MECHANICS

9

Constitutive equation of viscoelasticity – Maxwell, Voight and Kelvin models, anisotropy, Hard Tissues – Structure, viscoelastic properties, functional adaptation, Soft Tissues – Structure, functions, material properties and modelling of Soft Tissues – Cartilage, Tendons and Ligaments Skeletal Muscle, Bone fracture mechanics, Implants for bone fractures.

## UNIT IV BIOMECHANICS OF JOINTS AND IMPLANTS

9

Skeletal joints, forces and stresses in human joints, Analysis of rigid bodies in equilibrium, Free body diagrams, Structure of joints, Types of joints, Biomechanical analysis of elbow, shoulder, spinal column, hip, knee and ankle, Lubrication of synovial joints, Gait analysis, Motion analysis using video.

# UNITY MODELLING AND ERGONOMICS

9

Introduction to Finite Element Analysis, finite element analysis of lumbar spine; models for voice biomechanics, Ergonomics –Musculoskeletal disorders, Ergonomic principles contributing to good workplace design, Design of a Computer work station, Whole body vibrations, Hand transmitted and whole-body vibrations.

30 PERIODS
30 PERIODS

## LAB COMPONENT

- 1. MATLAB implementation of Vector algebra, force and moment calculation
- 2. Program used in conjunction with the EMG system to analyse muscle activation patterns.
- 3. Biomechanical analysis of voice.
- 4. Cardiovascular models.
- 5. Musculoskeletal models.
- 6. Finite element analysis.

**TOTAL: 60 PERIODS** 

## **SOFTWARE TOOLS**

- 1. MATLAB/ Python
- 2. CVSIM/Equivalent tools
- 3. OpenSim/FEBIO/ Equivalent tools.

#### **COURSE OUTCOMES**

Upon successful completion of the course, students will be able to

- CO1: Understand and apply the principles of mechanics, kinetics and kinematics in the context of biological systems Appraise the basics of biofluid mechanics as applied to heart valve design and blood vessel models.
- CO2: Describe the basics of biofluid mechanics as applied to heart valve design and blood vessel models.
- CO3: Describe the mechanical properties of musculoskeletal elements to develop the mathematical models of joints and implants.
- CO4: Apply the knowledge of biomechanics into analysis of human joints and motion
- CO5: Apply Biomechanics principles to "real-world" problem and describe their impact on health, safety, society, environment as well as underlying legal and ethical considerations.

## **TEXT BOOKS**

- 1. Y.C. Fung, Bio-Mechanics- Mechanical Properties of Tissues, Springer-Verlag, 1998.
- 2. Subrata Pal, Textbook of Biomechanics, Viva Books Private Limited, 2009
- 3. Krishna B. Chandran, Ajit P. Yoganathan and Stanley E. Rittgers, Biofluid Mechanics: The Human Circulation, Taylor and Francis, 2007.
- 4. Özkaya, Nihat, Dawn Leger, David Goldsheyder, and Margareta Nordin. Fundamentals of biomechanics: equilibrium, motion, and deformation. Springer, 2016.

# **REFERENCES**

- Sheraz S. Malik and Shahbaz S. Malik, Orthopaedic Biomechanics Made Easy, Cambridge University Press, 2015.
- 2. Jay D. Humphrey, Sherry De Lange, An Introduction to Biomechanics: Solids and Fluids, Analysis and Design, Springer Science Business Media, 2004.
- 3. Shrawan Kumar, Biomechanics in Ergonomics, Second Edition, CRC Press 2007.
- 4. Neil J. Mansfeild, Human Response to Vibration, CRC Press, 2005.
- 5. Carl J. Payton, Biomechanical Evaluation of movement in sports and Exercise, 2008.

## CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |    | PSO' | S |   |
|------|------|---|---|---|---|---|---|---|---|----|----|----|------|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1    | 2 | 3 |
| 1    | 3    | 1 | 1 | - | - | 1 | - | 1 | - | -  | -  | -  | 1    | - | - |
| 2    | 3    | 1 | 1 | - | - | 1 | - | 1 | - | -  | -  | -  | 1    | - | - |
| 3    | 3    | 1 | 1 | - | - | 1 | - | 1 | - | -  | -  | -  | 1    | - | - |
| 4    | 3    | 1 | 1 | - | - | 1 | - | 1 | - | -  | -  | -  | 1    | - | - |
| 5    | 3    | 1 | 1 | - | - | 1 | - | 1 | - | -  | -  | -  | 1    | - | - |
| AVg. | 3    | 1 | 1 | - | - | 1 | - | 1 | - | -  | -  | -  | 1    | - | - |

1 - low, 2 - medium, 3 - high, '-' - no correlation

## **CBM364**

#### REHABILITATION ENGINEERING

L T P C 3 0 0 3

#### **COURSE OBJECTIVES**

The objective of this course is to enable the student to

- Explain the need for medical aids.
- Understand the sensory rehabilitation systems.
- Learn the use of orthopedic prosthetics and orthotics in rehabilitation.
- Understand virtual reality in rehabilitation
- Have an understanding of rehabilitation medicine and advocacy.

#### UNIT I INTRODUCTION TO REHABILITATION

9

Definition - Impairments, disabilities and handicaps, Primary and secondary disabilities, Activities of daily living, Appropriate Technology, Residual function. Rehabilitation. Rehabilitation team – members and their functions. Rehabilitation care –Need for proper delivery of rehabilitation care, Community based rehabilitation and its aspects.

# UNIT II ENGINEERING CONCEPTS IN SENSORY AUGMENTATION AND SUBSTITUTION

9

Sensory augmentation and substitution- Visual system: Visual augmentation, Tactual vision substitution, and Auditory vision substitution. Auditory system- Auditory augmentation, Hearing aids, cochlear implants, visual auditory substitution, tactual auditory substitution. Tactual system - Tactual augmentation, Tactual substitution.

# UNIT III ORTHOPEDIC PROSTHETICS AND ORTHOTICS

9

Engineering concepts in motor rehabilitation, Artificial limbs- body powered, externally powered and controlled orthotics and prosthetics, Myoelectric hand and arm prosthetics. Functional Electrical Stimulation systems-Restoration of hand function, restoration of standing and walking, Hybrid Assistive Systems (HAS).

## UNIT IV VIRTUAL REALITY

9

Introduction to virtual reality, Virtual reality based rehabilitation, Hand motor recovery systems with Phantom haptics, Robotics and Virtual Reality Applications in Mobility Rehabilitation.

## UNIT V REHABILITATION MEDICINE AND ADVOCACY

9

Physiological aspects of Function recovery, Psychological aspects of Rehabilitation therapy, Legal aspect available in choosing the device and provision available in education, job and in day-to-day life.

**TOTAL: 45 PERIODS** 

# **COURSE OUTCOMES**

Upon successful completion of the course, students will be able to

- CO1: Summarize the key terminologies used by the rehabilitation team.
- CO2: Illustrate Engineering Concepts in Sensory & Motor rehabilitation.
- CO3: Design different orthotics and prosthetics for rehabilitation applications.
- CO4: Summarize the need of virtual reality tools for different aids.
- CO5: Appraise the legal aspects for building rehabilitation aids for the needed people.

#### **TEXTBOOKS**

- 1. Joseph D Bronzino, "The Biomedical Engineering Handbook". 2nd edition, CRC Press, 2000.
- 2. Robinson C.J, "Rehabilitation Engineering", CRC Press, 2006.

#### **REFERENCES**

- 1. Sashi S Kommu, "Rehabilitation Robotics", 1st edition, CRC Press, 2007.
- 2. Sunder, "Textbooks of Rehabilitation", Jaypee Brothers Medical Publishers Pvt. Ltd, New Delhi, 2nd Edition, Reprint 2007.
- 3. Horia- Nocholai Teodorecu, L.C.Jain, "Intelligent systems and technologies in rehabilitation Engineering", CRC; December 2000
- 4. Etienne Grandjean, Harold Oldroyd, "Fitting the task to the man", Taylor & Francis, 1988.
- 5. Keswick. J., "What is Rehabilitation Engineering, Annual Reviews of Rehabilitation", Springer Verlag, New York, 1982.
- 6. Warren E. Finn, Peter G. Lopressor, "Handbook of Neuroprosthetic Methods", CRC, 2002.
- 7. Roy A Cooper (Editor), Hisaichi Ohnabe (Editor), Douglas A. Hobson (Editor), "An Introduction to Rehabilitation Engineering (Series in Medical Physics and Biomedical Engineering" CRC Press, 2000

CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |              |       |   |   |   |   |    |     |    | PSO' | S |   |
|------|------|---|---|--------------|-------|---|---|---|---|----|-----|----|------|---|---|
|      | 1    | 2 | 3 | 4            | 5     | 6 | 7 | 8 | 9 | 10 | 11  | 12 | 1    | 2 | 3 |
| 1    | 3    | 1 | 1 | -            | P- n  | 1 | - | 1 | - |    | 25. | -  | 1    | - | - |
| 2    | 3    | 1 | 1 | -7.          | 3: 1  | 1 | _ | 1 | - | ٦, | 3-3 | h  | 1    | - | - |
| 3    | 3    | 1 | 1 | <b>-</b> - N | w.    | 1 | - | 1 | - | -  | Y.  | `\ | 1    | - | - |
| 4    | 3    | 1 | 1 | - 1          | 7 - 1 | 1 | - | 1 | - | -  |     | -  | 1    | - | - |
| 5    | 3    | 1 | 1 | 7            | 7 -   | 1 | - | 1 | - |    | - 1 | -  | 1    | - | - |
| AVg. | 3    | 1 | 1 | ٦-           | 7     | 1 | - | 1 |   | •  |     | -  | 1    | - | - |

1 - low, 2 - medium, 3 - high, '-' - no correlation

**CBM361** 

## PHYSIOLOGICAL MODELLING

LTPC 3 0 0 3

#### COURSE OBJECTIVES:

## The student should be made to:

- To explain the application of Physiological models and vital organs.
- To Formulate the methods and techniques for analysis and synthesis of dynamic models
- To describe the dynamic models, simulate and visualize, dynamic responses of physiological models using software.
- To describe nonlinear models of physiological systems
- To compute the Simulation of physiological systems

# UNIT I INTRODUCTION TO PHYSIOLOGICAL MODELING

9

Approaches to modelling: The technique of mathematical modelling, classification of models, characteristics of models. Time invariant and time varying systems for physiological modelling. Introduction to physiology (homeostasis, cell biology) Modelling physical systems, linear models of physiological systems, the Laplace transform, Transfer functions and block diagram analysis Physiology.

## UNIT II MODELING OF DYNAMIC PHYSIOLOGICAL SYSTEM

9

Dynamic systems and their control, modelling and block diagrams, the pupil control systems(Human Eye), general structure of control systems, the dynamic response characteristics of the pupil control system, open &close loop systems instability, automatic aperture control.

## UNIT III NONLINEAR MODELS OF PHYSIOLOGICAL SYSTEMS

Nonparametric Modelling-Volterra Models. Wiener Models. Efficient Volterra Kernel Estimation. Parametric Modelling - Basic Parametric Model Forms and Estimation Procedures- Volterra Kernels of Nonlinear Differential Equations. Discrete-Time Volterra Kernels of NARMAX Models.

## UNIT IV COMPARTMENTENTAL PHYSIOLOGICAL MODEL

9

9

Modeling the body as compartments, behaviour in simple compartmental system, pharmacokinetic model, and multi compartmental system. Physiological modelling: Electrical analogy of blood vessels, model of systematic blood flow and model of coronary circulation. Mathematical modelling of the system: Thermo regulation, Thermoregulation of cold bloodedness& warm bloodedness, the anatomy of thermo regulation, lumping & partial differential equations, heat transfer examples, mathematical model of the controlled process of the body.

#### UNIT V SIMULATION OF PHYSIOLOGICAL SYSTEMS

9

Simulation of physiological systems using Open CV / MATLAB software. Biological receptors: - Introduction, receptor characteristics, transfer function models of receptors, receptor and perceived intensity. Neuromuscular model, Renal System, Drug Delivery Model.

## **COURSE OUTCOMES:**

# On successful completion of this course, the student will be able to

- CO1: Explain the application of Physiological models
- CO2: Describe the methods and techniques for analysis and synthesis of Linear and dynamic system
- CO3: Develop differential equations to describe the compartmental physiological model
- CO4: Describe Nonlinear models of physiological systems
- CO5: Illustrate the Simulation of physiological systems

**TOTAL:45 PERIODS** 

## **TEXT BOOKS**

- **1.** Michel C Khoo, "Physiological Control Systems -Analysis, simulation and estimation", Prentice Hall of India, 2001.
- 2. Marmarelis, "Nonlinear Dynamic Modeling of Physiological Systems", Wiley-IEEE Press, 2004.

# **REFERENCES**

- 1. Benjamin C Kuo, "Automatic control systems", Tenth Edition, McGraw-Hill Education, 2017.
- 2. MinruiFei, Shiwei Ma, Xin Li, Xin Sun, Li Jia and Zhou Su, "Advanced Computational Methods in Life System Modeling and Simulation", *Springer*,2017
- 3. DavidTWestwick, Robert E. Kearney, Identification of Nonlinear PhysiologicalSystems, Wiley-IEEE Press, 2003.

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |    | PSO' | S |   |
|------|------|---|---|---|---|---|---|---|---|----|----|----|------|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1    | 2 | 3 |
| 1    | 3    | 1 | 1 | 1 | 1 | - | - | - | - | -  | -  | -  | -    | - | - |
| 2    | 3    | 1 | 1 | 1 | 1 | - | - | - | - | -  | -  | -  | -    | - | - |
| 3    | 3    | 1 | 1 | 1 | 1 | - | - | - | - | -  | -  | -  | -    | - | - |
| 4    | 3    | 1 | 1 | 1 | 1 | - | - | - | - | -  | -  | -  | -    | - | - |
| 5    | 3    | 1 | 1 | 1 | 1 | - | - | - | - | -  | -  | -  | -    | - | - |
| AVg. | 3    | 1 | 1 | 1 | 1 | - | - | - | - | -  | -  | -  | -    | - | - |

1 - low, 2 - medium, 3 - high, '-' - no correlation

#### **CBM333**

#### **ASSISTIVE TECHNOLOGY**

LTPC 3 0 0 3

#### **COURSE OBJECTIVES:**

#### The student should be made to:

- To know the hardware requirement various assistive devices
- To understand the prosthetic and orthotic devices
- To know the developments in assistive technology

## UNIT I CARDIAC ASSIST DEVICES

a

Principle of External counter pulsation techniques, intra aortic balloon pump, Auxillary ventricle and schematic for temporary bypass of left ventricle, prosthetic heart valves.

# UNIT II HEMODIALYSERS

9

Artificial kidney, Dialysis action, hemodialyser unit, membrane dialysis, portable dialyser monitoring and functional parameters.

#### UNIT III HEARING AIDS

9

Common tests – audiograms, air conduction, bone conduction, masking techniques, SISI, Hearing aids – principles, drawbacks in the conventional unit, DSP based hearing aids.

# UNIT IV PROSTHETIC AND ORTHODIC DEVICES

9

Hand and arm replacement – different types of models, externally powered limb prosthesis, feedback in orthodic system, functional electrical stimulation, sensory assist devices.

#### UNIT V RECENT TRENDS

9

Transcutaneous electrical nerve stimulator, bio-feedback

## **COURSE OUTCOMES:**

# On successful completion of this course, the student will be able to

- CO1: Interpret the various mechanical techniques that will help in assisting the heart functions.
- CO2: Describe the underlying principles of hemodialyzer machine.
- CO3: Indicate the methodologies to assess the hearing loss.
- CO4: Evaluate the types of assistive devices for mobilization.
- CO5: Explain about TENS and biofeedback system.

**TOTAL:45 PERIODS** 

#### **TEXT BOOKS**

- 1. Joseph D. Bronzino, The Biomedical Engineering Handbook, Third Edition: Three Volume Set, CRC Press, 2006
- 2. Marion. A. Hersh, Michael A. Johnson, Assistive Technology for visually impaired and blind, Springer Science & Business Media, 1st edition, 12-May-2010
- 3. Yadin David, Wolf W. von Maltzahn, Michael R. Neuman, Joseph.D, Bronzino, Clinical Engineering, CRC Press, 1st edition,2010.

#### **REFERENCES**

- 1. Kenneth J. Turner Advances in Home Care Technologies: Results of the match Project, Springer, 1stedition, 2011.
- 2. Gerr M. Craddock Assistive Technology-Shaping the future, IOS Press, 1st edition, 2003.
- 3D Printing in Orthopaedic Surgery, Matthew Dipaola, Elsevier 2019 ISBN 978-0-323-662116
- 4. Cardiac Assist Devices, Daniel Goldstein (Editor), Mehmet Oz (Editor), Wiley-Blackwell April 2000 ISBN: 978-0-879-93449-1

#### CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |    | PSO' | S |   |
|------|------|---|---|---|---|---|---|---|---|----|----|----|------|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1    | 2 | 3 |
| 1    | 3    | 1 | 1 | 1 | 1 | - | - | - | - | -  | -  | -  | -    | - | - |
| 2    | 3    | 1 | 1 | 1 | 1 | - | - | - | - | -  | -  | -  | -    | - | - |
| 3    | 3    | 1 | 1 | 1 | 1 | - | - | - | - | -  | -  | -  | -    | - | - |
| 4    | 3    | 1 | 1 | 1 | 1 | - | - | - | - | -  | -  | -  | -    | - | - |
| 5    | 3    | 1 | 1 | 1 | 1 | - | - | - | - | -  | -  | -  | -    | - | - |
| AVg. | 3    | 1 | 1 | 1 | 1 | - | - | - | - | -  | -  | -  | -    | - | - |

1 - low, 2 - medium, 3 - high, '-' - no correlation

CBM346 ERGONOMICS LTPC 3 0 0 3

## **COURSE OBJECTIVE**

- To get exposed to principles of visual capabilities.
- To learn the mechanics of muscle physiology and significance of rest cycle.
- To learn spatial compatibility and the relation between control orders and control response.
- To know about the measurements and proportions of the human body.
- To be familiar with the mathematical models, analysis and design of biomedical devices using case studies.

## UNIT I VISUAL AND AUDITORY ERGONOMICS

9

Process of seeing – visual capabilities – factors affecting visual acuity and contrast sensitivity – human factor aspects of hard copy text and computer screen text, factors in selecting graphic representations symbols, qualitative visual display – process of hearing – principles of auditory display. Measures for monitoring control & mitigation.

# UNIT II MUSCLE PHYSIOLOGY

9

Muscle physiology – muscle metabolism – respiratory response – joint motion study – measure of physiological in-efficiency and energy consumption – work rest cycles – aspects of manual and posture study, material handling (MMH) Bio-mechanical recommended limits of MMH.

#### UNIT III CONTROLS AND DISPLAYS

9

Spatial compatibility and physical arrangement of displays and controls - Design of displays and controls - movement capability - rotary controls and rotor displays movement of displays orientation of the operator and movement relationships control orders and control responses - human limitations in tracking task

## UNIT IV ANTHROPOMETRY

9

Anthropometry – anthropometric design principles – Physical work load and energy expenditure - work space envelope – factors in design of work space surfaces – principles of seat design – principles of control panel. ergonomic implications. Organization classification of human errors theories of accident causation-reducing accidents by altering behavior.

## UNIT V CASE STUDIES

9

Case Study 1: computer design, control panel design of an electronic instrument, computer key board, hand drill etc.

Case Study 2: Biomedical Application, Design optimization of Medical Equipment.

**TOTAL: 45 PERIODS** 

## **COURSE OUTCOMES:**

At the end of the course student will be able to,

CO1: Understand principles of ergonomics.

CO2: Understand the significance of posture

CO3: Learn about tracking tasks.

CO4: Learn about ergonomics and its implications to various domain

**CO5**: Perform case studies on electronic instruments and medical equipment.

#### **TEXT BOOKS:**

- 1. Pascale Carayon, "Handbook of Human Factors and Engineering", Second Edition, CRC Press, 2011
- 2. Martin Helander, "Guide to Human Factors and Ergonomics", Second Edition, CRC Press,2005
- 3. Benjamin W.Niebel, "Motion and Time Study", Richard, D. Irwin Inc., Seventh Edition, 2002

## REFERENCES:

- 1. Shrawan Kumar, Biomechanics in Ergonomics, Second Edition, CRC Press2007.
- 2. George Kanawaty, "Introduction to work study", ILO, 3rd edition, Oxford & IBH publishing, 2001
- **3.** Stephen Pheasant, Christine M. Haslegrave, Bodyspace: Anthropometry, Ergonomics and the Design of Work, CRC Press, 2005.

# CO's- PO's & PSO's MAPPING

| CO's | PO's |   |   |   |     |   |   |     |   |              |     |     | PSO' | s |   |
|------|------|---|---|---|-----|---|---|-----|---|--------------|-----|-----|------|---|---|
|      | 1    | 2 | 3 | 4 | 5   | 6 | 7 | 8   | 9 | 10           | 11  | 12  | 1    | 2 | 3 |
| 1    | 3    | 1 | 1 | 1 | 1   |   | - | -   | - | -            | -   | -   | 1    | - | - |
| 2    | 3    | 1 | 1 | 1 | . 1 |   | - | -   | - | - J-         | - / | -   | 1    | - | - |
| 3    | 3    | 1 | 1 | 1 | 1   | - | - | - 7 | - | 7-           | -// | - 1 | 1    | - | - |
| 4    | 3    | 1 | 1 | 1 | 1   |   | - | J   | - | / - <u>,</u> | 1,5 |     | 1    | - | - |
| 5    | 3    | 1 | 1 | 1 | 1   | - | - | -   | - |              |     | -   | 1    | - | - |
| AVg. | 3    | 1 | 1 | 1 | 1   | - | - | -   | - | -            | -// | -   | 1    | - | - |

1 - low, 2 - medium, 3 - high, '-' - no correlation

CBM350 HAPTICS L T P C 3 0 0 3

#### **COURSE OBJECTIVES**

The objective of this course is to enable the student to

- Expose to basic principles of Haptics and their property.
- Give knowledge on machines in haptics.
- Learn types of sensors and actuators.
- Understand basic concepts of human locomotion, biomechanical analysis using Finite Element Analysis.

## UNIT I HUMAN HAPTICS

9

Somatosensory System; Motor System, Muscle Physiology; Haptics Psychophysical experiments.

## UNIT II MACHINE HAPTICS

9

Design Haptic devices; Human factors involved;

#### UNIT III HAPTIC SENSORS AND ACTUATORS

9

barriers in human haptics; Ergonomics.

#### UNIT IV COMPUTATIONAL HAPTICS

9

Haptic Rendering; Rigid bodies, Deformable bodies, Stability Rendering effects, Human performance and evaluation; Biomechanics of manipulation; Neuromuscular Models.

# UNIT V HAPTICS FOR MEDICAL APPLICATIONS

9

Applications: Telemedicine; Rehabilitation; Medical Simulations for education

**TOTAL: 45 PERIODS** 

## **COURSE OUTCOMES**

# On successful completion of this course, the student will be able to

CO1: Explain the laws of principles of haptics for human

CO2: Discuss the behavior of machines in haptics

CO3: Analyse the suitable sensor and actuator for haptics

CO4: Identify suitable computation for haptics

CO5: Describe the finite element analysis, design the work station depending upon the haptics

## **TEXT BOOKS:**

- Kay M.Stanney, Handbook of Virtual Environments: Design, Implementation, and Applications, Lawrence Erlbaum Associates, Publications. N. I. Durlach and A. S. Mavor, eds., Virtual Reality: Scientific and Technological Challenges, National Academy Press, Washington, D.C., 1994.
- 2. G.C. Burdea, Force and Touch Feedback for Virtual Reality, John Wiley & Sons, 1996.
- 3. Kandel, Eric R., et al., eds. Principles of neural science. Vol. 4. New York: McGraw-hill, 2000.

# **REFERENCE BOOKS:**

- 1. Chang Liu, Foundations of MEMS, Pearson Education Inc., 2012.
- Marc J. Madou, Fundamentals of Micro fabrication: the Science of miniaturization, CRC Press, 2002.
- 3. Nadim Maluf and Kirt Williams, An introduction to Microelectro Mechancial Systems Engineering, Second Edition, Artech House Inc, MA,2004.
- 4. Chang Liu, Foundations of MEMS, Pearson Education International, New Jersey, USA, 2006.
- Nitaigour Premch and Mahalik, MEMS, Tata McGraw Hill Publishing Company, New Delhi. 2007.

CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |    | PSO' | S |   |
|------|------|---|---|---|---|---|---|---|---|----|----|----|------|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1    | 2 | 3 |
| 1    | 3    | 1 | 1 | 1 | 1 | - | - | - | - | -  | -  | -  | 1    | - | - |
| 2    | 3    | 1 | 1 | 1 | 1 | - | - | - | - | -  | -  | -  | 1    | - | - |
| 3    | 3    | 1 | 1 | 1 | 1 | - | - | - | - | -  | -  | -  | 1    | - | - |
| 4    | 3    | 1 | 1 | 1 | 1 | - | - | - | - | -  | -  | -  | 1    | - | - |
| 5    | 3    | 1 | 1 | 1 | 1 | - | - | - | - | -  | -  | -  | 1    | - | - |
| AVg. | 3    | 1 | 1 | 1 | 1 | - | - | - | - | -  | -  | -  | 1    | - | - |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

CBM335 BIOSIGNAL PROCESSING

LTPC 3 0 0 3

#### **COURSE OBJECTIVES:**

The student should be made to:

- To study the characteristics of different biosignals
- To learn linear and non-linear filtering techniques to extract desired information
- To understand various techniques for automated classification and decision making to aid diagnosis

#### UNIT I BIOSIGNAL AND SPECTRAL CHARACTERISTICS

9

Characteristics of some dynamic biomedical signals, Noises- random, structured and physiological noises. Filters- IIR and FIR filters. Spectrum – power spectral density function, cross-spectral density and coherence function, cepstrum and homomorphic filtering. Estimation of mean of finite time signals.

# UNIT II TIME SERIES ANALYSIS AND SPECTRAL ESTIMATION

9

Time series analysis – linear prediction models, process order estimation, lattice representation, non-stationary process, fixed segmentation, adaptive segmentation, application in EEG, PCG signals, Time varying analysis of Heart-rate variability, model based ECG simulator. Spectral estimation –Blackman Tukey method, periodogram, and model based estimation. Application in Heart rate variability, PCG signals.

# UNIT III ADAPTIVE FILTERING AND WAVELET DETECTION

(

Filtering – LMS adaptive filter, adaptive noise canceling in ECG, improved adaptive filtering in ECG, Wavelet detection in ECG – structural features, matched filtering, adaptive wavelet detection, detection of overlapping wavelets.

## UNIT IV BIOSIGNAL CLASSIFICATION AND RECOGNITION

9

Signal classification and recognition – Statistical signal classification, linear discriminant function, direct feature selection and ordering, Back propagation neural network based classification. Application in Normal versus Ectopic ECG beats.

#### UNIT V TIME FREQUENCY AND MULTIVARIATE ANALYSIS

9

Time frequency representation, spectrogram, Wigner distribution, Time-scale representation, scalogram, wavelet analysis – Data reduction techniques, ECG data compression, ECG characterization, Feature extraction- Wavelet packets, Multivariate component analysis-PCA,ICA.

## **COURSE OUTCOMES:**

# On successful completion of this course, the student will be able to

- CO1: Preprocess the Biosignals.
- CO2: Analyze biosignals in time domain & to estimate the spectrum.
- CO3: Apply wavelet detection techniques for biosignal processing.
- CO4: Classify Biosignals using neural networks and statistical classifiers.
- CO5: Extract the features using multivariate component analysis.

#### **TOTAL:45 PERIODS**

#### **TEXT BOOKS**

- **1.** Rangaraj M. Rangayyan, "Biomedical Signal Analysis-A case study approach", Wiley, 2<sup>nd</sup> Edition, 2016.
- **2.** Willis J. Tompkins, "Biomedical Digital Signal Processing", Prentice Hall of India, New Delhi, 2003.
- **3.** Arnon Cohen, "Bio-Medical Signal Processing Vol I and Vol II", CRC Press Inc., Boca Rato, Florida, 1999.

#### **REFERENCES**

- 1. Kayvan Najarian and Robert Splerstor, "Biomedical signals and Image processing", CRC Taylor and Francis, New York, 2<sup>nd</sup> Edition, 2012.
- 2. K.P.Soman, K.Ramachandran, "Insight into wavelet from theory to practice", PHI, New Delhi, 3<sup>rd</sup> Edition, 2010.
- 3. D.C.Reddy, "Biomedical Signal Processing Principles and Techniques", Tata McGraw-Hill Publishing Co. Ltd, 2005.
- 4. John L.Semmlow, "Biosignal and Biomedical Image Processing Matlab Based applications", Taylor& Francis Inc, 2004.

## CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |    |   |   |   |     |   |    |     |    | PSO' | S |   |
|------|------|---|---|----|---|---|---|-----|---|----|-----|----|------|---|---|
|      | 1    | 2 | 3 | 4  | 5 | 6 | 7 | 8   | 9 | 10 | 11  | 12 | 1    | 2 | 3 |
| 1    | 3    | 1 | 1 | 1  | 1 |   | - | -   | - | -  | -   | -  | -    | - | - |
| 2    | 3    | 1 | 1 | 1  | 1 |   | - | - : | - | -  | -/  | -  | -    | - | - |
| 3    | 3    | 1 | 1 | 1  | 1 | - | - |     | - | /- | - / | -  | -    | - | - |
| 4    | 3    | 1 | 1 | _1 | 1 |   | - |     | - | J  | -   | -  |      | - | - |
| 5    | 3    | 1 | 1 | 1  | 1 | - | - | -   | - |    | -   | -  | /    | - | - |
| AVg. | 3    | 1 | 1 | 1  | 1 | - | - | -   | - | -  |     | _  | -    | - | - |

1 - low, 2 - medium, 3 - high, '-' - no correlation

CBM371 COMPUTER VISION L T P C 2 0 2 3

## **COURSE OBJECTIVES:**

- To review image processing techniques for computer vision.
- To understand various features and recognition techniques
- To learn about histogram and binary vision
- Apply three-dimensional image analysis techniques
- Study real world applications of computer vision algorithms

# UNIT I INTRODUCTION

6

Computer Vision ,What is Computer Vision - Low-level, Mid-level, High-level; Fundamentals of Image Formation, Transformation: Orthogonal, Euclidean, Affine, Projective.

## UNIT II FEATURE EXTRACTION

6

Feature Extraction -Edges - Canny, LOG, DOG; Line detectors (Hough Transform), Corners - Harris and Hessian Affine, Orientation Histogram, SIFT, SURF, HOG, GLOH, Scale-Space 69 Analysis- Image Pyramids and Gaussian derivative filters, Gabor Filters.

## UNIT III COLOR IMAGES, BINARY VISION

6

Simple pinhole camera model – Sampling – Quantisation – Colour images – Noise – Smoothing – 1D and 3D histograms- Back-projection - k-means Clustering – Thresholding - Threshold Detection Methods - Variations on Thresholding - Mathematical Morphology – Connectivity.

#### UNIT IV 3D VISION

6

Methods for 3D vision – projection schemes – shape from shading – photometric stereo – shape from texture – shape from focus – active range finding – surface representations – point-based representation – volumetric representations – 3D object recognition – 3D reconstruction

## UNIT V MOTION

6

Introduction to motion – triangulation – bundle adjustment – translational alignment – parametric motion–spline-based motion- optical flow – layered motion.

30 PERIODS

#### PRACTICALS:

- 1. Document Image Analysis
- 2. Biometrics based Recognition
- 3. Object Recognition
- 4. Object Tracking
- 5. Medical Image Analysis
- 6. Content-Based Image Retrieval
- 7. Video Data Processing

**30 PERIODS** 

#### **COURSE OUTCOMES:**

# On successful completion of this course, the student will be able to

CO1: explain low level processing of image and transformation techniques applied to images.

CO2: develop the feature extraction and object recognition methods

CO3: apply Histogram transform for detection of geometric shapes like line, ellipse and objects.

CO4: illustrate 3D vision process and motion estimation techniques.

CO5: apply vision techniques to real time applications.

**TOTAL:60 PERIODS** 

#### **TEXT BOOKS**

- Richard Szeliski, "Computer Vision: Algorithms and Applications", Springer Verlag London Limited, 2011
- 2. Simon J. D. Prince, Computer Vision: Models, Learning, and Inference, Cambridge University Press, 2012
- 3. D. A. Forsyth, J. Ponce, "Computer Vision: A Modern Approach", Pearson Education, 2003 **REFERENCES** 
  - 1. Mark Nixon and Alberto S. Aquado, Feature Extraction & Image Processing for Computer Vision, Third Edition, Academic Press, 2012.
  - 2. E. R. Davies, "Computer & Machine Vision", Fourth Edition, Academic Press, 2012.
  - 3. Concise Computer Vision: An Introduction into Theory and Algorithms, by Reinhard Klette, 2014.

#### CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |    | PSO' | S |   |
|------|------|---|---|---|---|---|---|---|---|----|----|----|------|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1    | 2 | 3 |
| 1    | 3    | 2 | 1 | 1 | 2 | - | - | - | - | -  | -  | -  | 1    | - | 1 |
| 2    | 3    | 2 | 1 | 1 | 2 | - | - | - | - | -  | -  | -  | 1    | - | 1 |
| 3    | 3    | 2 | 1 | 1 | 2 | - | - | - | - | -  | -  | -  | 1    | - | 1 |
| 4    | 3    | 2 | 1 | 1 | 2 | - | - | - | - | -  | -  | -  | 1    | - | 1 |
| 5    | 3    | 2 | 1 | 1 | 2 | - | - | - | - | -  | -  | -  | 1    | - | 1 |
| AVg. | 3    | 2 | 1 | 1 | 2 | - | - | - | - | -  | -  | -  | 1    | - | 1 |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

# CBM366 SPEECH AND AUDIO SIGNAL PROCESSING

LTPC 3 0 0 3

## **COURSE OBJECTIVES**

The objective of this course is to enable the student to

- Provide students with basic knowledge about speech production and hearing.
- Understand time-frequency analysis concepts.
- Learn fundamentals of audio coding and transform coders.
- Understand time and frequency domain methods for speech processing.
- Study linear predictive analysis of speech.

# UNIT I MECHANICS OF SPEECH AND AUDIO

q

Introduction - Review of Signal Processing Theory-Speech production mechanism - Nature of Speech signal - Discrete time modelling of Speech production - Classification of Speech sounds - Phones - Phonemes - Phonetic and Phonemic alphabets - Articulatory features. Absolute Threshold of Hearing - Critical Bands- Simultaneous Masking, Masking-Asymmetry, and the Spread of Masking-Nonsimultaneous Masking - Perceptual Entropy - Basic measuring philosophy - Subjective versus objective perceptual testing - The perceptual audio quality measure (PAQM) - Cognitive effects in judging audio quality.

#### UNIT II TIME-FREQUENCY ANALYSIS: FILTER BANKS AND TRANSFORMS 9

Introduction -Analysis-Synthesis Framework for M-band Filter Banks- Filter Banks for Audio Coding: Design Considerations - Quadrature Mirror and Conjugate Quadrature Filters- Tree-Structured QMF and CQF M-band Banks - Cosine Modulated "Pseudo QMF" M-band Banks - Cosine Modulated Perfect Reconstruction (PR) M-band Banks and the Modified Discrete Cosine Transform (MDCT) - Discrete Fourier and Discrete Cosine Transform - Pre-echo Distortion- Pre-echo Control Strategies.

# UNIT III AUDIO CODING AND TRANSFORM CODERS

9

Lossless Audio Coding-Lossy Audio Coding- ISO-MPEG-1A,2A,2A Advanced, 4AudioCoding - Optimum Coding in the Frequency Domain - Perceptual Transform Coder -Brandenburg-Johnston Hybrid Coder - CNET Coders - Adaptive Spectral Entropy Coding -Differential Perceptual Audio Coder - DFT Noise Substitution -DCT with Vector Quantization -MDCT with Vector Quantization.

#### UNIT IV TIME AND FREQUENCY DOMAIN

9

Time domain parameters of Speech signal – Methods for extracting the parameters: Energy, Average Magnitude – Zero crossing Rate – Silence Discrimination using ZCR and energy Short

Time Fourier analysis – Formant extraction – Pitch Extraction using time and frequency domain methods

**HOMOMORPHIC SPEECH ANALYSIS:** Cepstral analysis of Speech – Formant and Pitch Estimation – Homomorphic Vocoders.

## UNIT V LINEAR PREDICTIVE ANALYSIS

9

Formulation of Linear Prediction problem in Time Domain – Basic Principle – Auto correlation method – Covariance method – Solution of LPC equations – Cholesky method – Durbin's Recursive algorithm – lattice formation and solutions – Comparison of different methods – Application of LPC parameters – Pitch detection using LPC parameters – Formant analysis – VELP – CELP.

**TOTAL: 45 PERIODS** 

## **COURSE OUTCOMES**

Upon successful completion of the course, students will be able to

CO1: Examine auditory models to design perceptual audio quality measure.

CO2: Design analysis-by-synthesis model for speech perception.

CO3: Analyze and design algorithms for speech and audio coding.

CO4: Analyze and design algorithms for extracting parameters from the speech signal.

CO5: Implement pitch detection and formant analysis in speech signals.

#### **TEXT BOOKS**

- 1. Rabiner. L. R and Schaffer. R. W., "Digital Processing of Speech signals", Prentice Hall, 1978
- 2. Andreas Spanias, Ted Painter, Venkatraman AttiWayne Tomasi, "Audio signal processing and coding", John Wiley & Sons, 2007

#### REFERENCES

- 1. Udo Zölzer, Digital Audio Signal Processing, A John Wiley& sons Ltd Publication, Second Edition, 2008.
- 2. Mark Kahrs, Karlheinz Brandenburg, "Applications of Digital Signal Processing to Audio And Acoustics", KLUWER ACADEMIC PUBLISHERS NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW, 2002.
- 3. Blake, "Electronic Communication Systems", Thomson Delmar Publications, 2002.
- 4. Martin S. Roden, "Analog and Digital Communication System", Prentice Hall of India, 3rd Edition, 2002.
- 5. Sklar. B, "Digital Communication Fundamentals and Applications" Pearson Education, 2<sup>nd</sup> Edition, 2007.

## CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |    | PSO' | S |   |
|------|------|---|---|---|---|---|---|---|---|----|----|----|------|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1    | 2 | 3 |
| 1    | 3    | 2 | 1 | 1 | 2 | - | - | - | - | -  | -  | -  | 1    | - | 1 |
| 2    | 3    | 2 | 1 | 1 | 2 | - | - | - | - | -  | -  | -  | 1    | - | 1 |
| 3    | 3    | 2 | 1 | 1 | 2 | - | - | - | - | -  | -  | -  | 1    | - | 1 |
| 4    | 3    | 2 | 1 | 1 | 2 | - | - | - | - | -  | -  | -  | 1    | - | 1 |
| 5    | 3    | 2 | 1 | 1 | 2 | - | - | - | - | -  | -  | -  | 1    | - | 1 |
| AVg. | 3    | 2 | 1 | 1 | 2 | - | - | - | - | -  | -  | -  | 1    | - | 1 |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

#### **COURSE OBJECTIVES:**

- To understand the generation of X-ray and its uses in Medical imaging
- To describe the principle of Computed Tomography.
- To know the techniques used for visualizing various sections of the body.
- To learn the principles of different radio diagnostic equipment in Imaging.
- To discuss the radiation therapy techniques and radiation safety

UNIT I X RAYS 9

Nature of X-rays- X-Ray absorption – Tissue contrast. X- Ray Equipment (Block Diagram) – X-Ray Tube, the collimator, Bucky Grid, power supply, Digital Radiography - discrete digital detectors, storage phosphor and film scanning, X-ray Image Intensifier tubes – Fluoroscopy – Digital Fluoroscopy. Angiography, cine Angiography. Digital subtraction Angiography. Mammography.

## UNIT II COMPUTED TOMOGRAPHY

9

Principles of tomography, CT Generations, X- Ray sources- collimation- X- Ray detectors – Viewing systems – spiral CT scanning – Ultra fast CT scanners. Image reconstruction techniques – back projection and iterative method.

#### UNIT III MAGNETIC RESONANCE IMAGING

9

Fundamentals of magnetic resonance- properties of electromagnetic waves: speed, amplitude, phase, orientation and waves in matter - Interaction of Nuclei with static magnetic field and Radio frequency wave- rotation and precession — Induction of magnetic resonance signals — bulk magnetization — Relaxation processes T1 and T2. Block Diagram approach of MRI system — system magnet (Permanent, Electromagnet and Superconductors), generations of gradient magnetic fields, Radio Frequency coils (sending and receiving), shim coils, Electronic components, fMRI.

#### UNIT IV NUCLEAR IMAGING

9

Radioisotopes- alpha, beta, and gamma radiations. Radio Pharmaceuticals. Radiation detectors – gas filled, ionization chambers, proportional counter, GM counter and scintillation Detectors, Gamma camera – Principle of operation, collimator, photomultiplier tube, X-Y positioning circuit, pulse height analyzer. Principles of SPECT and PET

#### UNIT V RADIATION THERAPY AND RADIATION SAFETY

9

Radiation therapy – linear accelerator, Telegamma Machine. SRS – SRT – Recent Techniques in radiation therapy – 3D CRT – IMRT – IGRT and Cyber knife – radiation measuring instruments Dosimeter, film badges, Thermo Luminescent dosimeters – electronic dosimeter – Radiation protection in medicine – radiation protection principles

**TOTAL: 45 PERIODS** 

#### **COURSE OUTCOMES:**

## At the end of the course the student will be able to:

- CO1: Describe the working principle of the X-ray machine and its application.
- CO2: Illustrate the principle computed tomography
- CO3: Interpret the technique used for visualizing various sections of the body using Magnetic Resonance Imaging.
- CO4: Demonstrate the applications of radionuclide imaging.

CO5: Analyze different imaging techniques and choose appropriate imaging equipment for better diagnosis and outline the methods of radiation safety.

#### **TEXT BOOKS:**

- 1. Isaac Bankman, I. N. Bankman, Handbook Of Medical Imaging: Processing and Analysis(Biomedical Engineering), Academic Press, 2000
- 2. Jacob Beutel (Editor), M. Sonka (Editor), Handbook of Medical Imaging, Volume 2. Medical Image Processing and Analysis, SPIE Press 2000
- 3. Khin Wee Lai, DyahEkashantiOctorinaDewi "Medical Imaging Technology", Springer Singapore, 2015

#### **REFERENCES**

- 1. Khandpur R.S, "Handbook of Biomedical Instrumentation", Tata McGraw Hill, New Delhi, 2003.
- 2. Dougherty, Geoff (Ed.), "Medical Image Processing Techniques and Applications ",Springer-Verlag New York, 2011

# CO's- PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |     |   |   |   |    |                  |          | PSO' | s |   |
|------|------|---|---|---|---|-----|---|---|---|----|------------------|----------|------|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6   | 7 | 8 | 9 | 10 | 11               | 12       | 1    | 2 | 3 |
| 1    | 3    | 2 | 1 | 1 | 2 | -   | - | - | - | -  | \ <del>-</del> \ | <i>}</i> | 1    | - | 1 |
| 2    | 3    | 2 | 1 | 1 | 2 | -   | - | - | - | -  | - 1              |          | 1    | - | 1 |
| 3    | 3    | 2 | 1 | 1 | 2 |     | - | - |   | -  |                  | -        | 1    | - | 1 |
| 4    | 3    | 2 | 1 | 1 | 2 | -   | - | 1 | - |    | -                | -        | 1    | - | 1 |
| 5    | 3    | 2 | 1 | 1 | 2 | - 1 | - | 1 | - | -  | -                | -        | 1    | - | 1 |
| AVg. | 3    | 2 | 1 | 1 | 2 | -   | - | 1 | - | -  | -                | -        | 1    | - | 1 |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

## CBM342 BRAIN COMPUTER INTERFACE AND APPLICATIONS

LTPC 3 0 0 3

#### **COURSE OBJECTIVES:**

#### The student should be made to:

- To understand the basic concepts of brain computer interface
- To study the various signal acquisition methods
- To study the signal processing methods used in BCI

## UNIT I INTRODUCTION TO BCI

9

Fundamentals of BCI – Structure of BCI system – Classification of BCI – Invasive, Non-invasive and Partially invasive BCI – EEG signal acquisition - Signal Preprocessing – Artifacts removal.

# UNIT II ELECTROPHYSIOLOGICAL SOURCES

9

Sensorimotor activity – Mu rhythm, Movement Related Potentials – Slow Cortical Potentials-P300 - Visual Evoked Potential - Activity of Neural Cells - Multiple Neuromechanisms.

## UNIT III FEATURE EXTRACTION METHODS

9

Time/Space Methods – Fourier Transform, PSD – Wavelets – Parametric Methods – AR,MA,ARMA models – PCA – Linear and Non-Linear Features.

## UNIT IV FEATURE TRANSLATION METHODS

Linear Discriminant Analysis – Support Vector Machines - Regression – Vector Quantization–Gaussian Mixture Modeling – Hidden Markov Modeling – Neural Networks.

#### UNIT V APPLICATIONS OF BCI

9

Functional restoration using Neuroprosthesis - Functional Electrical Stimulation, Visual Feedback and control - External device control, Case study: Brain actuated control of mobile Robot.

# **COURSE OUTCOMES:**

On successful completion of this course, the student will be able to

CO1: Describe BCI system and its potential applications.

CO2: Analyze event related potentials and sensory motor rhythms.

CO3: Compute features suitable for BCI.

CO4: Design classifier for a BCI system.

CO5: Implement BCI for various applications.

**TOTAL:45 PERIODS** 

#### **TEXT BOOKS**

**1.** Bernhard Graimann, Brendan Allison, Gert Pfurtscheller, "Brain-Computer Interfaces: Revolutionizing Human-Computer Interaction", Springer, 2010.

#### **REFERENCES**

- 1. R. Spehlmann, "EEG Primer", Elsevier Biomedical Press, 1981.
- 2. Arnon Kohen, "Biomedical Signal Processing", Vol I and II, CRC Press Inc, Boca Rato, Florida, 1986.
- 3. Bishop C.M., "Neural Networks for Pattern Recognition", Oxford, Clarendon Press, 1995. CO's-PO's & PSO's MAPPING

| CO's | PO's |   |     |   |   |     |   |     |   |                  |     |              | PSO' | S |   |
|------|------|---|-----|---|---|-----|---|-----|---|------------------|-----|--------------|------|---|---|
|      | 1    | 2 | 3   | 4 | 5 | 6   | 7 | 8   | 9 | 10               | 11  | 12           | 1    | 2 | 3 |
| 1    | 3    | 2 | 1   | 1 | 2 | 1.0 | - |     | - | <i>:  -</i>      | - / | -            | / -  | - | - |
| 2    | 3    | 2 | 1   | 1 | 2 | -   | - | - 3 | - | 7-               | -7  | -            | 1    | - | - |
| 3    | 3    | 2 | 1 4 | 1 | 2 |     | - |     | - | / - <sub>_</sub> | 7-  | 4            | >    | - | - |
| 4    | 3    | 2 | 1   | 1 | 2 | -   | - | -   | - | 3                | -   | <i>j</i> - " | -    | - | - |
| 5    | 3    | 2 | 1   | 1 | 2 | -   | - | -   | - | -                | - 7 | -            | -    | - | - |
| AVg. | 3    | 2 | 1   | 1 | 2 | -   | - | -   | - | -                | -   | -            | -    | - | - |

1 - low, 2 - medium, 3 - high, '-' - no correlation

CBM340 BIOMETRIC SYSTEMS

LTPC 3 0 0 3

#### **COURSE OBJECTIVES:**

# To Study about:

- To introduce the relevance of this course to the existing technology through demonstrations, case studies, simulations, contributions of scientist, national/international policies with a futuristic vision along with socio-economic impact and issues.
- To understand the general principles of design of biometric systems and the underlying trade-offs.
- To study the technologies of fingerprint, iris, face and speech recognition.
- To study of evaluation of biometrics systems.

## UNIT I INTRODUCTION TO BIOMETRICS

9

Introduction and back ground – biometric technologies – passive biometrics – active biometrics – Biometric characteristics, Biometric applications – Biometric Authentication systems- Taxonomy of Application Environment, Accuracy in Biometric Systems- False match rate- False non match rate-Failure to enroll rate- Derived metrics-Biometrics and Privacy.

#### UNIT II FINGERPRINT TECHNOLOGY

9

History of fingerprint pattern recognition - General description of fingerprints- fingerprint sensors, fingerprint enhancement, Feature Extraction- Ridge orientation, ridge frequency, fingerprint matching techniques- correlation based, Minutiae based, Ridge feature based, fingerprint classification, Applications of fingerprints, Finger scan- strengths and weaknesses, Evaluation of fingerprint verification algorithms.

## UNIT III FACE RECOGNITION AND HAND GEOMETRY

9

Introduction to face recognition, face recognition using PCA, LDA, face recognition using shape and texture, face detection in color images, 3D model based face recognition in video images, Neural networks for face recognition, Hand geometry – scanning – Feature Extraction – classification.

#### UNIT IV IRIS RECOGNITION

9

Introduction, Anatomical and Physiological underpinnings, Iris sensor, Iris representation and localization- Daugman and Wilde's approach, Iris matching, Iris scan strengths and Weaknesses, System performance, future directions.

# UNIT V VOICE SCAN AND MULTIMODAL BIOMETRICS

9

Voice scan, speaker features, short term spectral feature extraction, Mel frequency cepstral coefficients, speaker matching, Gaussian mixture model, NIST speaker Recognition Evaluation Program, Introduction to multimodal biometric system – Integration strategies – Architecture – level of fusion – combination strategy, examples of multimodal biometric systems, Securing and trusting a biometric transaction – matching location – local host - authentication server – match on card (MOC).

## **COURSE OUTCOMES:**

On successful completion of this course, the student will be able to

CO1: Demonstrate the principles of biometric systems.

CO2: Develop fingerprint recognition technique.

CO3: Design face recognition and hand geometry system.

CO4: Design iris recognition system.

CO5: Develop speech recognition and multimodal biometric systems.

**TOTAL:45 PERIODS** 

#### **TEXT BOOKS**

- 1. James Wayman& Anil Jain, "Biometric Systems- Technology Design and Performance Evaluation", SPRINGER (SIE), 1st Edition, 2011
- 2. Paul Reid, "Biometrics for Network Security", Pearson Education, 2004
- **3.** S.Y. Kung, S.H. Lin, M.W., "Biometric Authentication: A Machine Learning Approach", Prentice Hall, 2004

# **REFERENCES**

- 1. Nalini K Ratha, Ruud Bolle, "Automatic fingerprint recognition system", Springer, 2003.
- 2. L C Jain, I Hayashi, S B Lee, U Halici, "Intelligent Biometric Techniques in Fingerprint and

Face Recognition", CRC Press, 1st Edition, 1999.

3. John Chirillo, Scott Blaul, "Implementing Biometric Security", John Wiley & Sons, 2003.

## CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |    | PSO' | S |   |
|------|------|---|---|---|---|---|---|---|---|----|----|----|------|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1    | 2 | 3 |
| 1    | 3    | 2 | 1 | 1 | 2 | - | - | 1 | - | -  | -  | -  | 1    | - | 1 |
| 2    | 3    | 2 | 1 | 1 | 2 | - | - | 1 | - | -  | -  | -  | 1    | - | 1 |
| 3    | 3    | 2 | 1 | 1 | 2 | - | - | 1 | - | -  | -  | -  | 1    | - | 1 |
| 4    | 3    | 2 | 1 | 1 | 2 | - | - | 1 | - | -  | -  | -  | 1    | - | 1 |
| 5    | 3    | 2 | 1 | 1 | 2 | - | - | 1 | - | -  | -  | -  | 1    | - | 1 |
| AVg. | 3    | 2 | 1 | 1 | 2 | - | - | 1 | - | -  | -  | -  | 1    | - | 1 |

1 - low, 2 - medium, 3 - high, '-' - no correlation

**CBM354** 

# **COMMUNICATION SYSTEMS**

LTPC 3 0 0 3

#### COURSE OBJECTIVES:

## The student should be made to:

- · To study the various analog and digital modulation techniques
- To study the principles behind various error control coding
- To study the various digital communication techniques

## UNIT I ANALOG MODULATION

9

Amplitude Modulation – AM, DSBSC, SSBSC, VSB – Angle modulation – PM and FM – Modulators and Demodulators

# UNIT II RECEIVER CHARACTERISTICS

9

Noise sources and types – Noise figure and noise temperature – Noise in cascaded systems – Single tuned receivers – Super heterodyne receivers.

# UNIT III INFORMATION THEORY

9

Measure of information – Entropy – Source coding theorem – Discrete memoryless channels – lossless, deterministic, noiseless, BEC, BSC – Mutual information – Channel capacity – Shannon-Fano coding, Huffman Coding, run length coding, LZW algorithm.

## UNIT IV BANDPASS SIGNALING

9

Geometric representation of signals – Correlator and matched filter – ML detection – generation and detection, PSD, BER of coherent BPSK, BFSK, QPSK – Principles of QAM – Structure of non-coherent receivers – BFSK, DPSK

# UNIT V ERROR CONTROL CODING TECHNIQUES

C

Channel coding theorem – Linear block codes – Hamming codes – Cyclic codes (CRC) – Convolutional codes – Viterbi decoding (Soft/Hard decision decoding).

#### **COURSE OUTCOMES:**

On successful completion of this course, the student will be able to

CO1: comprehend and appreciate the significance and role of this course in the present contemporary world.

- CO2: Apply analog modulation techniques.
- CO3: Apply digital modulation techniques.
- CO4: Knowledge on various types of noises during transmission.
- CO5: Analyze various error control coding techniques.

#### **TOTAL:45 PERIODS**

#### **TEXT BOOKS**

- **1.** B.P.Lathi, "Modern Digital and Analog Communication Systems", Oxford University Press, 3<sup>rd</sup> Edition, 2007
- **2.** H Taub, D L Schilling, G Saha, "Principles of Communication Systems", TMH, 3<sup>rd</sup> Edition, 2007
- 3. S. Haykin, "Digital Communications", John Wiley, 2005

## **REFERENCES**

- 1. H P Hsu, Schaum "Outline Series, Analog and Digital Communications", TMH, 2006
- 2. B.Sklar, "Digital Communications Fundamentals and Applications", Pearson Education, 2<sup>nd</sup> Edition, 2007.

## CO's- PO's & PSO's MAPPING

| CO's |   |   |   |   |    | PC | )'s |   |   |    |     |    |   | PSO's | S |
|------|---|---|---|---|----|----|-----|---|---|----|-----|----|---|-------|---|
|      | 1 | 2 | 3 | 4 | 5  | 6  | 7   | 8 | 9 | 10 | 11  | 12 | 1 | 2     | 3 |
| 1    | 3 | 2 | 1 | 1 | 7- | -  | -   | - | - | -  |     | 7  | 1 | -     | - |
| 2    | 3 | 2 | 1 | 1 | /- | -  | -   | - | - | -  | -   | -  | 1 | -     | - |
| 3    | 3 | 2 | 1 | 1 |    | -  | 4-  |   |   | -  |     | -  | 1 | -     | - |
| 4    | 3 | 2 | 1 | 1 | -  | -  |     | - | - | -  | -   | -  | 1 | -     | - |
| 5    | 3 | 2 | 1 | 1 | -  | -  | -   | - | - | -  | - 1 | -  | 1 | -     | - |
| AVg. | 3 | 2 | 1 | 1 | -  | -  | -   | - | - | -  | -   | -  | 1 | -     | - |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

CBM370 WEARABLE DEVICES

LTPC 3 0 0 3

#### **COURSE OBJECTIVES:**

#### The student should be made to:

- To know the hardware requirement of wearable systems
- To understand the communication and security aspects in the wearable devices
- To know the applications of wearable devices in the field of medicine

# UNIT I INTRODUCTION TO WEARABLE SYSTEMS AND SENSORS

Wearable Systems- Introduction, Need for Wearable Systems, Drawbacks of Conventional Systems for Wearable Monitoring, Applications of Wearable Systems, Types of Wearable Systems, Components of wearable Systems. Sensors for wearable systems-Inertia movement sensors, Respiration activity sensor, Inductive plethysmography, Impedance plethysmography, pneumography, Wearable ground reaction force sensor.

# UNIT II SIGNAL PROCESSING AND ENERGY HARVESTING FOR WEARABLE DEVICES

Wearability issues -physical shape and placement of sensor, Technical challenges - sensor design, signal acquisition, sampling frequency for reduced energy consumption, Rejection of irrelevant

information. Power Requirements- Solar cell, Vibration based, Thermal based, Human body as a heat source for power generation, Hybrid thermoelectric photovoltaic energy harvests, Thermopiles.

#### UNIT III WIRELESS HEALTH SYSTEMS

9

Need for wireless monitoring, Definition of Body area network, BAN and Healthcare, Technical Challenges- System security and reliability, BAN Architecture – Introduction, Wireless communication Techniques.

#### UNIT IV SMART TEXTILE

9

Introduction to smart textile- Passive smart textile, active smart textile. Fabrication Techniques-Conductive Fibres, Treated Conductive Fibres, Conductive Fabrics, Conductive Inks.Case study-smart fabric for monitoring biological parameters - ECG, respiration.

# UNIT V APPLICATIONS OF WEARABLE SYSTEMS

9

Medical Diagnostics, Medical Monitoring-Patients with chronic disease, Hospital patients, Elderly patients, neural recording, Gait analysis, Sports Medicine.

# COURSE OUTCOMES:

On successful completion of this course, the student will be able to

CO1: Describe the concepts of wearable system.

CO2: Explain the energy harvestings in wearable device.

CO3: Use the concepts of BAN in health care.

CO4: Illustrate the concept of smart textile

CO5: Compare the various wearable devices in healthcare system

**TOTAL:45 PERIODS** 

#### **TEXT BOOKS**

- 1. Annalisa Bonfiglo and Danilo De Rossi, Wearable Monitoring Systems, Springer, 2011
- 2. Zhang and Yuan-Ting, Wearable Medical Sensors and Systems, Springer, 2013
- **3.** Edward Sazonov and Micheal R Neuman, Wearable Sensors: Fundamentals, Implementation and Applications, Elsevier, 2014
- **4.** Mehmet R. Yuce and JamilY.Khan, Wireless Body Area Networks Technology, Implementation applications, Pan Stanford Publishing Pte.Ltd, Singapore, 2012

## REFERENCES

- 1. Sandeep K.S, Gupta, Tridib Mukherjee and Krishna Kumar Venkatasubramanian, Body Area Networks Safety, Security, and Sustainability, Cambridge University Press, 2013.
- 2. Guang-Zhong Yang, Body Sensor Networks, Springer, 2006.

# CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |    | PSO' | S |   |
|------|------|---|---|---|---|---|---|---|---|----|----|----|------|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1    | 2 | 3 |
| 1    | 3    | 2 | 1 | 1 | 2 | - | - | 1 | - | -  | -  | -  | 1    | - | 1 |
| 2    | 3    | 2 | 1 | 1 | 2 | - | - | 1 | - | -  | -  | -  | 1    | - | 1 |
| 3    | 3    | 2 | 1 | 1 | 2 | - | - | 1 | - | -  | -  | -  | 1    | - | 1 |
| 4    | 3    | 2 | 1 | 1 | 2 | - | - | 1 | - | -  | -  | -  | 1    | - | 1 |
| 5    | 3    | 2 | 1 | 1 | 2 | - | - | 1 | - | -  | -  | -  | 1    | - | 1 |
| AVg. | 3    | 2 | 1 | 1 | 2 | - | - | 1 | - | -  | -  | -  | 1    | - | 1 |

1 - low, 2 - medium, 3 - high, '-' - no correlation

#### **CBM341**

# **BODY AREA NETWORKS**

LTPC 3 003

#### **COURSE OBJECTIVES:**

### The student should be made to:

- To know the hardware requirement of BAN
- To understand the communication and security aspects in the BAN
- To know the applications of BAN in the field of medicine

# UNIT I INTRODUCTION

a

Definition, BAN and Healthcare, Technical Challenges- Sensor design, biocompatibility, Energy Supply, optimal node placement, number of nodes, System security and reliability, BAN Architecture – Introduction.

#### UNIT II HARDWARE FOR BAN

9

Processor-Low Power MCUs, Mobile Computing MCUs ,Integrated processor with radio transceiver, Memory ,Antenna-PCB antenna, Wire antenna, Ceramic antenna, External antenna, Sensor Interface, Power sources- Batteries and fuel cells for sensor nodes.

# UNIT III WIRELESS COMMUNICATION AND NETWORK

9

RF communication in Body, Antenna design and testing, Propagation, Base Station-Network topology-Stand –Alone BAN, Wireless personal Area Network Technologies-IEEE 802.15.1,IEEE P802.15.13, IEEE 802.15.14, Zigbee.

# UNIT IV COEXISTENCE ISSUES WITH BAN

9

Interferences – Intrinsic - Extrinsic, Effect on transmission, Counter measures- on physical layer and data link layer, Regulatory issues-Medical Device regulation in USA and Asia, Security and Self-protection-Bacterial attacks, Virus infection, Secured protocols, Self-protection.

# UNIT V APPLICATIONS OF BAN

9

Monitoring patients with chronic disease, Hospital patients, Elderly patients, Cardiac arrythmias monitoring, Multi patient monitoring systems, Multichannel Neural recording, Gait analysis, Sports Medicine, Electronic pill.

# **COURSE OUTCOMES:**

On successful completion of this course, the student will be able to

CO1: Comprehend and appreciate the significance and role of this course in the present contemporary world.

- CO2: Design a BAN for appropriate application in medicine.
- CO3: Assess the efficiency of communication and the security parameters.
- CO4: Understand the need for medical device regulation and regulations followed in various regions.

CO5: Extend the concepts of BAN for medical applications.

# **TOTAL:45 PERIODS**

# **TEXT BOOKS**

- 1. Sandeep K.S. Gupta, Tridib Mukherjee, Krishna Kumar Venkata Subramanian, "Body Area Networks Safety, Security, and Sustainability", Cambridge University Press, 2013
- 2. Mehmet R. Yuce, Jamil Y.Khan, "Wireless Body Area Networks Technology, Implementation, and Applications", Pan Stanford Publishing Pte. Ltd., Singapore, 2012

#### **REFERENCES**

- 1. Zhang, Yuan-Ting, "Wearable Medical Sensors and Systems", Springer, 2013.
- 2. Guang-Zhong Yang(Ed.), "Body Sensor Networks", Springer, 2006.
- 3. Annalisa Bonfiglio, Danilo De Rossi, "Wearable Monitoring Systems", Springer, 2011.

#### CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |    | PSO' | S |   |
|------|------|---|---|---|---|---|---|---|---|----|----|----|------|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1    | 2 | 3 |
| 1    | 3    | 2 | 1 | 1 | 2 | - | - | 1 | - | -  | -  | -  | 1    | - | 1 |
| 2    | 3    | 2 | 1 | 1 | 2 | - | - | 1 | - | -  | -  | -  | 1    | - | 1 |
| 3    | 3    | 2 | 1 | 1 | 2 | - | - | 1 | - | -  | -  | -  | 1    | - | 1 |
| 4    | 3    | 2 | 1 | 1 | 2 | - | - | 1 | - | -  | -  | -  | 1    | - | 1 |
| 5    | 3    | 2 | 1 | 1 | 2 | - | - | 1 | - | -  | -  | -  | 1    | - | 1 |
| AVg. | 3    | 2 | 1 | 1 | 2 | - | - | 1 | - | -  | -  | -  | 1    | - | 1 |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

# CBM369 VIRTUAL REALITY AND AUGMENTED REALITY IN HEALTHCARE LTPC 3 0 0 3

#### **COURSE OBJECTIVES**

The objective of this course is to enable the student to

- Introduce the relevance of this course to the existing technology through demonstrations, case studies and applications with a futuristic vision along with socio-economic impact and issues
- Understand virtual reality, augmented reality and using them to build Biomedical engineering applications
- Know the intricacies of these platform to develop PDA applications with better optimality.
- Learn the various applications of VR.
- Learn the possibilities of implementing target-specific VR applications on mobile.

# UNIT I INTRODUCTION

9

The three I's of virtual reality-commercial VR technology and the five classic components of a VR system - Input Devices: (Trackers, Navigation, and Gesture Interfaces): Three-dimensional position trackers, navigation and manipulation-interfaces and gesture interfaces-Output Devices: Graphics displays-sound displays & haptic feedback.

# UNIT II VR DEVELOPMENT PROCESS

9

Geometric modeling - kinematics modeling - physical modeling - behaviour modeling - model management.

# UNIT III CONTENT CREATION CONSIDERATIONS

9

Methodology and terminology-user performance studies-VR health and safety issues-Usability of virtual reality system- cyber sickness -side effects of exposures to virtual reality environment

# UNIT IV VR ON THE WEB & VR ON THE MOBILE

10

JS-pros and cons-building blocks (WebVR, WebGL, Three.js, device orientation events)-frameworks (A-frame, React VR)-Google VR for Android-Scripts, mobile device configuration, building to android-cameras and interaction-teleporting-spatial audio-Assessing human parameters-device development and drivers-Design Haptics

# UNIT V APPLICATIONS

8

Medical applications-military applications-robotics applications- Advanced Real time Tracking-other applications- games, movies, simulations, therapy

**TOTAL: 45 PERIODS** 

#### **COURSE OUTCOMES**

Upon successful completion of the course, students will be able to

CO1: Analyze and Design a system or process to meet given specifications with realistic engineering constraints.

CO2: Identify problem statements and function as a member of an engineering design team.

CO3: Analyze the implications and issues pertaining to VR

CO4: Propose technical documents and give technical oral presentations related to design VR mini project results.

CO5: Develop simple and portable VR applications using appropriate software.

#### **TEXT BOOKS**

- C. Burdea & Philippe Coiffet, "Virtual Reality Technology", Second Edition, Gregory, John Wiley & Sons, Inc., 2008
- 2. Jason Jerald. 2015. The VR Book: Human-Centred Design for Virtual Reality. Association for Computing Machinery and Morgan & Claypool, New York, NY, USA.

# **REFERENCES**

- Augmented Reality: Principles and Practice (Usability) by Dieter Schmalstieg & Tobias Hollerer, Pearson Education (US), Addison-Wesley Educational Publishers Inc, New Jersey, United States, 2016. ISBN: 9780321883575
- 2. Practical Augmented Reality: A Guide to the Technologies, Applications, and Human Factors for AR and VR (Usability), Steve Aukstakalnis, Addison-Wesley Professional; 1 edition, 2016.
- 3. The Fourth Transformation: How Augmented Reality & Artificial Intelligence Will Change Everything, Robert Scoble & Shel Israel, Patrick Brewster Press; 1 edition, 2016.
- 4. Learning Virtual Reality: Developing Immersive Experiences and Applications for Desktop, Web, and Mobile, Tony Parisi, O'Reilly Media; 1 edition, 2015.
- 5. Programming 3D Applications with HTML5 and WebGL: 3D Animation and Visualization for Web Pages, Tony Parisi, O'Reilly Media; 1 edition, 2014.
- 6. Learning Three.js: The JavaScript 3D Library for WebGL Second Edition, Jos Dirksen, Packt Publishing ebooks Account; 2nd Revised ed. Edition 2015.

# **ONLINE RESOURCES**

1. <a href="http://www.vrtechnology.org/resources.html">http://www.vrtechnology.org/resources.html</a>

CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |    | PSO' | S |   |
|------|------|---|---|---|---|---|---|---|---|----|----|----|------|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1    | 2 | 3 |
| 1    | 3    | 2 | 1 | 1 | 2 | - | - | 1 | - | -  | -  | -  | 1    | - | 1 |
| 2    | 3    | 2 | 1 | 1 | 2 | - | - | 1 | - | -  | -  | -  | 1    | - | 1 |
| 3    | 3    | 2 | 1 | 1 | 2 | - | - | 1 | - | -  | -  | -  | 1    | - | 1 |
| 4    | 3    | 2 | 1 | 1 | 2 | - | - | 1 | - | -  | -  | -  | 1    | - | 1 |
| 5    | 3    | 2 | 1 | 1 | 2 | - | - | 1 | - | -  | -  | -  | 1    | - | 1 |
| AVg. | 3    | 2 | 1 | 1 | 2 | - | - | 1 | - | -  | -  | -  | 1    | - | 1 |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

**CBM367** 

# **TELEHEALTH TECHNOLOGY**

LTPC 2023

# **COURSE OBJECTIVES:**

- Learn the key principles for telemedicine and health
- Understand telemedical technology.
- Know telemedical standards, mobile telemedicine and it applications

#### UNIT I FUNDAMENTALS OF TELEMEDICINE

6

History of telemedicine, definition of telemedicine, tele-health, tele-care, scope, Telemedicine Systems, benefits & limitations of telemedicine.

# UNIT II TYPE OF INFORMATION & COMMUNICATION INFRASTRUCTURE FOR TELEMEDICINE

Audio, video, still images, text and data, internet, air/ wireless communications, GSM satellite, micro wave, Mobile health and ubiquitous healthcare.

#### UNIT III ETHICAL AND LEGAL ASPECTS OF TELEMEDICINE

6

6

Confidentiality, patient rights and consent: confidentiality and the law, the patient-doctor relationship, access to medical records, consent treatment - data protection & security, jurisdictional issues.

# UNIT IV PICTURE ARCHIVING AND COMMUNICATION SYSTEM

6

Introduction to radiology information system and ACS, DICOM, PACS strategic plan and needs assessment, technical Issues, PACS architecture.

# UNIT V APPLICATIONS OF TELEMEDICINE

6

Teleradiology, telepathology, telecardiology, teleoncology, teledermatology, telesurgery.

**30PERIODS** 

# PRACTICALS:

- 1. Porting sensor data on mobile devices
- 2. IoT for healthcare monitoring
- 3. Porting medical data on cloud platform
- 4. Cloud computing applications in health informatics
- 5. Study of telemedicine tools
- 6. Design of an application for mobile devices

30 PERIODS

**TOTAL:60 PERIODS** 

# **COURSE OUTCOMES:**

CO1: To analyze the benefits and limitations of telemedicine.

**CO2:** To apply multimedia technologies in telemedicine.

CO3: To explain protocols behind encryption techniques for secure transmission of data.

CO4: To develop radiology based information system.

CO5: To apply telemedicine in various healthcare domains.

#### **TEXT BOOKS**

- 1. Olga Ferrer Roca, Marcelo Sosa Iudicissa, "Handbook of Telemedicine", IOS Press, Netherland, 3. 2002
- **2.** Khandpur R S, "TELEMEDICINE Technology and Applications", PHI Learning Pvt Ltd., New Delhi, 2017.

3. Norris A C, "Essentials of Telemedicine and Telecare", John Wiley, New York, 2002

# **REFERENCES**

- 1. H K Huang, "PACS and Imaging Informatics: Basic Principles and Applications" Wiley, New Jersey, 2010.
- 2. Khandpur R S, "Handbook of Biomedical Instrumentation", Tata McGraw Hill, New Delhi, 2003
- 3. Keith J Dreyer, Amit Mehta, James H Thrall, "Pacs: A Guide to the Digital Revolution", Springer, New York, 2002.
- **4.** Garrett Grolemund, *Hands–On Programming with R*, O'Reilly , 1 edition , 2014.
- **5.** Michael Dawson, *Python Programming for the Absolute Beginner*, Course Technology , 3rd edition ,2010
- **6.** Magesh Jayakumar, *Arduino and Android Using Mit App Inventor*, Createspace Independent Publishing Platform , 1.0 edition ,2016

#### CO's- PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |    |         |     |    | PSO' | S |   |
|------|------|---|---|---|---|---|---|---|----|---------|-----|----|------|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  | 10      | 11  | 12 | 1    | 2 | 3 |
| 1    | 3    | 2 | 1 | 1 | 2 | - | - | - | 1  | 7       |     | -  | 2    | - | - |
| 2    | 3    | 2 | 1 | 1 | 2 | - | - | - | -  | Z,      | 'n  |    | 2    | - | - |
| 3    | 3    | 2 | 1 | 1 | 2 | - | - | - | -  | ) - · · | (-) | -  | 2    | - | - |
| 4    | 3    | 2 | 1 | 1 | 2 | - | - | 1 | -  | -       |     |    | 2    | - | - |
| 5    | 3    | 2 | 1 | 1 | 2 | - | - | 1 | -  | -       | - 1 | -  | 2    | - | - |
| AVg. | 3    | 2 | 1 | 1 | 2 |   |   | 1 | 1. |         | -   | -  | 2    | - | - |

1 - low, 2 - medium, 3 - high, '-' - no correlation

**CBM356** 

# **MEDICAL INFORMATICS**

LTPC 3003

# Preamble:

- To study the applications of information technology in health care management.
- This course provides knowledge on resources, devices, and methods required to optimize the acquisition, storage, retrieval, and use of information in health and biomedicine.

## UNIT I INTRODUCTION TO MEDICAL INFORMATICS

a

Introduction - Structure of Medical Informatics -Internet and Medicine -Security issues , Computer based medical information retrieval, Hospital management and information system, Functional capabilities of a computerized HIS, Health Informatics - Medical Informatics, Bioinformatics

# UNIT II COMPUTERS IN CLINICAL LABORATORY AND MEDICAL IMAGING 9

Automatedclinical laboratories-Automatedmethodsinhematology, cytologyandhistology, Intelligent Laboratory Information System - Computerized ECG, EEG and EMG, Computer assisted medical imaging- nuclear medicine, ultrasound imaging, computedX-raytomography, Radiationtherapyand planning, Nuclear MagneticResonance.

#### UNIT III COMPUTERISED PATIENT RECORD

9

Introduction - History taking by computer, Dialogue with the computer, Components and functionality of CPR, Development tools, Intranet, CPR in Radiology- Application server provider, Clinical information system, Computerized prescriptions for patients.

# UNIT IV COMPUTER ASSISTED MEDICAL DECISION-MAKING

9

NeurocomputersandArtificialNeuralNetworksapplication,Expertsystem-General model of CMD, Computer—assisted decision support system-production rule system cognitivemodel,semanticnetworks,decisionsanalysisinclinicalmedicine-computersin the care of critically ill patients, Computer aids for the handicapped.

# UNIT V RECENT TRENDS IN MEDICAL INFORMATICS

9

Virtualreality applicationsinmedicine, Virtual endoscopy, Computer assistedsurgery, Surgical simulation, Telemedicine - Tele surgery, Computer assisted patiented ucation and health- Medical education and health care information, computer assisted instruction in medicine.

TOTAL: 45 PERIODS

# **COURSE OUTCOMES:**

# Upon completion of the course, students will be able to:

CO1: Explain the structure and functional capabilities of Hospital Information System.

CO2: Describe the need of computers in medical imaging and automated clinical laboratory.

**CO3**: Articulate the functioning of information storage and retrieval in computerized patient record system.

CO4: Apply the suitable decision support system for automated clinical diagnosis.

CO5: Discuss the application of virtual reality and telehealth technology in medical industry.

#### **TEXT BOOKS:**

- 1. Mohan Bansal, "Medical informatics", Tata McGraw Hill Publishing Ltd, 2003.
- 2. R.D.Lele, "Computers in medicine progress in medical informatics", Tata Mcgraw Hill, 2005

# **REFERENCES:**

1. Kathryn J. Hannah, Marion J Ball, "Health Informatics", 3rd Edition, Springer, 2006.

# CO's-PO's & PSO's MAPPING

| CO's | PO's |   |    |     |   |   |      |   |      |       |       |     | PSO' | S |   |
|------|------|---|----|-----|---|---|------|---|------|-------|-------|-----|------|---|---|
|      | 1    | 2 | 3  | 4   | 5 | 6 | 7    | 8 | 9    | 10    | 11    | 12  | 1    | 2 | 3 |
| 1    | 3    | 2 | 1  | 1   | 2 | - | -    | 1 | -    |       | - 4   | /-  | 1    | 1 | 1 |
| 2    | 3    | 2 | 1  | 1   | 2 | - | -    | 1 | -    | -     | 1     | -   | 1    | 1 | 1 |
| 3    | 3    | 2 | 1  | 1   | 2 | - | -    | 1 | -    | -     | -     | -   | 1    | 1 | 1 |
| 4    | 3    | 2 | 10 | Λħι | 2 | - | m.o. | 1 | 1717 | LIZA. | 1/1 ( | 157 | 1    | 1 | 1 |
| 5    | 3    | 2 | 1  | 11  | 2 | - | T-U  | 1 | T-N  | N-J   | 77    | -   | 1    | 1 | 1 |
| AVg. | 3    | 2 | 1  | 1   | 2 | - | -    | 1 | -    | -     | -     | -   | 1    | 1 | 1 |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

CBM334 BIO MEMS

LTPC 3003

#### **COURSE OBJECTIVES**

# The objective of this course is to enable the student to

- Provide knowledge of semiconductors and solid mechanics to fabricate MEMS devices.
- Understand various mechanical and thermal sensors and actuators and their principles of operation at the micro scale level.
- Understand various electrostatic and piezoelectric sensors and actuators at the micro scale level.

- Introduce microfluidic systems.
- Know on the applications of MEMS in different field of medicine.

#### UNIT I MEMS MATERIALS AND FABRICATION

6

Semiconductor materials; photo lithography; doping; thin film growth and deposition; CVD and Ion Implantation, metallization; wet and dry etching; silicon micromachining; metal MEMS processes; submicron optical lithography; electron beam lithography; soft lithography and printing.

# UNIT II MECHANICAL AND THERMAL SENSORS AND ACTUATORS 6

Mechanical sensors and actuators – beam and cantilever –microplates, strain, pressure and flow measurements, Thermal sensors and actuators- actuator based on thermal expansion, thermal couples, thermal resistor, Shape memory alloys- Inertia sensor, flowsensor.

# UNIT III ELECTROSTATIC AND PIEZOELECTRIC SENSORS AND ACTUATOR

Electrostatic sensors and actuators- Inertia sensor, Pressure sensor, flow sensor, tactile sensor, comb drive. Piezoelectric sensor and actuator – inchworm motor, inertia sensor, flow sensor.

# UNIT IV MICROFLUIDIC SYSTEMS

6

Laminar flow in circular conduits, fluid flow in micro conduits, in submicrometer and nanoscale. microfluidic components (filters, mixers, valves, and pumps)

# UNIT V APPLICATIONS OF BIOMEMS

6

CAD for MEMS,DNA sensor, MEMS based drug delivery, Biosensors- sensors for glucose, uric acid, urea and triglyceride sensor. Introduction to the MATLAB/Simulink/ CAD tool for modelling/simulations of bioelectronics systems.

TOTAL: 30 Theory+15 lab PERIODS

# LABORATORY EXPERIMENTS

- 1. Modeling and Simulation of MEMS sensors Using MATLAB (SIMULINK) such as Accelerometer, Current and Voltage Sensor.
- 2. Design of 3D CAD of BIOMEMS sensors.
- 3. Analysis of 3D CAD of BIOMEMS sensor.

# COURSE OUTCOMES

# On successful completion of this course, the student will be able to

CO1: Summarize various MEMS fabrication techniques.

**CO2**: Elucidate different types of mechanical and thermal sensors and actuators and their principles of operation at the micro Scale level.

**CO3**: Describe different types of various electrostatic and piezoelectric sensors and actuators and their principles of operation at the micro Scale level.

CO4: Explain microfluidic systems

CO5: Illustrate MEMS in different field of medicine.

# **TEXT BOOKS:**

- TaiRan Hsu, MEMS and Microsystems Design and Manufacture, Tata McGrawHill Publishing Company, New Delhi, 2017.
- WanjunWang and Stephen A.Soper, BioMEMS:Technologies and Applications, CRC Press, NewYork, 2007.
- 3. Chang Liu, Foundations of MEMS, Pearson Education International, New Jersey, USA, 2011.

- 4. Ellis Meng, Biomedical Microsystems, CRC Press, Boca Raton, FL, 2011.
- 5. P. Tabeling, S. Chen, Introduction to microfluidics, Oxford University Press, 2010.
- Alok Pandya ,Vijai Singh, Micro/Nanofluidics and Lab-on-Chip Based Emerging Technologies for Biomedical and Translational Research Applications - Part B, Academic Press, 2022

#### CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |     |   |    |    |    | PSO' | S |   |
|------|------|---|---|---|---|---|---|-----|---|----|----|----|------|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8   | 9 | 10 | 11 | 12 | 1    | 2 | 3 |
| 1    | 3    | 2 | 1 | 1 | 2 | - | - | -   | - | -  | -  | -  | 1    | - | - |
| 2    | 3    | 2 | 1 | 1 | 2 | - | - | -   | - | -  | -  | -  | 1    | - | - |
| 3    | 3    | 2 | 1 | 1 | 2 | - | - | -   | - | -  | -  | -  | 1    | - | - |
| 4    | 3    | 2 | 1 | 1 | 2 | - | - | -   | - | -  | -  | -  | 1    | - | - |
| 5    | 3    | 2 | 1 | 1 | 2 | - | - | -   | - | -  | -  | -  | 1    | - | - |
| AVg. | 3    | 2 | 1 | 1 | 2 | - | - | - 1 | - | -/ | -  | -  | 1    | - | - |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

# CBM344 CRITICAL CARE AND OPERATION THEATRE EQUIPMENT

LTPC 3 0 0 3

### COURSE OBJECTIVES:

The student should be made to:

- To offer clear understanding of various intensive care equipment and their working.
- To understand the necessity of different operation theatre equipment.
- To know about different dialyzers and ventilators.

# UNIT I INTENSIVE CARE UNIT EQUIPMENT

9

Suction apparatus, Different types; Sterilizers, Chemical, Radiation, Steam for small and large units. ICU ventilators. Automated drug delivery systems, Infusion pumps, components of drug infusion system, closed loop control infusion system, implantable infusion system. BMD Measurements – SXA – DXA - Quantitative ultrasound bone densitometer

# UNIT II CRITICAL CARE EQUIPMENT

9

Defibrillators, Hemodialysis Machine, Different types of Dialyzers, Membranes, Machine controls and measurements. Heart Lung Machine, different types of oxygenators, peristaltic pumps, Incubators.

# UNIT III OPERATION THEATRE EQUIPMENT

9

Craniotomy, Electrosurgical Machines (ESU), electrosurgical analyzers, surgical aspirator,, Instruments for operation. Anesthesia Machine, Humidification, Sterilization aspects, Boyles apparatus. Endoscopy – Laparoscopy - Cryogenic Equipment - Anesthesia gas, Anesthesia gas monitor, - surgical microscope.

# UNIT IV CENTRALISED SYSTEMS

9

Centralized Oxygen, Nitrogen, Air supply & Suction. Centralized Air Conditioning, Operation Theatre table & Lighting. C Arm.

# UNIT V PATIENT SAFETY

ETY 9

Patient electrical safety, Types of hazards, Natural protective mechanisms against electricity, Leakage current, Inspection of grounding and patient isolation, Hazards in operation rooms, ICCU and IMCUs, Opto couplers and Pulse transformers.

#### **COURSE OUTCOMES:**

# On successful completion of this course, the student will be able to

CO1: Apply the knowledge acquired, in designing new monitoring devices for ICU and assist the medical personnel's during emergency situations

CO2: Suggest suitable surgical instruments and operational devices.

CO3: Compare the various techniques for clinical diagnosis, therapy and surgery, and its recent methods

CO4:: Assess the merits of the operation theatre equipment based on its applications

CO5: Design the devices for the particular application based on given specifications.

#### **TOTAL:45 PERIODS**

#### **TEXT BOOKS**

- **1.** John G. Webster, "Medical Instrumentation Application and Design", 4<sup>th</sup> edition, Wiley India PvtLtd,New Delhi, 2015
- 2. Joseph J. Carr and John M. Brown, "Introduction to Biomedical Equipment Technology", Pearson education, 2012
- **3.** Khandpur. R.S., "Handbook of Biomedical Instrumentation". Second Edition. Tata McGrawHill Pub. Co., Ltd. 2003

#### **REFERENCES**

- 1. L.A Geddes and L.E.Baker, "Principles of Applied Biomedical Instrumentation", 3rd Edition, 2008.
- 2. Antony Y.K.Chan,"Biomedical Device Technology, Principles and design", Charles Thomas Publisher Ltd, Illinois, USA, 2008.
- 3. Leslie Cromwell, "Biomedical Instrumentation and Measurement", Pearson Education, New Delhi, 2007.

CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |     |    |       |       |        |   |     |      |    | PSO' | S |   |
|------|------|---|---|-----|----|-------|-------|--------|---|-----|------|----|------|---|---|
|      | 1    | 2 | 3 | 4   | 5  | 6     | 7     | 8      | 9 | 10  | 11   | 12 | 1    | 2 | 3 |
| 1    | 3    | 2 | 1 | 1   | 1  | -     | -     | -      | - | -   | -    | -  | -    | - | - |
| 2    | 3    | 2 | 1 | . 1 | _1 |       | 115.7 | ui i e |   | ni. | 1171 |    | -    | - | - |
| 3    | 3    | 2 | 1 | 1   | 1  | 7 - 1 |       | تاجار  | - | 1-1 |      | 1  | J E  | - | - |
| 4    | 3    | 2 | 1 | 1   | 1  | -     | -     | -      | - | -   | -    | -  | -    | - | - |
| 5    | 3    | 2 | 1 | 1   | 1  | -     | -     | -      | - | -   | -    | -  | -    | - | - |
| AVg. | 3    | 2 | 1 | 1   | 1  | -     | -     | -      | - | -   | -    | -  | -    | - | - |

1 - low, 2 - medium, 3 - high, '-' - no correlation

#### CBM352

# **HUMAN ASSIST DEVICES**

LTPC 3 0 0 3

#### **COURSE OBJECTIVES:**

- To study the role and importance of machines that takes over the functions of the heart and lungs,
- To study various mechanical techniques that help a non-functioning heart.

- To learn the functioning of the unit which does the clearance of urea from the blood
- To understand the tests to assess the hearing loss and development of electronic devices to compensate for the loss.
- To study about recent techniques used in modern clinical applications

# UNIT I HEART LUNG MACHINE AND ARTIFICIAL HEART

9

Condition to be satisfied by the H/L System. Different types of Oxygenators, Pumps, Pulsatile and Continuous Types, Monitoring Process, Shunting, The Indication for Cardiac Transplant, Driving Mechanism, Blood Handling System, Functioning and different types of Artificial Heart, Schematic for temporary bypass of left ventricle.

#### UNIT II CARDIAC ASSIST DEVICES

9

Assisted through Respiration, Right and left Ventricular Bypass Pump, Auxiliary ventricle, Open Chest and Closed Chest type, Intra Aortic Balloon Pumping, Prosthetic Cardiac valves, Principle of External Counter pulsation techniques.

#### UNIT III ARTIFICIAL KIDNEY

9

Indication and Principle of Haemodialysis, Membrane, Dialysate, types of filter and membranes, Different types of hemodialyzers, Monitoring Systems, Wearable Artificial Kidney, Implanting Type.

# UNIT IV RESPIRATORY AND HEARING AIDS

9

Ventilator and its types-Intermittent positive pressure, Breathing Apparatus Operating Sequence, Electronic IPPB unit with monitoring for all respiratory parameters. Types of Deafness, Hearing Aids, SISI, masking techniques, wearable devices for hearing correction.

#### UNIT V RECENT TRENDS

9

Transcutaneous electrical nerve stimulator, bio-feedback, Diagnostic and point-of-care platforms.

#### COURSE OUTCOMES:

At the end of this course the students will be able to:

CO1: Explain the principles and construction of artificial heart

CO2: Understand various mechanical techniques that improve therapeutic technology

CO3: Explain the functioning of the membrane or filter that cleanses the blood.

**CO4**: Describe the tests to assess the hearing loss and development of wearable devices for the same.

**CO5**: Analyze and research on electrical stimulation and biofeedback techniques in rehabilitation and physiotherapy.

# **TEXT BOOKS:**

- 1. Gray E Wnek, Gray L Browlin Encyclopedia of Biomaterials and Biomedical Engineering –Marcel Dekker Inc New York 2004.
- 2. John. G. Webster Bioinstrumentation John Wiley & Sons (Asia) Pvt Ltd 2004
- 3. Joseph D.Bronzino, The Biomedical Engineering Handbook, Third Edition: Three Volume Set, CRC Press, 2006

#### **REFERENCES:**

- Andreas.F. Von racum, "Hand book of bio material evaluation", Mc-Millan publishers, 1980.
- 2. Gray E Wnek, Gray L Browlin, "Encyclopedia of Biomaterials and Biomedical Engineering" Marcel Dekker Inc New York 2004.

3. D.S. Sunder, "Rehabilitation Medicine", 3rd Edition, Jaypee Medical Publication, 2010

#### CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |    | PSO' | S |   |
|------|------|---|---|---|---|---|---|---|---|----|----|----|------|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1    | 2 | 3 |
| 1    | 3    | 2 | 1 | 1 | - | - | - | - | - | -  | -  | -  | 1    | - | - |
| 2    | 3    | 2 | 1 | 1 | - | - | - | - | - | -  | -  | -  | 1    | - | - |
| 3    | 3    | 2 | 1 | 1 | - | - | - | - | - | -  | -  | -  | 1    | - | - |
| 4    | 3    | 2 | 1 | 1 | - | - | - | - | - | -  | -  | -  | 1    | - | - |
| 5    | 3    | 2 | 1 | 1 | - | - | - | - | - | -  | -  | -  | 1    | - | - |
| AVg. | 3    | 2 | 1 | 1 | - | - | - | - | - | -  | -  | -  | 1    | - | - |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

**CBM365** 

# **ROBOTICS IN MEDICINE**

L T P C 3 0 0 3

# **COURSE OBJECTIVES**

The objective of this course is to enable the student to:

- Get introduced to the fundamental of robotics and position analysis
- Learn about Parallel robots, different types of motions and force analysis
- Know the basics of trajectory planning, Motion control systems and actuators
- Have an insight into various sensors and vision systems
- Be acquainted to Fuzzy control and Applications of Robotics in Medicine

# UNIT I FUNDAMENTALS AND POSITION ANALYSIS

(

Fundamentals – Classification, Advantages and disadvantages, Components, Degrees of freedom, Joints, Coordinates, Reference frames, Programming modes, Characteristics, Workspace, Languages, Collaborative robots, Position analysis – Robots as mechanisms, Conventions, Transformations, Forward and inverse kinematics, Denavit Hartenberg Representation, Degeneracy and Dextrerity, Screw based robots, Position analysis of Articulated robot **Case studies** 

# UNIT II PARALLEL ROBOTS, DIFFERENTIAL MOTIONS AND FORCE ANALYSIS 9

Parallel robots – Physical characteristics, Forward and Inverse Kinematic approaches, Planar and Spatial parallel robots, Differential relationships, The Jacobian, Large scale motions, Frame vs Robot, Differential motions and change, Hand frame, Operator, Jacobian and Inverse for Screw based and Parallel Robots, Differential operator, Lagarangian mechanics, Moments of Inertia, Dynamic Equations of Multiple DOF Robots, Static force analysis, Transformation of forces and moments between coordinate frames**Case studies** 

# UNIT III TRAJECTORY PLANNING, MOTION CONTROL SYSTEMS AND ACTUATORS10

Path and Trajectory, Joint Space and Cartesian Space Descriptions and Trajectory Planning, Cartesian, Trajectory Recording, Basics, Block diagrams, Laplace Transform, Block diagram Algebra, Transfer Functions, Characteristic equation, Steady state error, Root locus, Proportional, Integral and Derivative controllers, Compensators, Bode, Loops, Multiple IO systems, Control - State space and Digital, Nonlinear systems, Characteristics of Hydraulic, Pneumatic, Electric motors, Other actuators, Speed reduction **Case studies** 

UNIT IV SENSORS, IMAGE PROCESSING AND ANALYSIS WITH VISION SYSTEMS

Sensor Characteristics, Position, Velocity, Acceleration, Force, Pressure and Torque, Microswitches, Visible and IR, Touch, Proximity, Range finders, Sniff, Vision, Transforms – Fourier, Hough, Resolution, Quantization, Sampling, Image processing, Segmentation, Region growing and splitting, Operations, Object recognition, Depth, Specialized lighting, Compression, Colour images, Heuristics, Case studies

#### UNIT V FUZZY CONTROL AND APPLICATIONS IN MEDICINE

8

Fuzzy control - Crisp vs Fuzzy, Sets, Inference rules, Defuzzification, Simulation, Applications in Biomedical Engineering, Applications in rehabilitation, Nanobots in medicine, Clinical diagnosis and Surgery – Cardiac and abdominal procedures with teleoperated robots, Orthopedic surgery with cooperative robots **Case studies** 

**TOTAL: 45 PERIODS** 

#### **COURSE OUTCOMES**

Upon successful completion of the course, students will be able to

CO1: Describe the fundamental of robotics and position analysis

CO2: Outline the functioning of parallel robots, different types of motions and force analysis.

CO3: Portray the basics of trajectory planning, Motion control systems and actuators.

CO4: Recognize and explain the use of various sensors and vision systems in robotics.

CO5: Employ Fuzzy control in robotics and apply it to Robotics in Medicine

# **TEXT BOOKS**

- 1. S. B. Niku, Introduction to Robotics, Analysis, Control, Applications, Pearson Education, 2020
- 2. Robert Schilling, Fundamentals of Robotics-Analysis and control, Prentice Hall of India, 2003.
- 3. Fu Gonzales and Lee, Robotics, McGraw Hill, 1987.
- 4. J Craig, Introduction to Robotics, Pearson Education, 2005.

## **REFERENCES**

- 1. Grover, Wiess, Nagel and Oderey, Industrial Robotics, McGraw Hill, 2012.
- 2. Klafter, Chmielewski and Negin, Robot Engineering, Prentice Hall Of India, 1989.
- 3. Mittal, Nagrath, Robotics and Control, Tata McGraw Hill publications, 2003.
- 4. Bijay K. Ghosh, Ning Xi, T.J. Tarn, Control in Robotics and Automation Sensor Based integration, Academic Press, 1999.
- 5. Mikell P. Groover, Mitchell Weiss, Industrial robotics, technology, Programming and Applications, McGraw Hill International Editions, 1986.
- 6. Richard D. Klafter, Thomas A. Chmielewski and Michael Negin, Robotic engineering An Integrated Approach, Prentice Hall Inc. Englewoods Cliffs, NJ, USA, 1989.

# **ONLINE RESOURCES**

- 1. <a href="https://www.coursera.org/lecture/ghi-healthcare-innovation-what-success-look-like-how-to-achieve/robotic-surgery-interview-with-hutan-ashrafian-QIUBV">https://www.coursera.org/lecture/ghi-healthcare-innovation-what-success-look-like-how-to-achieve/robotic-surgery-interview-with-hutan-ashrafian-QIUBV</a>
- 2. https://onlinecourses.nptel.ac.in/noc21 me49/preview

# CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |    | PSO' | S |   |
|------|------|---|---|---|---|---|---|---|---|----|----|----|------|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1    | 2 | 3 |
| 1    | 3    | 2 | 1 | 1 | 1 | - | - | - | - | -  | -  | -  | 1    | - | - |
| 2    | 3    | 2 | 1 | 1 | 1 | - | - | - | - | -  | -  | -  | 1    | - | - |
| 3    | 3    | 2 | 1 | 1 | 1 | - | - | - | - | -  | -  | -  | 1    | - | - |

| 4    | 3 | 2 | 1 | 1 | 1 | - | - | - | - | - | - | - | 1 | - | - |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 5    | 3 | 2 | 1 | 1 | 1 | - | - | - | - | - | - | - | 1 | - | - |
| AVg. | 3 | 2 | 1 | 1 | 1 | - | - | - | - | - | - | - | 1 | - | - |

1 - low, 2 - medium, 3 - high, '-' - no correlation

#### CBM368 THERAPEUTIC EQUIPMENT

L TPC 3 003

# **COURSE OBJECTIVES:**

- To learn the principles of cardiac assist devices.
- To understand the need and use of extracorporeal devices, and the use of lasers in medicine.
- To enable the students to gain knowledge on the working of therapeutic clinical equipment.

# UNIT I CARDIAC AND RESPIRATORY THERAPY EQUIPMENT

Cardiac Pacemaker: Internal and External Pacemaker— Programmable pacemakers. Cardiac Defibrillators: AC and DC Defibrillator- Internal and External Defibrillators - Protection Circuit, Defibrillator analyzers. Cardiac ablation catheter.

Types of Ventilators – Pressure, Volume, and Time controlled. Basic principles of electromechanical, pneumatic and electronic ventilators, Patient Cycle Ventilators, Ventilator testing. Humidifiers, Nebulizers, Inhalators.

# UNIT II BIOMECHANICAL THERAPEUTIC EQUIPMENT

9

9

Electrodiagnosis, Therapeutic radiation, Electrotherapy, Electrodes, Stimulators for Nerve and Muscle, Functional Electrical Stimulation. peripheral nerve stimulator, ultrasonic stimulators, Stimulators for pain and relief - Inferential Therapy Unit, TENS. GAIT Assessment and Therapy. Continuous Passive Motion unit, Cervical / Lumber Traction Machine -Traction Table.

# UNIT III BODY CARE EQUIPMENT

9

Skin Treatment: Ultrasonic spot remover, vacuum therapy unit, Skin tightening, Wrinkle Reduction, Facial and Rejuvenation. Laser hair therapy machine. Body Slimmer/Shaper – Deep Heat Therapy, Massager, Fitness – Treadmill, Bike.

# UNIT IV DENTAL CARE EQUIPMENT

C

Dental Chair - Dental Hand pieces and Accessories: Evolution of rotary equipment, Low-speed handpiece, High-speed handpiece, Hand piece maintenance. Vacuum and Pneumatic techniques: Vacuum techniques, Oral evacuation systems, Vacuum pump, Pneumatic techniques, Dental compressor. Decontamination Unit and constant fumigation unit. Dental Radiography: Dental X-ray Machine.

## UNIT V HEAT & PHOTON THERAPY EQUIPMENT

9

High frequency heat therapy, Principle, Short wave diathermy, Microwave diathermy, Ultrasonic therapy, Lithotripsy. Therapeutic UV and IR Lamps. Basic principles of Biomedical LASERS: Applications of lasers in medicine, CO2laser, He-Ne laser, Nd-YAG and Ruby laser.

#### **COURSE OUTCOMES:**

On successful completion of this course, the student will be able to

**CO1:** Suggest suitable therapeutic devices for ailments related to cardiology, pulmonology, neurology, etc

CO2: Comprehend the principles of bodycare equipment

CO3: Understand the operation of dental care equipment.

**CO4:** Analyze the different types of therapies for suitable applications.

CO5: Appreciate the application of lasers in biomedical applications.

**TOTAL:45 PERIODS** 

#### **TEXT BOOKS**

- **1.** Khandpur. R.S., "Handbook of Biomedical Instrumentation". Second Edition. Tata McGrawHill Pub. Co., Ltd. 2003
- 2. John.G.Webster. "Medical Instrumentation, Application and Design". Fourth Edition.Wiley &s ons, Inc., NewYork. 2009

#### **REFERENCES**

- 1. Leslie Cromwell, Fred. J. Weibell & Erich. A.Pfeiffer. "Biomedical Instrumentation and Measurements". Second Edition. Prentice Hall Inc.2000.
- 2. John Low & Ann Reed. "Electrotherapy Explained, Principles and Practice". Second Edition. Butterworth Heinemann Ltd. 2000.
- 3. Joseph. J. Carr, John Michael Brown, "Introduction to Biomedical Equipment Technology", Prentice Hall and Technology, 2008.

#### CO's- PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |    |    |    |    | PSO' | S |   |
|------|------|---|---|---|---|---|---|---|----|----|----|----|------|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  | 10 | 11 | 12 | 1    | 2 | 3 |
| 1    | 3    | 2 | 1 | 1 |   | - | - |   | -1 | -  |    | -  | 1    | - | - |
| 2    | 3    | 2 | 1 | 1 | - | - |   | - |    |    | -  | -  | 1    | - | - |
| 3    | 3    | 2 | 1 | 1 | - | - | - | - | -  | -  | -  | -  | 1    | - | - |
| 4    | 3    | 2 | 1 | 1 | - | - | - | - | -  | -  | -  | -  | 1    |   | - |
| 5    | 3    | 2 | 1 | 1 | - | - | - | - | -  | -  | -  | -  | 1    | - | - |
| AVg. | 3    | 2 | 1 | 1 | - | - | - | F | -  | -  | -  | -  | 1    | - | - |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

# CBM331 ADVANCEMENTS IN HEALTHCARE TECHNOLOGY

LTPC 3 0 0 3

# **COURSE OBJECTIVES:**

#### The student should be made to:

- Understand the needs for wearable devices and the technology
- Learn the concepts in digital health care and digital hospitals
- Apply the tools in design, testing and developing digital health care equipment

# UNIT I DIGITAL HEALTH

9

Digital Health: Requirements and best practices, Laws and regulations in Digital health, Ethical issues, barriers and strategies for innovation.

#### UNIT II DIGITAL RADIOLOGY

Ç

Digital radiology for digital hospital, picture archiving and communication, system integration, digital history of radiology, medical image archives, storage and networks.

#### UNIT III E-HEALTH

9

E-Health: Health care networking, medical reporting using speech recognition, physiological tests and functional diagnosis with digital methods, tele-consultation in medicine and radiology.

# UNIT IV M-HEALTH CARE AND WEARABLE DEVICES

Introduction to mobile healthcare devices-economy-average length of stay in hospital, outpatient care, health care costs, mobile phones, 4G, smart devices, wearable devices, Uptake of e-health and m-health technologies. Standards, system Design and case study.

#### UNIT V MODALITY AND STANDARDS FOR INTER-OPERABILITY 9

Multimodality registration in daily clinical practice. Mobile healthcare. Selection and Implementation in e-Health project, design of medical equipment based on user needs. Security and privacy in digital health care. Case study.

#### **COURSE OUTCOMES:**

# On successful completion of this course, the student will be able to

CO1: Interpret the need for digital methods of handling medical records

CO2: Explain the digital radiology

CO3: Modify the tools and methods for work flow in E-Health

CO4: Identify the available technology for wearable healthcare devices

CO5: Compare various standards for inter-operability of devices, quality and safety standards for developing healthcare systems

**TOTAL:45 PERIODS** 

9

#### **TEXT BOOKS**

- 1. Christoph Thuemmler, Chunxue Bai, "Health 4.0: How Virtualization and Big Data are Revolutionizing Healthcare", Springer, 1st ed. 2017
- 2. Wlater Hruby, "Digital revolution in radiology Bridging the future of health care, second edition, Springer, New York. 2006
- 3. Samuel A. Fricker, Christoph Thümmler, Anastasius Gavras, "Requirements Engineering For Digital Health", Springer, 2015

## **REFERENCES**

- 1. Rick Krohn (Editor), David Metcalf, Patricia Salber, "Health-e Everything: Wearables and The Internet of Things for Health, ebook. 2013.
- 2. Khandpur,R.S,"Handbook of Biomedical Instrumentation ",Second Edition. Tata Mc Graw Hill Pub. Co., Ltd. 2003
- 3. John, G. Webster. Medical Instrumentation: Application and Design. Second Edition. Wiley Publisher, New Delhi. 2013.

# CO's- PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |    | PSO' | S |   |
|------|------|---|---|---|---|---|---|---|---|----|----|----|------|---|---|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1    | 2 | 3 |
| 1    | 3    | 2 | 1 | 1 | 1 | - | - | - | - | -  | -  | -  | 1    | 1 | - |
| 2    | 3    | 2 | 1 | 1 | 1 | - | - | - | - | -  | -  | -  | 1    | 1 | - |
| 3    | 3    | 2 | 1 | 1 | 1 | - | - | - | - | -  | -  | -  | 1    | 1 | - |
| 4    | 3    | 2 | 1 | 1 | 1 | - | - | - | - | -  | -  | -  | 1    | 1 | - |
| 5    | 3    | 2 | 1 | 1 | 1 | - | - | - | - | -  | -  | -  | 1    | 1 | - |
| AVg. | 3    | 2 | 1 | 1 | 1 | - | - | - | - | -  | -  | -  | 1    | 1 | - |

1 - low, 2 - medium, 3 - high, '-' - no correlation

# **SOFT CORE - MANAGEMENT**

#### **GE3751**

#### PRINCIPLES OF MANAGEMENT

L T P C 3 0 0 3

#### **COURSE OBJECTIVES:**

- Sketch the Evolution of Management.
- Extract the functions and principles of management.
- Learn the application of the principles in an organization.
- Study the various HR related activities.
- Analyze the position of self and company goals towards business.

# UNIT I INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS

a

Definition of Management – Science or Art – Manager Vs Entrepreneur- types of managers-managerial roles and skills – Evolution of Management –Scientific, human relations, system and contingency approaches – Types of Business organization- Sole proprietorship, partnership, company-public and private sector enterprises- Organization culture and Environment – Current trends and issues in Management.

# UNIT II PLANNING

9

Nature and purpose of planning – Planning process – Types of planning – Objectives – Setting objectives – Policies – Planning premises – Strategic Management – Planning Tools and Techniques – Decision making steps and process.

# UNIT III ORGANISING

9

Nature and purpose – Formal and informal organization – Organization chart – Organization structure – Types – Line and staff authority – Departmentalization – delegation of authority – Centralization and decentralization – Job Design - Human Resource Management – HR Planning, Recruitment, selection, Training and Development, Performance Management, Career planning and management.

# UNIT IV DIRECTING

9

Foundations of individual and group behaviour— Motivation – Motivation theories – Motivational techniques – Job satisfaction – Job enrichment – Leadership – types and theories of leadership – Communication – Process of communication – Barrier in communication – Effective communication – Communication and IT.

#### UNIT V CONTROLLING

9

System and process of controlling – Budgetary and non - Budgetary control techniques – Use of computers and IT in Management control – Productivity problems and management – Control and performance – Direct and preventive control – Reporting.

#### **COURSE OUTCOMES:**

**TOTAL: 45 PERIODS** 

CO1: Upon completion of the course, students will be able to have clear understanding of managerial functions like planning, organizing, staffing, leading & controlling.

CO2: Have same basic knowledge on international aspect of management.

CO3: Ability to understand management concept of organizing.

CO4: Ability to understand management concept of directing.

CO5: Ability to understand management concept of controlling.

# **TEXT BOOKS:**

- 1. Harold Koontz and Heinz Weihrich "Essentials of management" Tata McGraw Hill, 1998.
- 2. Stephen P. Robbins and Mary Coulter, "Management", Prentice Hall (India)Pvt. Ltd., 10<sup>th</sup> Edition, 2009.

# **REFERENCES:**

- 1. Robert Kreitner and MamataMohapatra, "Management", Biztantra, 2008.
- 2. Stephen A. Robbins and David A. Decenzo and Mary Coulter, "Fundamentals of Management" Pearson Education, 7th Edition, 2011.
- 3. Tripathy PC and Reddy PN, "Principles of Management", Tata Mcgraw Hill, 1999.

#### CO's-PO's & PSO's MAPPING

| CO's |      |    |   | PSO's |     |     |     |       |     |                  |                               |    |     |   |      |
|------|------|----|---|-------|-----|-----|-----|-------|-----|------------------|-------------------------------|----|-----|---|------|
| COS  | 1    | 2  | 3 | 4     | 5   | 6   | 7   | 8     | 9   | 10               | 11                            | 12 | 1   | 2 | 3    |
| 1    | 3    |    | - | -     | -   | 1   | -   | -     | - / | / <del>-</del> } | -                             | -  | 2   | 1 | 1    |
| 2    | -    | 1  | 1 | -     |     | 7-1 | N.F | 1 - 1 | /   | -//              | -                             | -  | 2   | 1 | -    |
| 3    | 1    |    | - | 2     | 160 | -   | 1   | V- (  | 2   |                  | 1                             | 1  | -   | - | 2    |
| 4    | -    | 1  | 1 | 1     | 2   |     | -   | 1     | 2   | 4.               | -                             | 4  | 1   | 1 | 1    |
| 5    | 1    | 77 |   | -     | 1   | 1   | -   | -//   | -   | 3                | $\Gamma \setminus \mathbb{L}$ | 1  | 1   | - | 1    |
| AVg. | 1.66 | 1  | 1 | 1.5   | 1.5 | 1   | 1   | 1     | 2   | 3                | 1                             | 1  | 1.5 | 1 | 1.25 |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

**GE3752** 

# **TOTAL QUALITY MANAGEMENT**

LTPC

3 0 0 3

#### **COURSE OBJECTIVES:**

- Teach the need for quality, its evolution, basic concepts, contribution of quality gurus, TQMframework, Barriers and Benefits of TQM.
- Explain the TQM Principles for application.
- Define the basics of Six Sigma and apply Traditional tools, New tools, Benchmarking andFMEA.
- Describe Taguchi's Quality Loss Function, Performance Measures and apply Techniqueslike QFD, TPM, COQ and BPR.
- Illustrate and apply QMS and EMS in any organization.

# UNIT I INTRODUCTION

Introduction - Need for quality - Evolution of quality - Definition of quality - Dimensions of product and service quality -Definition of TQM-- Basic concepts of TQM - Gurus of TQM (Brief introduction) -- TQM Framework- Barriers to TQM -Benefits of TQM.

# UNIT II TQM PRINCIPLES

C

Leadership - Deming Philosophy, Quality Council, Quality statements and Strategic planning-Customer Satisfaction –Customer Perception of Quality, Feedback, Customer complaints, Service Quality, Kano Model and Customer retention – Employee involvement – Motivation, Empowerment, Team and Teamwork, Recognition & Reward and Performance Appraisal-Continuous process improvement –Juran Trilogy, PDSA cycle, 5S and Kaizen - Supplier partnership – Partnering, Supplier selection, Supplier Rating and Relationship development.

# UNIT III TQM TOOLS & TECHNIQUES I

The seven traditional tools of quality - New management tools - Six-sigma Process Capability-Bench marking - Reasons to benchmark, Benchmarking process, What to Bench Mark, Understanding Current Performance, Planning, Studying Others, Learning from the data, Using the findings, Pitfalls and Criticisms of Benchmarking - FMEA - Intent, Documentation, Stages: Design FMEA and Process FMEA.

#### UNIT IV TQM TOOLS & TECHNIQUES II

9

9

Quality circles – Quality Function Deployment (QFD) - Taguchi quality loss function – TPM – Concepts, improvement needs – Performance measures- Cost of Quality - BPR.

# UNIT V QUALITY MANAGEMENT SYSTEM

9

Introduction-Benefits of ISO Registration-ISO 9000 Series of Standards-Sector-Specific Standards - AS 9100, TS16949 and TL 9000-- ISO 9001 Requirements-Implementation-Documentation-Internal Audits-Registration-ENVIRONMENTAL MANAGEMENT SYSTEM: Introduction—ISO 14000 Series Standards—Concepts of ISO 14001—Requirements of ISO 14001-Benefits of EMS.

# **TOTAL: 45 PERIODS**

# **COURSE OUTCOMES:**

CO1: Ability to apply TQM concepts in a selected enterprise.

CO2: Ability to apply TQM principles in a selected enterprise.

**CO3:** Ability to understand Six Sigma and apply Traditional tools, New tools, Benchmarking and FMEA.

**CO4:** Ability to understand Taguchi's Quality Loss Function, Performance Measures and applyQFD, TPM, COQ and BPR.

CO5: Ability to apply QMS and EMS in any organization.

CO's-PO's & PSO's MAPPING

| CO's |   |     | PO's |   |   |     |   |     |   |      |        |    | PSO's |   |   |  |  |
|------|---|-----|------|---|---|-----|---|-----|---|------|--------|----|-------|---|---|--|--|
|      | 1 | 2   | 3    | 4 | 5 | 6   | 7 | 8   | 9 | 10   | 11     | 12 | 1     | 2 | 3 |  |  |
| 1    |   | 3   |      |   |   |     |   | 1 7 |   |      |        | 3  | 2     |   | 3 |  |  |
| 2    |   |     | -    |   |   | 3   |   |     |   |      |        | 3  |       | 2 |   |  |  |
| 3    |   |     | V    |   | 3 |     |   |     | 3 | 4    |        |    | 4     | 2 | 3 |  |  |
| 4    |   | 2   |      |   | 3 | 2   | 3 | 2   |   |      |        | 3  | 3     | 2 |   |  |  |
| 5    |   |     | 3    |   |   | 3   | 3 | 2   |   |      |        |    |       |   |   |  |  |
| AVg. |   | 2.5 | 3    |   | 3 | 2.6 | 3 | 2   | 3 | LLIA | LAZI I | 3  | 2.5   | 2 | 3 |  |  |

1 - low, 2 - medium, 3 - high, '-' - no correlation

#### **TEXT BOOK:**

 Dale H.Besterfiled, Carol B.Michna, Glen H. Bester field, Mary B. Sacre, Hemant Urdhwareshe and Rashmi Urdhwareshe, "Total Quality Management", Pearson Education Asia, Revised Third Edition, Indian Reprint, Sixth Impression, 2013.

# **REFERENCES:**

- 1. Joel.E. Ross, "Total Quality Management Text and Cases", Routledge., 2017.
- 2. Kiran.D.R, "Total Quality Management: Key concepts and case studies, Butterworth –Heinemann Ltd, 2016.
- 3. Oakland, J.S. "TQM Text with Cases", Butterworth Heinemann Ltd., Oxford, Third Edition, 2003.
- 4. Suganthi,L and Anand Samuel, "Total Quality Management", Prentice Hall (India) Pvt. Ltd.,2006.

## GE3753 ENGINEERING ECONOMICS AND FINANCIAL ACCOUNTING

LTPC 3 0 0 3

# **COURSE OBJECTIVES:**

- Understanding the concept of Engineering Economics.
- Implement various micro economics concept in real life.
- Gaining knowledge in the field of macro economics to enable the students to have better
- understanding of various components of macro economics.
- Understanding the different procedures of pricing.
- Learn the various cost related concepts in micro economics.

#### UNIT I DEMAND & SUPPLY ANALYSIS

9

Managerial Economics - Relationship with other disciplines - Firms: Types, objectives and goals - Managerial decisions - Decision analysis.Demand - Types of demand - Determinants of demand - Demand function - Demand elasticity - Demand forecasting - Supply - Determinants of supply - Supply function - Supply elasticity.

# UNIT II PRODUCTION AND COST ANALYSIS

9

Production function - Returns to scale - Production optimization - Least cost input - Isoquants - Managerial uses of production function.

Cost Concepts - Cost function - Determinants of cost - Short run and Long run cost curves - Cost Output Decision - Estimation of Cost.

# UNIT III PRICING

۵

Determinants of Price - Pricing under different objectives and different market structures - Price discrimination - Pricing methods in practice.

# UNIT IV FINANCIAL ACCOUNTING (ELEMENTARY TREATMENT)

9

Balance sheet and related concepts - Profit & Loss Statement and related concepts - - Financial Ratio Analysis - Cash flow analysis - Funds flow analysis - Comparative financial statements - Analysis & Interpretation of financial statements.

# UNIT V CAPITAL BUDGETING (ELEMENTARY TREATMENT)

9

Investments - Risks and return evaluation of investment decision - Average rate of return - Payback Period - Net Present Value - Internal rate of return.

**TOTAL: 45 PERIODS** 

#### **COURSE OUTCOMES: Students able to**

**CO1:** Upon successful completion of this course, students will acquire the skills to apply the basics of economics and cost analysis to engineering and take economically sound decisions

CO2: Evaluate the economic theories, cost concepts and pricing policies

**CO3**: Understand the market structures and integration concepts

**CO4**: Understand the measures of national income, the functions of banks and concepts of globalization

**CO5:** Apply the concepts of financial management for project appraisal

### **TEXT BOOKS:**

1. Panneer Selvam, R, "Engineering Economics", Prentice Hall of India Ltd, New Delhi, 2001.

2. Managerial Economics: Analysis, Problems and Cases - P. L. Mehta, Edition, 13. Publisher, Sultan Chand, 2007.

#### REFERENCES:

- 1. Chan S.Park, "Contemporary Engineering Economics", Prentice Hall of India, 2011.
- 2. Donald.G. Newman, Jerome.P.Lavelle, "Engineering Economics and analysis" Engg. Press, Texas, 2010.
- 3. Degarmo, E.P., Sullivan, W.G and Canada, J.R, "Engineering Economy", Macmillan, New York, 2011.
- 4. Zahid A khan: Engineering Economy, "Engineering Economy", Dorling Kindersley, 2012
- 5. Dr. S. N. Maheswari and Dr. S.K. Maheshwari: Financial Accounting, Vikas, 2009

#### CO's-PO's & PSO's MAPPING

| CO's |     |     | PO's |   | PSO's |   |      |     |          |    |     |    |     |     |   |
|------|-----|-----|------|---|-------|---|------|-----|----------|----|-----|----|-----|-----|---|
|      | 1   | 2   | 3    | 4 | 5     | 6 | 7    | 8   | 9        | 10 | 11  | 12 | 1   | 2   | 3 |
| 1    | -   | 3   | -    | - | 7-1   | - | -    | -   | -        | 2  | -   | -  | 1   | 3   | - |
| 2    | -   | 3   | -    | - | - 1   |   | 1-h. | -   | <i>/</i> |    | - 7 | -  | -   | 2   | 2 |
| 3    | -   | 2   | -    | - | B     | - | J- " | - 1 |          | D  |     | -  | -   | -   | - |
| 4    | 2   | 3   | 3    | - | 2     |   | _    | -   | -        |    | 17  | L- | 2   | 3   | - |
| 5    | 3   | 3   | 3    | - | 2     | - | -    | -   | -        | -  | 7   | \_ | 2   | -   | 2 |
| AVg. | 2.5 | 2.4 | 3    | - | 2     | - | -    | -   | -        | 2  | ¥   | 7  | 1.8 | 2.6 | 2 |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

**GE3754** 

# **HUMAN RESOURCE MANAGEMENT**

L T P C 3 0 0 3

#### **COURSE OBJECTIVE:**

- To provide knowledge about management issues related to staffing,
- To provide knowledge about management issues related to training,
- To provide knowledge about management issues related to performance
- To provide knowledge about management issues related to compensation
- To provide knowledge about management issues related to human factors consideration and compliance with human resource requirements.

# UNIT I INTRODUCTION TO HUMAN RESOURCE MANAGEMENT

9

The importance of human resources – Objective of Human Resource Management - Human resource policies - Role of human resource manager.

#### UNIT II HUMAN RESOURCE PLANNING

9

Importance of Human Resource Planning – Internal and External sources of Human Resources - Recruitment - Selection – Socialization.

# UNIT III TRAINING AND EXECUTIVE DEVELOPMENT

9

Types of training and Executive development methods – purpose – benefits.

#### UNIT IV EMPLOYEE COMPENSATION

9

Compensation plan – Reward – Motivation – Career Development - Mentor – Protege relationships.

# UNIT V PERFORMANCE EVALUATION AND CONTROL

Performance evaluation – Feedback - The control process – Importance – Methods – grievances – Causes – Redressal methods.

**TOTAL: 45 PERIODS** 

9

#### **COURSE OUTCOMES:**

CO1: Students would have gained knowledge on the various aspects of HRM

CO2: Students will gain knowledge needed for success as a human resources professional.

CO3: Students will develop the skills needed for a successful HR manager.

**CO4**: Students would be prepared to implement the concepts learned in the workplace.

CO5: Students would be aware of the emerging concepts in the field of HRM

# **TEXT BOOKS:**

- 1. Decenzo and Robbins, "Human Resource Management", 8th Edition, Wiley, 2007.
- 2. John Bernardin. H., "Human Resource Management An Experimental Approach", 5th Edition, Tata McGraw Hill, 2013, New Delhi.

# **REFERENCES:**

- 1. Luis R,. Gomez-Mejia, DavidB. Balkin and Robert L. Cardy, "Managing Human Resources", 7th Edition, PHI, 2012.
- 1. Dessler, "Human Resource Management", Pearson Education Limited, 2007.

CO's-PO's & PSO's MAPPING

| CO's |     |     | PO's |     | PSO's |     |     |     |     |    |     |    |   |     |   |
|------|-----|-----|------|-----|-------|-----|-----|-----|-----|----|-----|----|---|-----|---|
|      | 1   | 2   | 3    | 4   | 5     | 6   | 7   | 8   | 9   | 10 | 11  | 12 | 1 | 2   | 3 |
| 1    | 2   | 2   | 1    | 2   | 2     | 2   | 1   | 1   | 2   | 1  | 1   | 1  | 1 | 1   | 1 |
| 2    | 3   | 3   | 2    | 3   | 2     | 2   | 2   | 2   | 3   | 1  | 2   | 1  | 1 | 2   | 1 |
| 3    | 3   | 3   | 3    | 3   | 3     | 3   | 2   | 2   | 3   | 1  | 2   | 1  | 1 | 2   | 1 |
| 4    | 3   | 3   | 2    | 3   | 3     | 2   | 2   | 2   | 2   | 1  | 1   | 1  | 1 | 1   | 1 |
| 5    | 3   | 3   | 1    | 2   | 2     | 2   | 2   | 2   | 2   | 1  | 1   | 1  | 1 | 1   | 1 |
| AVg. | 2.8 | 2.8 | 1.8  | 2.6 | 2.6   | 2.2 | 1.8 | 1.8 | 2.4 | 1  | 1.4 | 1  | 1 | 1.4 | 1 |

1 - low, 2 - medium, 3 - high, '-' - no correlation

GE3755 KNOWLEDGE MANAGEMENT

LTPC

# COURSE OBJECTIVES:

The student should be made to:

- Learn the Evolution of Knowledge management.
- Be familiar with tools.
- Be exposed to Applications.
- Be familiar with some case studies.

#### UNIT I INTRODUCTION

9

Introduction: An Introduction to Knowledge Management - The foundations of knowledge management- including cultural issues- technology applications organizational concepts and processes- management aspects- and decision support systems. The Evolution of Knowledge management: From Information Management to Knowledge Management - Key Challenges Facing the Evolution of Knowledge Management.

# UNIT II CREATING THE CULTURE OF LEARNING AND KNOWLEDGE SHARING

Organization and Knowledge Management - Building the Learning Organization. Knowledge Markets: Cooperation among Distributed Technical Specialists – Tacit Knowledge and Quality Assurance.

#### UNIT III KNOWLEDGE MANAGEMENT-THE TOOLS

9

Telecommunications and Networks in Knowledge Management - Internet Search Engines and Knowledge Management - Information Technology in Support of Knowledge Management - Knowledge Management and Vocabulary Control - Information Mapping in Information Retrieval - Information Coding in the Internet Environment - Repackaging Information.

#### UNIT IV KNOWLEDGE MANAGEMENT APPLICATION

q

Components of a Knowledge Strategy - Case Studies (From Library to Knowledge Center, Knowledge

Management in the Health Sciences, Knowledge Management in Developing Countries).

# UNIT V FUTURE TRENDS AND CASE STUDIES

9

Advanced topics and case studies in knowledge management - Development of a knowledge management map/plan that is integrated with an organization's strategic and business plan - A case study on Corporate Memories for supporting various aspects in the process life -cycles of an organization.

#### **TOTAL: 45 PERIODS**

# COURSE OUTCOMES:

Upon completion of the course, the student should be able to:

**CO1:** Understand the process of acquiry knowledge from experts

CO2: Understand the learning organization.

CO3: Use the knowledge management tools.

CO4: Develop knowledge management Applications.

CO5: Design and develop enterprise applications.

# CO's-PO's & PSO's MAPPING

| CO's |   |   | PO's |   |     |   |       |       |   |     |    |    | PSO's |      |   |  |  |
|------|---|---|------|---|-----|---|-------|-------|---|-----|----|----|-------|------|---|--|--|
|      | 1 | 2 | 3    | 4 | 5   | 6 | 7     | 8     | 9 | 10  | 11 | 12 | 1     | 2    | 3 |  |  |
| 1    |   |   | 1    |   | 1   |   |       |       |   | 4   |    |    |       |      |   |  |  |
| 2    |   |   |      |   | 2   |   |       |       |   |     |    |    | 1     |      |   |  |  |
| 3    |   |   |      |   | 2   |   |       |       |   |     |    |    |       | 2    |   |  |  |
| 4    |   |   | maz  | 1 | 1   |   | in/   | ALI I | 1 | MIΛ |    |    |       | 1    |   |  |  |
| 5    |   |   | KUU  | 1 | 1   |   | Tril. |       | 1 | INU | WL |    | 3 E   | 1    |   |  |  |
| AVg. |   |   |      | 1 | 1.4 |   |       |       | 1 |     |    |    | 1     | 1.33 |   |  |  |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

## **TEXT BOOK:**

1. Srikantaiah, T.K., Koenig, M., "Knowledge Management for the Information Professional" Information Today, Inc., 2000.

#### REFERENCE:

1. Nonaka, I., Takeuchi, H., "The Knowledge-Creating Company: How Japanese Companies Create the Dynamics of Innovation", Oxford University Press, 1995.

#### INDUSTRIAL MANAGEMENT

L T P C 3 0 0 3

#### **COURSE OBJECTIVES**

- To study the basic concepts of management; approaches to management; contributors to management studies; various forms of business organization and trade unions function in professional organizations.
- To study the planning; organizing and staffing functions of management in professional organization.
- To study the leading; controlling and decision making functions of management in professional organization.
- To learn the organizational theory in professional organization.
- To learn the principles of productivity and modern concepts in management in professional organization.

# UNIT - I INTRODUCTION TO MANAGEMENT

9

Management: Introduction; Definition and Functions – Approaches to the study of Management – Mintzberg's Ten Managerial Roles – Principles of Taylor; Fayol; Weber; Parker – Forms of Organization: Sole Proprietorship; Partnership; Company (Private and Public); Cooperative – Public Sector Vs Private Sector Organization – Business Environment: Economic; Social; Political; Legal – Trade Union: Definition; Functions; Merits & Demerits.

# UNIT - II FUNCTIONS OF MANAGEMENT - I

9

Planning: Characteristics; Nature; Importance; Steps; Limitation; Planning Premises; Strategic Planning; Vision & Mission statement in Planning- Organizing: Organizing Theory; Principles; Types; Departmentalization; Centralization and Decentralization; Authority & Responsibility – Staffing: Systems Approach; Recruiting and Selection Process; Human Resource Development (HRD) Concept and Design.

# UNIT - III FUNCTIONS OF MANAGEMENT - II

9

Directing (Leading): Leadership Traits; Style; Morale; Managerial Grids (Blake-Mounton, Reddin) – Communication: Purpose; Model; Barriers – Controlling: Process; Types; Levels; Guidelines; Audit (External, Internal, Merits); Preventive Control – Decision Making: Elements; Characteristics; Nature; Process; Classifications.

### UNIT - IV ORGANIZATION THEORY

9

Organizational Conflict: Positive Aspects; Individual; Role; Interpersonal; Intra Group; Inter Group; Conflict Management – Maslow's hierarchy of needs theory; Herzberg's motivation-hygiene theory; McClelland's three needs motivation theory; Vroom's valence-expectancy theory – Change Management: Concept of Change; Lewin's Process of Change Model; Sources of Resistance; Overcoming Resistance; Guidelines to managing Conflict.

# UNIT - V PRODUCTIVITY AND MODERN TOPICS

ç

Productivity: Concept; Measurements; Affecting Factors; Methods to Improve – Modern Topics (concept, feature/characteristics, procedure, merits and demerits): Business Process Reengineering (BPR); Benchmarking; SWOT/SWOC Analysis; Total Productive Maintenance; Enterprise Resource Planning (ERP); Management of Information Systems (MIS).

**TOTAL: 45 PERIODS** 

# **COURSE OUTCOMES:**

At the end of the course the students would be able to

- CO1 Explain basic concepts of management; approaches to management; contributors to management studies; various forms of business organization and trade unions function in professional organizations.
- CO2 Discuss the planning; organizing and staffing functions of management in professional organization.
- CO3 Apply the leading; controlling and decision making functions of management in professional organization.
- CO4 Discuss the organizational theory in professional organization.
- CO5 Apply principles of productivity and modern concepts in management in professional organization.

# **TEXTBOOKS:**

- 1. M. Govindarajan and S. Natarajan, "Principles of Management", Prentice Hall of India, New Delhi, 2009.
- 2. Koontz. H. and Weihrich. H., "Essentials of Management: An International Perspective", 8<sup>th</sup> Edition, Tata McGrawhill, New Delhi, 2010.

# **REFERENCES:**

- 1. Joseph J, Massie, "Essentials of Management", 4th Edition, Pearson Education, 1987.
- 2. Saxena, P. K., "Principles of Management: A Modern Approach", Global India Publications, 2009.
- 3. S.Chandran, "Organizational Behaviours", Vikas Publishing House Pvt. Ltd., 1994.
- 4. Richard L. Daft, "Organization Theory and Design", South Western College Publishing, 11<sup>th</sup> Edition, 2012.
- 5. S. TrevisCerto, "Modern Management Concepts and Skills", Pearson Education, 2018. CO's-PO's & PSO's MAPPING

|    |   |   |   | PSO |          |   |   |   |   |    |    |    |   |   |   |
|----|---|---|---|-----|----------|---|---|---|---|----|----|----|---|---|---|
| СО | 1 | 2 | 3 | 4   | 5        | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 |
| 1  | 1 | 1 | 1 | 1   | 1        | 3 | 2 | 3 | 2 | 3  | 1  | 3  | 1 | 1 | 1 |
| 2  | 1 | 1 | 1 | R1) | <u> </u> | 3 | 2 | 3 | 2 | 3  | 1  | 3  | 1 | 1 | 1 |
| 3  | 1 | 1 | 1 | 1   | 1        | 3 | 2 | 3 | 2 | 3  | 1  | 3  | 1 | 1 | 1 |
| 4  | 1 | 1 | 1 | 1   | 1        | 3 | 2 | 3 | 2 | 3  | 1  | 3  | 1 | 1 | 1 |
| 5  | 1 | 1 | 1 | 1   | 1        | 3 | 2 | 3 | 2 | 3  | 1  | 3  | 1 | 1 | 1 |

1 - low, 2 - medium, 3 - high, '-' - no correlation

# **MANDATORY COURSES I**

# MX3081 INTRODUCTION TO WOMEN AND GENDER STUDIES

LTPC 3 000

#### **COURSE OUTLINE**

#### UNIT I CONCEPTS

Sex vs. Gender, masculinity, femininity, socialization, patriarchy, public/ private, essentialism, binaryism, power, hegemony, hierarchy, stereotype, gender roles, gender relation, deconstruction, resistance, sexual division of labour.

# UNIT II FEMINIST THEORY

Liberal, Marxist, Socialist, Radical, Psychoanalytic, postmodernist, ecofeminist.

# UNIT III WOMEN'S MOVEMENTS: GLOBAL, NATIONAL AND LOCAL

Rise of Feminism in Europe and America.

Women's Movement in India.

# UNIT IV GENDER AND LANGUAGE

Linguistic Forms and Gender.

Gender and narratives.

# UNIT V GENDER AND REPRESENTATION

Advertising and popular visual media.

Gender and Representation in Alternative Media.

Gender and social media.

**TOTAL: 45 PERIODS** 

MX3082 ELEMENTS OF LITERATURE

LTPC 3 000

## COURSE OBJECTIVE:

 To make the students aware about the finer sensibilities of human existence through an art form. The students will learn to appreciate different forms of literature as suitable modes of expressing human experience.

# 1. COURSE CONTENTS

Introduction to Elements of Literature

# 1. Relevance of literature

- a) Enhances Reading, thinking, discussing and writing skills.
- b) Develops finer sensibility for better human relationship.
- c) Increases understanding of the problem of humanity without bias.

d) Providing space to reconcile and get a cathartic effect.

# 2. Elements of fiction

- a) Fiction, fact and literary truth.
- b) Fictional modes and patterns.
- c) Plot character and perspective.

# 3. Elements of poetry

- a) Emotions and imaginations.
- b) Figurative language.
- c) (Simile, metaphor, conceit, symbol, pun and irony).
- d) Personification and animation.
- e) Rhetoric and trend.

# 4. Elements of drama

- a) Drama as representational art.
- b) Content mode and elements.
- c) Theatrical performance.
- d) Drama as narration, mediation and persuasion.
- e) Features of tragedy, comedy and satire.

# 3. READINGS:

- 1. An Introduction to the Study of English Literature, W.H. Hudson, Atlantic, 2007.
- 2. An Introduction to Literary Studies, Mario Klarer, Routledge, 2013.
- 3. The Experience of Poetry, Graham Mode, Open college of Arts with Open Unv Press, 1991.
- 4. The Elements of Fiction: A Survey, Ulf Wolf (ed), Wolfstuff, 2114.
- 5. The Elements of Drama, J.L.Styan, Literary Licensing, 2011.
- 3.1 Textbook:
- 3.2 \*Reference Books:: To be decided by the teacher and student, on the basis of individual

student so as to enable him or her to write the term paper.

| 4. | വ | ГΗ | F | R | SE | S | SI | O | N |  |
|----|---|----|---|---|----|---|----|---|---|--|
|    |   |    |   |   |    |   |    |   |   |  |

- 4.1\*Tutorials:
- 4.2\*Laboratory:
- 4.3\*Project: The students will write a term paper to show their understanding of a particular piece of literature

#### 5.\*ASSESSMENT:

- 5.1HA:
- 5.2Quizzes-HA:
- 5.3Periodical Examination: one
- 5.4Project/Lab: one (under the guidance of the teachers the students will take a volume of poetry, fiction or drama and write a term paper to show their understanding of it in a given context; sociological, psychological, historical, autobiographical etc.
- 5.5Final Exam:

**TOTAL: 45 PERIODS** 

# **OUTCOME OF THE COURSE:**

• Students will be able to understand the relevance of literature in human life and appreciate its aspects in developing finer sensibilities.

MX3083

## **FILM APPRECIATION**

LTPC 3 000

In this course on film appreciation, the students will be introduced broadly to the development of film as an art and entertainment form. It will also discuss the language of cinema as it evolved over a century. The students will be taught as to how to read a film and appreciate the various nuances of a film as a text. The students will be guided to study film joyfully.

# Theme - A: The Component of Films

- A-1: The material and equipment
- A-2: The story, screenplay and script
- A-3: The actors, crew members, and the director
- A-4: The process of film making... structure of a film

# Theme - B: Evolution of Film Language

- B-1: Film language, form, movement etc.
- B-2: Early cinema... silent film (Particularly French)
- B-3: The emergence of feature films: Birth of a Nation
- B-4: Talkies

# Theme - C: Film Theories and Criticism/Appreciation

C-1: Realist theory; Auteurists

C-2: Psychoanalytic, Ideological, Feminists

C-3: How to read films?

C-4: Film Criticism / Appreciation

# Theme - D: Development of Films

D-1: Representative Soviet films

D-2: Representative Japanese films

D-3: Representative Italian films

D-4: Representative Hollywood film and the studio system

#### Theme - E: Indian Films

E-1: The early era

E-2: The important films made by the directors

E-3: The regional films

E-4: The documentaries in India

# **READING**:

A Reader containing important articles on films will be prepared and given to the students. The students must read them and present in the class and have discussion on these.

MX3084

# DISASTER RISK REDUCTION AND MANAGEMENT

LTPC 3000

#### **COURSE OBJECTIVE**

- To impart knowledge on concepts related to disaster, disaster risk reduction, disaster management
- To acquaint with the skills for planning and organizing disaster response

# UNIT I HAZRADS, VULNERABILITY AND DISASTER RISKS

9

Definition: Disaster, Hazard, Vulnerability, Resilience, Risks – Types of Disasters: Natural, Human induced, Climate change induced –Earthquake, Landslide, Flood, Drought, Fire etc – Technological disasters- Structural collapse, Industrial accidents, oil spills -Causes, Impacts including social, Economic, political, environmental, health, psychosocial, etc.- Disaster vulnerability profile of India and Tamil Nadu - Global trends in disasters: urban disasters, pandemics, Complex emergencies, - -, Inter relations between Disasters and Sustainable development Goals

# UNIT II DISASTER RISK REDUCTION (DRR)

9

Sendai Framework for Disaster Risk Reduction, Disaster cycle - Phases, Culture of safety, prevention, mitigation and preparedness community Based DRR, Structural- nonstructural measures, Roles and responsibilities of- community, Panchayati Raj Institutions / Urban Local Bodies (PRIs/ULBs), States, Centre, and other stakeholders- Early Warning System - Advisories from Appropriate Agencies.- Relevance of indigenous Knowledge, appropriate technology and Local resources.

## UNIT III DISASTER MANAGEMENT

9

Components of Disaster Management - Preparedness of rescue and relief, mitigation,

rehabilitation and reconstruction- Disaster Risk Management and post disaster management – Compensation and Insurance- Disaster Management Act (2005) and Policy - Other related policies, plans, programmers and legislation - Institutional Processes and Framework at State and Central Level- (NDMA –SDMA-DDMA-NRDF- Civic Volunteers)

# UNIT IV TOOLS AND TECHNOLOGY FOR DISASTER MANAGEMENT

Early warning systems -Components of Disaster Relief: Water, Food, Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation, Response and Preparedness, – Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster – Disaster Damage Assessment. - Elements of Climate Resilient Development –Standard operation Procedure for disaster response – Financial planning for disaster Management

# UNIT V DISASTER MANAGEMENT: CASE STUDIES

9

Discussion on selected case studies to analyse the potential impacts and actions in the contest of disasters-Landslide Hazard Zonation: Earthquake Vulnerability Assessment of Buildings and Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, Man Made disasters: Case Studies, Space Based Inputs for Disaster Mitigation and Management and field works related to disaster management.- Field work-Mock drill -

#### **TOTAL: 45 PERIODS**

# **TEXT BOOKS:**

- 1 Taimpo (2016), Disaster Management and Preparedness, CRC Publications
- 2 Singh R (2017), Disaster Management Guidelines for earthquakes, Landslides, Avalanches and tsunami, Horizon Press Publications
- 3 Singhal J.P. "Disaster Management", Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13: 978-9380386423
- 4 Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt. Ltd., 2012. **ISBN-10**: 1259007367, **ISBN-13**: 978-1259007361]

# **REFERENCES**

- 1. Govt. of India: Disaster Management Act, Government of India, New Delhi, 2005.
- 2. Government of India, National Disaster Management Policy, 2009.
- 3. Shaw R (2016), Community based Disaster risk reduction, Oxford University Press

# **COURSE OUTCOME:**

**CO1:** To impart knowledge on the concepts of Disaster, Vulnerability and Disaster Risk reduction (DRR)

**CO2:** To enhance understanding on Hazards, Vulnerability and Disaster Risk Assessment prevention and risk reduction

CO3: To develop disaster response skills by adopting relevant tools and technology

CO4: Enhance awareness of institutional processes for Disaster response in the country and

**CO5:** Develop rudimentary ability to respond to their surroundings with potential Disaster response in areas where they live, with due sensitivity

#### CO's-PO's & PSO's MAPPING

| CO's | PO's |   | PSO's |   |   |   |   |   |   |    |    |    |   |   |   |
|------|------|---|-------|---|---|---|---|---|---|----|----|----|---|---|---|
| COS  | 1    | 2 | 3     | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 |
| 1    | 3    | 3 | 2     | 3 | - | - | 2 | 2 | - | -  | 2  | -  | 2 | - | 1 |
| 2    | 3    | 3 | 3     | 3 | - | - | 2 | 1 | - | -  | 2  | -  | 2 | - | 1 |
| 3    | 3    | 3 | 3     | 3 | - | - | 2 | 2 | - | -  | -  | -  | 2 | - | 1 |
| 4    | 3    | 3 | 2     | 3 | - | - | 2 | 1 | - | -  | 2  | -  | 2 | - | 1 |
| 5    | 3    | 3 | 2     | 3 | - | - | 2 | 2 | - | -  | 2  | -  | 3 | - | 1 |
| AVG  | 3    | 3 | 3     | 3 | - | - | 2 | 2 | - | -  | 2  | -  | 2 | - | 1 |

1 - low, 2 - medium, 3 - high, '-' - no correlation

# **MANDATORY COURSES II**

MX3085

WELL-BEING WITH TRADITIONAL PRACTICES-YOGA, AYURVEDA AND SIDDHA L T P C 3 0 0 0

# **COURSE OBJECTIVES:**

- To enjoy life happily with fun filled new style activities that help to maintain health also
- To adapt a few lifestyle changes that will prevent many health disorders
- To be cool and handbill every emotion very smoothly in every walk of life
- To learn to eat cost effective but healthy foods that are rich in essential nutrients
- To develop immunity naturally that will improve resistance against many health disorders

## UNIT I HEALTH AND ITS IMPORTANCE

2+4

**Health: Definition - Importance of maintaining health - More importance on prevention than treatment** 

Ten types of health one has to maintain - Physical health - Mental health - Social health - Financial health - Emotional health - Spiritual health - Intellectual health - Relationship health - Environmental health - Occupational/Professional heath.

**Present health status -** The life expectancy-present status - mortality rate - dreadful diseases - Non-communicable diseases (NCDs) the leading cause of death - 60% - heart disease - cancer - diabetes - chronic pulmonary diseases - risk factors - tobacco - alcohol - unhealthy diet - lack of physical activities.

**Types of diseases and disorders -** Lifestyle disorders - Obesity - Diabetes - Cardiovascular diseases - Cancer - Strokes - COPD - Arthritis - Mental health issues.

Causes of the above diseases / disorders - Importance of prevention of illness - Takes care of health - Improves quality of life - Reduces absenteeism - Increase satisfaction - Saves time

**Simple lifestyle modifications to maintain health -** Healthy Eating habits (Balanced diet according to age) Physical Activities (Stretching exercise, aerobics, resisting exercise) - Maintaining BMI-Importance and actions to be taken

UNIT II DIET 4+6

Role of diet in maintaining health - energy one needs to keep active throughout the day - nutrients one needs for growth and repair - helps one to stay strong and healthy - helps to prevent diet-related illness, such as some cancers - keeps active and - helps one to maintain a healthy weight - helps to reduce risk of developing lifestyle disorders like diabetes – arthritis – hypertension – PCOD – infertility – ADHD – sleeplessness -helps to reduce the risk of heart diseases - keeps the teeth and bones strong.

**Balanced Diet and its 7 Components -** Carbohydrates – Proteins – Fats – Vitamins – Minerals - Fibre and Water.

**Food additives and their merits & demerits -** Effects of food additives - Types of food additives - Food additives and processed foods - Food additives and their reactions

# Definition of BMI and maintaining it with diet

Importance - Consequences of not maintaining BMI - different steps to maintain optimal BM

# Common cooking mistakes

Different cooking methods, merits and demerits of each method

UNIT III ROLE OF AYURVEDA & SIDDHA SYSTEMS IN MAINTAINING HEALTH 4+4
AYUSH systems and their role in maintaining health - preventive aspect of AYUSH - AYUSH as a soft therapy.

**Secrets of traditional healthy living -** Traditional Diet and Nutrition - Regimen of Personal and Social Hygiene - Daily routine (Dinacharya) - Seasonal regimens (Ritucharya) - basic sanitation and healthy living environment - Sadvritta (good conduct) - for conducive social life.

**Principles of Siddha & Ayurveda systems -** Macrocosm and Microcosm theory - Pancheekarana Theory / (Five Element Theory) 96 fundamental Principles - Uyir Thathukkal (Tri-Dosha Theory) - Udal Thathukkal

# Prevention of illness with our traditional system of medicine

Primary Prevention - To decrease the number of new cases of a disorder or illness - Health promotion/education, and - Specific protective measures - Secondary Prevention - To lower the rate of established cases of a disorder or illness in the population (prevalence) - Tertiary Prevention - To decrease the amount of disability associated with an existing disorder.

# UNIT IV MENTAL WELLNESS

3+4

**Emotional health -** Definition and types - Three key elements: the subjective experience - the physiological response - the behavioral response - Importance of maintaining emotional health - Role of emotions in daily life -Short term and long term effects of emotional disturbances - Leading a healthy life with emotions - Practices for emotional health - Recognize how thoughts influence emotions - Cultivate positive thoughts - Practice self-compassion - Expressing a full range of emotions.

**Stress management -** Stress definition - Stress in daily life - How stress affects one's life - Identifying the cause of stress - Symptoms of stress - Managing stress (habits, tools, training, professional help) - Complications of stress mismanagement.

**Sleep -** Sleep and its importance for mental wellness - Sleep and digestion. **Immunity -** Types and importance - Ways to develop immunity

UNIT V YOGA 2+12

**Definition and importance of yoga -** Types of yoga - How to Choose the Right Kind for individuals according to their age - The Eight Limbs of Yoga - Simple yogasanas for cure and prevention of health disorders - What yoga can bring to our life.

**TOTAL: 45 PERIODS** 

#### **TEXT BOOKS:**

- Nutrition and Dietetics Ashley Martin, Published by White Word Publications, New York, NY 10001, USA
- 2. Yoga for Beginners\_ 35 Simple Yoga Poses to Calm Your Mind and Strengthen Your Body, by Cory Martin, Copyright © 2015 by Althea Press, Berkeley, California

#### REFERENCES:

- 1. WHAT WE KNOW ABOUT EMOTIONAL INTELLIGENCE How It Affects Learning, Work, Relationships, and Our Mental Health, by Moshe Zeidner, Gerald Matthews, and Richard D. Roberts A Bradford Book, The MIT Press, Cambridge, Massachusetts, London, England
- 2. The Mindful Self-Compassion Workbook, Kristin Neff, Ph.D Christopher Germer, Ph.D, Published by The Guilford Press A Division of Guilford Publications, Inc.370 Seventh Avenue, Suite 1200, New York, NY 10001
  - 1. <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4799645/">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4799645/</a>
  - 2. Simple lifestyle modifications to maintain health <a href="https://www.niddk.nih.gov/health-information/diet-nutrition/changing-habits-better-health#:~:text=Make%20your%20new%20healthy%20habit,t%20have%20time%20to%20cook.">https://www.niddk.nih.gov/health-information/diet-nutrition/changing-habits-better-health#:~:text=Make%20your%20new%20healthy%20habit,t%20have%20time%20to%20cook.</a>
  - 3. Read more: https://www.legit.ng/1163909-classes-food-examples-functions.html
  - 4. https://www.yaclass.in/p/science-state-board/class-9/nutrition-and-health-5926
  - 5. **Benefits of healthy eating** <a href="https://www.cdc.gov/nutrition/resources-publications/benefits-of-healthy-eating.html">https://www.cdc.gov/nutrition/resources-publications/benefits-of-healthy-eating.html</a>
  - 6. **Food additives** <a href="https://www.betterhealth.vic.gov.au/health/conditionsandtreatments/food-additives">https://www.betterhealth.vic.gov.au/health/conditionsandtreatments/food-additives</a>
  - 7. **BMI** <a href="https://www.hsph.harvard.edu/nutritionsource/healthy-weight/">https://www.hsph.harvard.edu/nutritionsource/healthy-weight/</a> <a href="https://www.who.int/europe/news-room/fact-sheets/item/a-healthy-lifestyle---who-recommendations">https://www.who.int/europe/news-room/fact-sheets/item/a-healthy-lifestyle---who-recommendations</a>
  - 8. **Yoga**<a href="https://www.healthifyme.com/blog/types-of-yoga/">https://www.healthifyme.com/blog/types-of-yoga/</a>
    <a href="https://www.healthifyme.com/blog/types-of-yoga/">https://www.healthifyme.com/blog/types-of-yoga/</a>
    - **Ayurveda** : <a href="https://vikaspedia.in/health/ayush/ayurveda-1/concept-of-healthy-living-in-ayurveda">https://vikaspedia.in/health/ayush/ayurveda-1/concept-of-healthy-living-in-ayurveda</a>
  - 9. Siddha: http://www.tkdl.res.in/tkdl/langdefault/Siddha/Sid Siddha Concepts.asp
  - 10. **CAM**: <a href="https://www.hindawi.com/journals/ecam/2013/376327/">https://www.hindawi.com/journals/ecam/2013/376327/</a>
  - 11. Preventive herbs: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3847409/

# **COURSE OUTCOMES:**

After completing the course, the students will be able to:

CO1: Learn the importance of different components of health

CO2: Gain confidence to lead a healthy life

CO3: Learn new techniques to prevent lifestyle health disorders

CO4: Understand the importance of diet and workouts in maintaining health

LT PC 3 0 0 0

## UNIT-I CONCEPTS AND PERSPECTIVES

Meaning of History

Objectivity, Determinism, Relativism, Causation, Generalization in History; Moral judgment in history

Extent of subjectivity, contrast with physical sciences, interpretation and speculation, causation verses evidence, concept of historical inevitability, Historical Positivism.

Science and Technology-Meaning, Scope and Importance, Interaction of science, technology & society, Sources of history on science and technology in India.

# UNIT-II HISTORIOGRAPHY OF SCIENCE AND TECHNOLOGY IN INDIA

Introduction to the works of D.D. Kosambi, Dharmpal, Debiprasad Chattopadhyay, Rehman, S. Irfan Habib, Deepak Kumar, Dhruv Raina, and others.

# UNIT-III SCIENCE AND TECHNOLOGY IN ANCIENT INDIA

Technology in pre-historic period

Beginning of agriculture and its impact on technology

Science and Technology during Vedic and Later Vedic times

Science and technology from 1<sup>st</sup> century AD to C-1200.

#### UNIT-IV SCIENCE AND TECHNOLOGY IN MEDIEVAL INDIA

Legacy of technology in Medieval India, Interactions with Arabs

Development in medical knowledge, interaction between Unani and Ayurveda and alchemy

Astronomy and Mathematics: interaction with Arabic Sciences

Science and Technology on the eve of British conquest

# UNIT-V SCIENCE AND TECHNOLOGY IN COLONIAL INDIA

Science and the Empire

Indian response to Western Science

Growth of techno-scientific institutions

# UNIT-VI SCIENCE AND TECHNOLOGY IN A POST-INDEPENDENT INDIA

Science, Technology and Development discourse

Shaping of the Science and Technology Policy

Developments in the field of Science and Technology

Science and technology in globalizing India

Social implications of new technologies like the Information Technology and Biotechnology

**TOTAL: 45 PERIODS** 

# MX3087 POLITICAL AND ECONOMIC THOUGHT FOR A HUMANE SOCIETY

LT PC 3 0 0 0

Pre-Requisite: None. (Desirable: Universal Human Values 1, Universal Human Values 2)

# **COURSE OBJECTIVES:**

• This course will begin with a short overview of human needs and desires and how different political-economic systems try to fullfill them. In the process, we will end with a critique of different systems and their implementations in the past, with possible future directions.

# **COURSE TOPICS:**

Considerations for humane society, holistic thought, human being's desires, harmony in self, harmony in relationships, society, and nature, societal systems. (9 lectures, 1 hour each)

(Refs: A Nagaraj, M K Gandhi, JC Kumarappa)

Capitalism – Free markets, demand-supply, perfect competition, laissez-faire, monopolies, imperialism. Liberal democracy. **(5 lectures)** 

(Refs: Adam smith, J S Mill)

Fascism and totalitarianism. World war I and II. Cold war. (2 lectures)

Communism – Mode of production, theory of labour, surplus value, class struggle, dialectical materialism, historical materialism, Russian and Chinese models.

(Refs: Marx, Lenin, Mao, M N Roy) (5 lectures)

Welfare state. Relation with human desires. Empowered human beings, satisfaction. (3 lectures)

Gandhian thought. Swaraj, Decentralized economy & polity, Community. Control over one's lives. Relationship with nature. **(6 lectures)** 

(Refs: M K Gandhi, Schumacher, Kumarappa)

Essential elements of Indian civilization. (3 lectures)

(Refs: Pt Sundarlal, R C Mazumdar, Dharampal)

Technology as driver of society, Role of education in shaping of society. Future directions. (4 lectures) (Refs: Nandkishore Acharya, David Dixon, Levis Mumford)

**Conclusion (2 lectures)** 

**Total lectures: 39** 

Preferred Textbooks: See Reference Books

**Reference Books:** Authors mentioned along with topics above. Detailed reading list will be provided.

## **GRADING:**

Mid sems30End sem20Home Assign10Term paper40

**TOTAL: 45 PERIODS** 

# **COURSE OUTCOME:**

• The students will get an understanding of how societies are shaped by philosophy, political and economic system, how they relate to fulfilling human goals & desires with some case studies of how different attempts have been made in the past and how they have fared.

# MX3088 STATE, NATION BUILDING AND POLITICS IN INDIA

LT PC 3 0 0 0

#### **COURSE OBJECTIVE:**

The objective of the course is to provide an understanding of the state, how it works through its main organs, primacy of politics and political process, the concept of sovereignty and its changing contours in a globalized world. In the light of this, an attempt will be made to acquaint the students with the main development and legacies of national movement and constitutional development in India, reasons for adopting a Parliamentary-federal system, the broad philosophy of the Constitution of India and the changing nature of Indian Political System. Challenges/ problems and issues concerning national integration and nation-building will also be discussed in the contemporary context with the aim of developing a future vision for a better India.

#### TOPICS:

Understanding the need and role of State and politics.

Development of Nation-State, sovereignty, sovereignty in a globalized world.

Organs of State – Executive, Legislature, Judiciary. Separation of powers, forms of government-unitary-federal, Presidential-Parliamentary,

The idea of India.

1857 and the national awakening.

1885 Indian National Congress and development of national movement – its legacies. Constitution making and the Constitution of India. Goals, objective and philosophy.

Why a federal system?

National integration and nation-building.

Challenges of nation-building – State against democracy (Kothari) New social movements.

The changing nature of Indian Political System, the future scenario.

What can we do?

#### **OUTCOME OF THE COURSE:**

It is expected that this course will make students aware of the theoretical aspect of the state, its organs, its operationalization aspect, the background and philosophy behind the founding of the present political system, broad streams and challenges of national integration and nation-building in India. It will equip the students with the real understanding of our political system/ process in correct perspective and make them sit up and think for devising ways for better participation in the system with a view to making the governance and delivery system better for the common man who is often left unheard and unattended in our democratic setup besides generating a lot of dissatisfaction and difficulties for the system.

# SUGGESTED READING:

- i. Sunil Khilnani, The Idea of India. Penguin India Ltd., New Delhi.
- ii. Madhav Khosla, The Indian Constitution, Oxford University Press. New Delhi, 2012.
- iii. Brij Kishore Sharma, Introduction to the Indian Constitution, PHI, New Delhi, latest edition.
- iv. Sumantra Bose, Transforming India: Challenges to the World's Largest Democracy, Picador India. 2013.
- v. Atul Kohli, Democracy and Discontent: India's Growing Crisis of Governability, Cambridge University Press, Cambridge, U. K., 1991.
- vi. M. P. Singh and Rekha Saxena, Indian Politics: Contemporary Issues and Concerns, PHI, New Delhi, 2008, latest edition.
- vii. Rajni Kothari, Rethinking Democracy, Orient Longman, New Delhi, 2005.

**TOTAL: 45 PERIODS** 

### MX3089

# **INDUSTRIAL SAFETY**

LT PC 3 0 0 0

# **COURSE OBJECTIVES**

- To Understand the Introduction and basic Terminologies safety.
- To enable the students to learn about the Important Statutory Regulations and standards.
- To enable students to Conduct and participate the various Safety activities in the Industry.
- To have knowledge about Workplace Exposures and Hazards.
- To assess the various Hazards and consequences through various Risk Assessment Techniques.

# UNIT I SAFETY TERMINOLOGIES

Hazard-Types of Hazard- Risk-Hierarchy of Hazards Control Measures-Lead indicators- lag Indicators-Flammability- Toxicity Time-weighted Average (TWA) - Threshold LimitValue (TLV) - Short Term Exposure Limit (STEL)- Immediately dangerous to life or health (IDLH)- acute and chronic Effects- Routes of Chemical Entry-Personnel Protective Equipment- Health and Safety Policy-Material Safety Data Sheet MSDS

# UNIT II STANDARDS AND REGULATIONS

Indian Factories Act-1948- Health- Safety- Hazardous materials and Welfare- ISO 45001:2018 occupational health and safety (OH&S) - Occupational Safety and Health Audit IS14489:1998-Hazard Identification and Risk Analysis- code of practice IS 15656:2006

# UNIT III SAFETY ACTIVITIES

Toolbox Talk- Role of safety Committee- Responsibilities of Safety Officers and Safety Representatives- Safety Training and Safety Incentives- Mock Drills- On-site Emergency Action Plan- Off-site Emergency Action Plan- Safety poster and Display- Human Error Assessment

# UNIT IV WORKPLACE HEALTH AND SAFETY

Noise hazard- Particulate matter- musculoskeletal disorder improper sitting poster and lifting Ergonomics RULE & REBA- Unsafe act & Unsafe Condition- Electrical Hazards- Crane Safety-Toxic gas Release

### UNIT V HAZARD IDENTIFICATION TECHNIQUES

Job Safety Analysis-Preliminary Hazard Analysis-Failure mode and Effects Analysis- Hazard and

Operability- Fault Tree Analysis- Event Tree Analysis Qualitative and Quantitative Risk Assessment- Checklist Analysis- Root cause analysis- What-If Analysis- and Hazard Identification and Risk Assessment

**TOTAL: 45 PERIODS** 

### **COURSE OUTCOMES**

Course outcomes on completion of this course the student will be able:

- Understand the basic concept of safety.
- Obtain knowledge of Statutory Regulations and standards.
- Know about the safety Activities of the Working Place.
- Analyze on the impact of Occupational Exposures and their Remedies
- Obtain knowledge of Risk Assessment Techniques.

### **TEXTBOOKS**

- 1. R.K. Jain and Prof. Sunil S. Rao Industrial Safety, Health and Environment Management Systems KHANNA PUBLISHER
- 2. L. M. Deshmukh Industrial Safety Management: Hazard Identification and Risk Control McGraw-Hill Education

### **REFERENCES**

- 1. Frank Lees (2012) 'Lees' Loss Prevention in Process Industries.Butterworth-Heinemann publications, UK, 4th Edition.
- 2. John Ridley & John Channing (2008) Safety at Work: Routledge, 7th Edition.
- 3. Dan Petersen (2003) Techniques of Safety Management: A System Approach.
- 4. Alan Waring.(1996). Safety management system: Chapman & Hall, England
- 5. Society of Safety Engineers, USA

# **ONLINE RESOURCES**

ISO 45001:2018 occupational health and safety (OH&S) International Organization for Standardization https://www.iso.org/standard/63787.html

Indian Standard code of practice on occupational safety and health audit

https://law.resource.org/pub/in/bis/S02/is.14489.1998.pdf

Indian Standard code of practice on Hazard Identification and Risk Analysis IS 15656:2006 https://law.resource.org/pub/in/bis/S02/is.15656.2006.pdf

| Course |                                                                      |     |     |     | Prog | gram | Outo | ome | •   |     |      |          |          |          |              |          |
|--------|----------------------------------------------------------------------|-----|-----|-----|------|------|------|-----|-----|-----|------|----------|----------|----------|--------------|----------|
|        | Statement                                                            | PO1 | PO2 | PO3 | PO4  | PO5  | PO6  | PO7 | PO8 | PO9 | PO10 | PO<br>11 | PO<br>12 | PS<br>01 | PS<br>O<br>2 | PS<br>O3 |
| CO1    | Understand the basic concept of safety.                              | 3   | 3   | 3   | 1    | 1    | 3    | 2   | 2   | 3   | 3    | 1        | 3        | 3        | 3            | 3        |
| CO2    | Obtain<br>knowledge of<br>Statutory<br>Regulations<br>and standards. | 2   | 3   | 2   | 2    | 1    | 3    | 2   | 3   | 3   | 2    | 1        | 3        | 3        | 3            | 3        |

| СОЗ | Know about the safety Activities of the Working Place.             |   | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 3 | 2 | 1 | 2 | 3 | 3 | 3 |
|-----|--------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CO4 | Analyze on the impact of Occupational Exposures and their Remedies | 3 | 3 | 3 | 2 | 2 | 3 | 2 | 2 | 3 | 2 | 1 | 3 | 3 | 3 | 3 |
| CO5 | Obtain<br>knowledge of<br>Risk<br>Assessment<br>Techniques.        | 3 | 2 | 3 | 2 | 2 | 3 | 2 | 2 | 3 | 2 | 2 | 3 | 3 | 3 | 3 |
|     | Industrial safety                                                  | 3 | 3 | 3 | 2 | 1 | 3 | 2 | 2 | 3 | 2 | 1 | 3 | 3 | 3 | 3 |

1 - low, 2 - medium, 3 - high, '-' - no correlation



# **OPEN ELECTIVE I**

# OAS351 SPACE SCIENCE L T P C 3 0 0 3

### **COURSE OBJECTIVES:**

- To outline the space environment and their effects.
- To extend the origin of universe and development.
- To classify the galaxies and their evolution.
- To interpret the variable stars in the galaxies.
- To explain theory of formation of our solar system.

## UNIT I INTRODUCTION

9

Introduction to space science and applications – historical development – Space Environment-Vacuum and its Effects, Plasma & Radiation Environments and their Effects, Debris Environment and its Effects - Newton's Law of gravitation – Fundamental Physical Principles.

# UNIT II ORIGIN OF UNIVERSE

9

Early history of the universe – Big-Bang and Hubble expansion model of the universe – cosmic microwave background radiation – dark matter and dark energy.

# UNIT III GALAXIES

7

Galaxies, their evolution and origin – active galaxies and quasars – Galactic rotation – Stellar populations – galactic magnetic field and cosmic rays.

### UNIT IV STARS

10

Stellar spectra and structure – stellar evolution – Nucleo-synthesis and formation of elements – Classification of stars – Harvard classification system – Hertsprung-Russel diagram – Luminosity of star – variable stars – composite stars (white dwarfs, Neutron stars, black hole, star clusters, supernova and binary stars) – Chandrasekhar limit.

### UNIT V SOLAR SYSTEM

10

**TOTAL: 45 PERIODS** 

Nebular theory of formation of our Solar System – Solar wind and nuclear reaction as the source of energy – Sun and Planets: Brief description about shape size – period of rotation about axis and period of revolution – distance of planets from sun – Bode's law – Kepler's Laws of planetary motion – Newton's deductions from Kepler's Laws – correction of Kepler's third law – determination of mass of earth – determination of mass of planets with respect to earth – Brief description of Asteroids – Satellites and Comets.

### **COURSE OUTCOMES:**

On successful completion of this course, the student will be able to

CO1: Obtain a broad, basic knowledge of the space sciences.

**CO2**: Explain the scientific concepts such as evolution by means of natural selection, age of the Earth and solar system and the Big-Bang.

**CO3**: Describe the main features and formation theories of the various types of observed galaxies, in particular the Milky Way.

**CO4**: Explain stellar evolution, including red giants, supernovas, neutron stars, pulsars, white dwarfs and black holes, using evidence and presently accepted theories;

**CO5**: Describe the presently accepted formation theories of the solar system based upon observational and physical constraints;

### **TEXT BOOKS:**

- 1. Hess W., "Introduction to Space Science", Gordon & Breach Science Pub; Revised Ed., 1968.
- 2. Krishnaswami K. S., "Astrophysics: A modern Perspective", New Age International, 2006.

### **REFERENCES:**

- 1. Arnab Rai Choudhuri, "Astrophysics for Physicists", Cambridge University Press, New York, 2010.
- 2. Krishnaswami K. S., "Understanding cosmic Panorama", New Age International, 2008.

# OIE351 INTRODUCTION TO INDUSTRIAL ENGINEERING

LTPC 3 0 0 3

# **COURSE OBJECTIVES:**

The objective of this course is to provide foundation in Industrial Engineering in order to enable the students to make significant contributions for improvements in diverse organizations.

- Explain the concepts productivity and productivity measurement approaches.
- Explain the basic principles in facilities planning and plant location.
- Apply work study and ergonomic principles to design workplaces for the improvement of human performance
- Impart knowledge to design and implement Statistical Process control in any industry.
- Recognize the concept of Production and Operations Management in creating and enhancing a firm's competitive advantages

### UNIT I INTRODUCTION

9

Concepts of Industrial Engineering – History and development of Industrial Engineering – Roles of Industrial Engineer – Applications of Industrial Engineering – Production Management Vs Industrial Engineering – Production System – Input Output Model – Productivity – Factors affecting Productivity – Increasing Productivity of resources – Kinds of Productivity measures.

## UNIT II PLANT LOCATION AND LAYOUT

a

Factors affecting Plant location – COURSE OBJECTIVES of Plant Layout – Principles of Plant Layout – Types of Plant Layout – Methods of Plant and Facility Layout – Storage Space requirements – Plant Layout procedure – Line Balancing methods.

### UNIT III WORK SYSTEM DESIGN& ERGONOMICS

9

Need - COURSE OBJECTIVES - Method Study procedure - Principles of Motion Economy - Work

Measurement procedures – Time Study –Work sampling- Ergonomics and its areas of application in the work system - Physical work load and energy expenditure, Anthropometry – measures – design procedure, Work postures-sitting, standing.

### UNIT IV STATISTICAL QUALITY CONTROL

9

Definition and Concepts – Fundamentals – Control Charts for variables – Control Charts for attributes – Acceptance Sampling- O.C curve – Single sampling plan- Double sampling plan.

# UNIT V PRODUCTION PLANNING AND CONTROL

9

Forecasting – Qualitative and Quantitative forecasting techniques – Types of production – Process planning – Economic Batch Quantity– Loading – Scheduling and control of production – Dispatching–Progress control.

**TOTAL: 45 PERIODS** 

# **COURSE OUTCOMES:**

At the end of the course. Students will be able to

CO1: Ability To define the concepts of productivity and productivity measurement approaches.

CO2: Ability to evaluate appropriate location models for various facility types and design various facility layouts

CO3: Ability To conduct a method study and time study to improve the efficiency of the system.

CO4: Ability to Control the quality of processes using control charts in manufacturing/service industries.

CO5: Ability to define the Planning strategies and Material Requirement Plan.

CO's-PO's & PSO's MAPPING

| CO's |     |   | PO's | ;   |     |    |   |   |    |    |    |          | PS | O's |   |
|------|-----|---|------|-----|-----|----|---|---|----|----|----|----------|----|-----|---|
|      | 1   | 2 | 3    | 4   | 5   | 6  | 7 | 8 | 9  | 10 | 11 | 12       | 1  | 2   | 3 |
| 1    | 2   |   |      | 17. | 3.7 | Υ. |   |   |    | ٦, |    | 1        |    | 1   |   |
| 2    | 2   | 2 | 3    | 2   | Y.  |    |   |   | 7_ | ٠, |    | <b>\</b> |    |     |   |
| 3    | 2   | 2 | 2    | 1   | 1   |    |   | 2 |    |    | 1  | 7        | 2  |     |   |
| 4    | 2   | 2 | 3    | 1   | 1   |    |   |   |    |    |    |          |    |     |   |
| 5    | 1   | 2 | 2    |     |     |    |   |   |    |    |    | 1        |    |     | 3 |
| AVg. | 2.2 | 2 | 2.5  | 1.3 | 1   |    |   | 2 |    |    | 1  | 1        | 2  | 1   | 3 |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

# TEXT BOOK:

1. O.P.Khanna, 2010, Industrial Engineering and Management, Dhanpat Rai Publications.

## REFERENCES:

- 1. Ravi Shankar, 2009, Industrial Engineering and Management, Galgotia Publications & Private Limited
- 2. Martand Telsang,2006, Industrial Engineering and Production Management, S. Chand and Company

**OBT351** 

# FOOD, NUTRITION AND HEALTH

LTPC 3 0 0 3

### **COURSE OBJECTIVES:**

- Build knowledge and an overview on general aspects of nutrition and health.
- Distinguish the nutritive value of various food items, BMI calculation differentiating super junk, and functional foods in the market.
- To Solve the real-world problems based on nutrition and health

# UNIT-I FOOD AND MICROBIOLOGY OF HEALTH:

9

Food resources (plant, animal, microbes); Overview of current production systems; constraints and

necessity of novel strategies. Functional and "Super" Foods - role in optimal nutrition. Sugar, protein and fat substitutes. Food and behaviour- physiological disturbances in alcoholism, drug abuse and smoking. Food Related Laws: Inspection – Microbial Indicators of product quality – Indicators of food safety – 229 Microbiological safety of foods - control strategies – Hazard Analysis Critical Point System (HACCP concept)- Microbiological criteria.

### UNIT-II NUTRIENTS AND FOOD ADDITIVES:

9

Macro nutrients- carbohydrates, proteins and lipids. Micronutrients-Minerals: Calcium, Magnesium, Iron, Zinc, Copper and Selenium; Vitamins. Nutritional Physiology: Digestion, absorption, and utilization of major and minor nutrients. Biotechnology of food additives- Bioflavors and colors, microbial polysaccharides, recombinant enzymes in food sector.

### UNIT-III NANO FOOD TECHNOLOGY:

9

Nano materials as food components, food packaging and nano materials, policies on usage of nanomaterials in foods. Food product development: steps involved in food product development, shelf-life assessment.

# UNIT-IV FOOD RELATED NUTRITIONAL DISORDERS AND ENERGY CALCULATION:

9

Type I Disorders-Causes of life style and stress related diseases. Cardio-vascular diseases, hypertension, obesity. Type-II Disorders: Cancer, diabetics, ulcers, electrolyte and water imbalance. Health indices. Preventive and remedial measures. Energy balance and methods to calculate individual nutrient and energy needs. Planning a healthy diet.

# UNIT-V CONSUMERS ON GM FOODS AND CONTEMPORARY ISSUES: 9

Global perspective of consumers on GM foods; Major concerns of transgenic, foods GM ingredients in food products. (labeling, bioavailability, safety aspects); regulatory agencies involved in GM foods, Case studies- GM foods.

**TOTAL:45 PERIODS** 

# TEXT BOOK(S):

- 1. P.J. Fellows.2009. Food Processing Technology -Principles and Practice (Third Edition). A volume in Woodhead Publishing Series in Food Science, Technology and Nutrition.
- 2. Kalidas Shetty, Gopinadhan Paliyath, Anthony Pometto, Robert E. Levin. 2015. Food Biotechnology. CRC Press. Second edition.

# **REFERENCE BOOKS:**

- 1. Understanding Nutrition. 2010. Ellie Whitney, Sharon Rady Rolfes, 11e. Thompson Wadsworth. 2.
- 2. Nutritional Sciences- From Fundamentals to Food.2013. Michelle McGuire, Kathy A. Beerman, 2 nd e. Thompson Wadsworth.
- 3. Yasmine Motarjemi, Huub Lelieveld, Food Safety Management A Practical Guide for the Food Industry (2014), 1st Edition, Academic Press, London, UK

# **EXPECTED COURSE OUTCOME:**

1.To be able to understand the nutritional values of the various types of foods

- 2.To be able to Analyze the role of food in the metabolic activity of the healthy diet
- 3. To be able to Infer the BMI calculation and stress related diseases.
- 4. To be able to Elaborate the independent decision on the choice of food to prevent life style disorders and diseases
- 5. To be able to Assess about the food laws governance
- 6. To be able to Compare junk, modified and super foods

# OCE351 ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT L T P C 3 0 0 3

### **COURSE OBJECTIVE:**

 To impart the knowledge and skills to identify, assess and mitigate the environmental and social impacts of developmental projects

### UNIT I INTRODUCTION

9

Impacts of Development on Environment – Rio Principles of Sustainable Development-Environmental Impact Assessment (EIA) – Objectives – Historical development – EIA Types – EIA in project cycle –EIA Notification and Legal Framework–Stakeholders and their Role in EIA–Selection & Registration Criteria for EIA Consultants

# UNIT II ENVIRONMENTAL ASSESSMENT

9

Screening and Scoping in EIA – Drafting of Terms of Reference, Baseline monitoring, Prediction and Assessment of Impact on land, water, air, noise and energy, flora and fauna - Matrices – Networks – Checklist Methods - Mathematical models for Impact prediction – Analysis of alternatives

# UNIT III ENVIRONMENTAL MANAGEMENT PLAN

9

Plan for mitigation of adverse impact on water, air and land, water, energy, flora and fauna – Environmental Monitoring Plan – EIA Report Preparation – Review of EIA Reports – Public Hearing-Environmental Clearance Post Project Monitoring

# UNIT IV SOCIO ECONOMIC ASSESSMENT

9

Baseline monitoring of Socio economic environment – Identification of Project Affected Personal – Rehabilitation and Resettlement Plan- Economic valuation of Environmental impacts – Cost benefit Analysis-

# UNIT V CASE STUDIES

(

EIA case studies pertaining to Infrastructure Projects – Real Estate Development - Roads and Bridges – Mass Rapid Transport Systems - Ports and Harbor – Airports - Dams and Irrigation projects - Power plants – CETPs- Waste Processing and Disposal facilities – Mining Projects.

### **TOTAL: 45 PERIODS**

# **COURSE OUTCOMES:**

The students completing the course will have ability to

 carry out scoping and screening of developmental projects for environmental and social assessments

- explain different methodologies for environmental impact prediction and assessment
- plan environmental impact assessments and environmental management plans
- evaluate environmental impact assessment reports

### TEXTBOOKS:

- 1. Canter, R.L, "Environmental impact Assessment", 2nd Edition, McGraw Hill Inc, New Delhi,1995.
- 2. Lohani, B., J.W. Evans, H. Ludwig, R.R. Everitt, Richard A. Carpenter, and S.L. Tu, "Environmental Impact Assessment for Developing Countries in Asia", Volume 1 Overview, Asian Development Bank,1997.
- 3. Peter Morris, Riki Therivel "Methods of Environmental Impact Assessment", Routledge Publishers, 2009.

### REFERENCES:

- 1. Becker H. A., Frank Vanclay, "The International handbook of social impact assessment" conceptual and methodological advances, Edward Elgar Publishing, 2003.
- 2. Barry Sadler and Mary McCabe, "Environmental Impact Assessment Training Resource Manual", United Nations Environment Programme, 2002.
- 3. Judith Petts, "Handbook of Environmental Impact Assessment Vol. I and II", Blackwell Science New York, 1998.
- 4. Ministry of Environment and Forests EIA Notification and Sectoral Guides, Government of India, New Delhi, 2010.

### **OEE351**

### RENEWABLE ENERGY SYSTEM

LTPC 3 0 0 3

# COURSE OBJECTIVES:

- To Provide knowledge about various renewable energy technologies
- To enable students to understand and design a PV system.
- To provide knowledge about wind energy system.
- To Provide knowledge about various possible hybrid energy systems
- To gain knowledge about application of various renewable energy technologies

# UNIT I INTRODUCTION

9

Primary energy sources, renewable vs. non-renewable primary energy sources, renewable energy resources in India, Current usage of renewable energy sources in India, future potential of renewable energy in power production and development of renewable energy technologies.

# UNIT II SOLAR ENERGY

9

Solar Radiation and its measurements, Solar Thermal Energy Conversion from plate Solar Collectors, Concentrating Collectors and its Types, Efficiency and performance of collectors,. Direct Solar Electricity Conversion from Photovoltaic, types of solar cells and its application of battery charger, domestic lighting, street lighting, and water pumping, power generation schemes. Recent Advances in PV Applications: Building Integrated PV, Grid Connected PV Systems,

# UNIT III WIND ENERGY

9

Wind energy principles, wind site and its resource assessment, wind assessment, Factors influencing wind, wind turbine components, wind energy conversion systems (WECS), Classification of WECS devices, wind electric generating and control systems, characteristics and

applications.

### UNIT IV BIO-ENERGY

9

Energy from biomass, Principle of biomass conversion technologies/process and their classification, Bio gas generation, types of biogas plants, selection of site for biogas plant, classification of biogas plants, Advantage and disadvantages of biogas generation, thermal gasification of biomass, biomass gasifies, Application of biomass and biogas plants and their economics.

### UNIT V OTHER TYPES OF ENERGY

9

Energy conversion from Hydrogen and Fuel cells, Geo thermal energy Resources, types of wells, methods of harnessing the energy, potential in India. OTEC, Principles utilization, setting of OTEC plants, thermodynamic cycles. Tidal and wave energy: Potential and conversion techniques, minihydel power plants and their economics.

# **TOTAL: 45 PERIODS**

# **COURSE OUTCOMES:**

At the end of the course students will be able to:

CO1: Attained knowledge about various renewable energy technologies

CO2: Ability to understand and design a PV system.

CO3: Understand the concept of various wind energy system.

CO4: Gained knowledge about various possible hybrid energy systems

CO5: Attained knowledge about various application of renewable energy technologies

### **REFERENCES**

- 1. Twidell & Wier, 'Renewable Energy Resources' CRC Press (Taylor & Francis).
- 2. Tiwari and Ghosal/ Narosa, 'Renewable energy resources'.
- 3. D.P.Kothari, K.C.Singhal, 'Renewable energy sources and emerging technologies', P.H.I.
- 4. D.S.Chauhan, S.K. Srivastava, 'Non Conventional Energy Resources', New Age Publishers, 2006.
- 5. B.H.Khan, 'Non Conventional Energy Resources', Tata Mc Graw Hill, 2006.

|      | PO1 | PO2 | PO3 | PO4  | PO5  | PO6 | PO7 | PO8   | PO9  | PO10  | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|------|-----|-----|-----|------|------|-----|-----|-------|------|-------|------|------|------|------|------|
| CO1  | 3   | -   | -   | -    | -    | -   | -   | -     | -    | -     | -    | 2    | 3    | 3    | 3    |
| CO2  | 3   | 2   | -   | DDA  | CDI  | iee | THE | MI    | OHIL | CNEOU | VIEL | 2    | 3    | 3    | 3    |
| CO3  | 3   | 2   | -   | 13.6 | AT A | 777 |     | , VIV |      | THUN  |      | 2    | 3    | 3    | 3    |
| CO4  | 3   | 2   | -   | -    | -    | •   | -   | -     | -    | -     | -    | 2    | 3    | 3    | 3    |
| CO5  | 3   | 2   | -   | -    | -    | -   | -   | -     | -    | -     | -    | 2    | 3    | 3    | 3    |
| AVg. | 3   | 2   | -   | -    | -    | 1   | -   | -     | ı    | -     | -    | 2    | 3    | 3    | 3    |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

# OEI351 INTRODUCTION TO INDUSTRIAL INSTRUMENTATION AND CONTROL

LTPC 3 0 0 3

### **COURSE OBJECTIVES:**

- To introduce common unit operations carried out in process industries.
- To impact knowledge about the important unit operations taking place in process industries.
- To prepare them to take up a case study on selected process industries like petrochemical industry, power plant industry and paper & pulp industry to make the students understand the different measurement and control techniques for important processes.
- Facilitate the students to apply knowledge to select appropriate measurement technique and control strategy for a given process.

### UNIT - I COMMON UNIT OPERATIONS IN PROCESS INDUSTRIES -I

9

Unit Operation, Measurement and Control:-Transport of solid, liquid and gases - Evaporators - Crystallizers-Dryers.

# UNIT -II COMMON UNIT OPERATIONS IN PROCESS INDUSTRIES -II

9

Unit Operation, Measurement and Control: - Distillation - Refrigeration processes - Chemical reactors.

# UNIT - III PROCESS MEASUREMENT AND CONTROL IN PETROCHEMICAL INDUSTRY

9

Process flow diagram of Petro Chemical Industry - Gas oil separation in production platform – wet gas processing – Fractionation Column – Catalytic Cracking unit – Catalytic reforming unit

# UNIT - IV PROCESS MEASUREMENT AND CONTROL IN THERMAL POWER PLANT INDUSTRY

Process flow diagram of Coal fired thermal Power Plant- Coal pulverizer - Deaerator - Boiler drum - Superheater - Turbines.

# UNIT - V PROCESS MEASUREMENT AND CONTROL IN PAPER & PULP INDUSTRY 9

Process flow diagram of paper and pulp industry – Batch digestor – Continuous sulphatedigestor – Control problems on the paper machine.

# **TOTAL: 45 PERIODS**

# SKILL DEVELOPMENT ACTIVITIES (Group Seminar/Mini Project/Assignment/Content Preparation / Quiz/ Surprise Test / Solving GATE questions/ etc) 5

Study the characteristics of various processing units involved in chemical plant.

Develop the process model by using predefined unit operations (e.g. mixing, distillation, heating) from the library of any process simulator.

Analyse the functioning of each processing units with help of virtual unit operations packages.

Perform a physical property analysis using simulation packages

Implement distillation column analysis using simulation software.

Create process flow models and diagrams

### **COURSE OUTCOMES:**

#### Students able to

- CO1 understand common unit operations in process industries. L2
- CO2 Identify the dynamics of important unit operations in petro chemical industry. L2
- **CO3** develop understanding of important processes taking place selected case studies namely petrochemical industry, power plant industry and paper & pulp industry. L5
- CO4 Select appropriate measurement techniques for selective processes. L5
- CO5 Develop controller structure based on the process knowledge. L5
- CO6 Analyze the operation and challenges in integrated industrial processes. L4

### **TEXT BOOKS:**

- 1. Balchen ,J.G., and Mumme, K.J., "Process Control structures and applications", Van Nostrand Reinhold Co., New York, 1988
- 2. Warren L. McCabe, Julian C. Smith and Peter Harriot, "Unit Operations of Chemical Engineering", McGraw-Hill International Edition, New York, Sixth Edition, 2001.

# **REFERENCES:**

- 1. Liptak B.G., "Instrument and Automation Engineers' Handbook: Process Measurement and Analysis", Fifth Edition, CRC Press, 2016.
- 2. James R.couper, Roy Penny, W., James R.Fair and Stanley M.Walas, "Chemical ProcessEquipment: Selection and Design", Gulf Professional Publishing, 2010.
- 3. Austin G.T and Shreeves, A.G.T., "Chemical Process Industries", McGraw-Hill International student, Singapore, 1985.
- 4. Luyben W.C., "Process Modeling, Simulation and Control for Chemical Engineers", McGraw-Hill International edition, USA, 1989.
- 5. K. Krishnaswamy, Process Control, new age publishers, 2009.

# List of Open Source Software/ Learning website:

- 1. https://www.aspentech.com/en
- http://avtechscientific.com/
- 3. https://www.chemstations.com/CHEMCAD/
- 4. https://www.prosim.net/en/product/prosimplus-steady-state-simulation-and-optimization-of-processes/
- 5. https://www.cocosimulator.org/
- 6. https://dwsim.fossee.in/

| PO,PSO<br>CO | P<br>0<br>01 | PO<br>02 | PO<br>03 | PO<br>04 | PO<br>05 | PO<br>06 | PO<br>07 | PO<br>08 | PO<br>09 | PO<br>10 | PO<br>11 | PO<br>12 | PSO1 | PSO2 | PSO3 |
|--------------|--------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------|------|------|
| CO1          | 3            | 3        | 1        |          |          |          |          | 1        |          | 1        |          |          |      |      |      |
| CO2          | 3            | 3        | 1        |          |          |          |          | 1        |          | 1        | 2        |          |      |      | 2    |
| CO3          | 3            | 3        | 1        |          |          |          |          | 1        |          | 1        |          |          |      |      |      |
| CO4          | 3            | 3        | 1        | 3        | 3        |          |          | 1        |          | 1        |          |          | 3    | 3    |      |
| CO5          | 3            | 3        | 3        |          |          | 3        |          | 1        |          | 1        |          |          | 3    | 3    | 3    |
| CO6          | 3            | 3        | 2        | 3        | 2        | 1        | 2        | 1        |          | 2        | 1        | 1        |      |      | 2    |
| Avg          | 3            | 3        | 1.5      | 3        | 2.5      | 2        | 2        | 1        |          | 1.16     | 1.5      | 1        | 3    | 3    | 2.33 |

### **COURSE OBJECTIVES**

- To understand the graph models and basic concepts of graphs.
- To study the characterization and properties of trees and graph connectivity.
- To provide an exposure to the Eulerian and Hamiltonian graphs.
- To introduce Graph colouring and explain its significance.
- To provide an understanding of Optimization Graph Algorithms.

### UNIT I INTRODUCTION TO GRAPHS

g

Graphs and Graph Models – Connected graphs – Common classes of graphs – Multi graphs and Digraphs – Degree of a vertex – Degree Sequence – Graphs and Matrices – Isomorphism of graphs.

# UNIT II TREES AND CONNECTIVITY

9

Bridges – Trees – Characterization and properties of trees – Cut vertices – Connectivity.

## UNIT III TRAVERSABILITY

q

Eulerian graphs – Characterization of Eulerian graphs – Hamiltonian graphs – Necessary condition for Hamiltonian graphs – Sufficient condition for Hamiltonian graphs.

# UNIT IV PLANARITY AND COLOURING

9

Planar Graphs – The Euler Identity – Non planar Graphs – Vertex Colouring – Lower and Upper bounds of chromatic number.

# UNIT V OPTIMIZATION GRAPH ALGORITHMS

9

Dijkstra's shortest path algorithm – Kruskal's and Prim's minimum spanning tree algorithms – Transport Network – The Max-Flow Min-Cut Theorem – The Labeling Procedure – Maximum flow problem.

**TOTAL: 45 PERIODS** 

# **COURSE OUTCOMES**

At the end of this course, the student will be able to

CO1: Apply graph models for solving real world problem.

**CO2**: Understand the importance the natural applications of trees and graph connectivity.

CO3: Understand the characterization study of Eulerian graphs and Hamiltonian graphs.

**CO4**: Apply the graph colouring concepts in partitioning problems.

**CO5**: Apply the standard optimization graph algorithms in solving application problems.

### **TEXT BOOKS**

- 1. Gary Chatrand and Ping Zhang, "Introduction to Graph Theory", Tata McGraw Hill companies Inc., New York, 2006.
- 2. Ralph P. Grimaldi, "Discrete and Combinatorial Mathematics, An applied introduction" Fifth edition, Pearson Education, Inc, Singapore, 2004.

### REFERENCES

- 1. Balakrishnan R. and Ranganathan K., "A Text Book of Graph Theory", Springer Verlag, New York, 2012.
- 2. Douglas B. West, "Introduction to Graph Theory", Pearson, Second Edition, New York, 2018.

### CO's-PO's & PSO's MAPPING

|     | PO01 | PO02 | PO03 | PO04 | PO05 | PO06 | PO07 | PO08 | PO09 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| CO1 | 3    | 3    | 3    |      |      |      |      |      |      |      |      |      |      |      |      |
| CO2 |      | 2    | 2    |      | 2    |      |      |      |      |      |      |      |      |      |      |
| CO3 |      | 2    | 2    | 2    |      |      |      |      |      | 2    |      |      |      |      |      |
| CO4 | 2    | 2    | 2    |      |      |      |      |      |      |      |      |      |      |      |      |
| CO5 |      | 3    | 2    |      | 2    |      |      |      |      | 3    |      |      |      |      |      |
| CO6 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

# CCS355 NEURAL NETWORKS AND DEEP LEARNING

LTPC

2 0 2 3

### **COURSE OBJECTIVES:**

- To understand the basics in deep neural networks
- To understand the basics of associative memory and unsupervised learning networks
- To apply CNN architectures of deep neural networks
- To analyze the key computations underlying deep learning, then use them to build and train deep neural networks for various tasks.

UNIVE

To apply autoencoders and generative models for suitable applications.

### UNIT I INTRODUCTION

6

Neural Networks-Application Scope of Neural Networks-Artificial Neural Network: An Introduction-Evolution of Neural Networks-Basic Models of Artificial Neural Network-Important Terminologies of ANNs-Supervised Learning Network.

# UNIT II ASSOCIATIVE MEMORY AND UNSUPERVISED LEARNING NETWORKS 6

Training Algorithms for Pattern Association-Autoassociative Memory Network-Heteroassociative Memory Network-Bidirectional Associative Memory (BAM)-Hopfield Networks-Iterative Autoassociative Memory Networks-Temporal Associative Memory Network-Fixed Weight Competitive Nets-Kohonen Self-Organizing Feature Maps-Learning Vector Quantization-Counter propagation Networks-Adaptive Resonance Theory Network.

## UNIT III THIRD-GENERATION NEURAL NETWORKS

6

Spiking Neural Networks-Convolutional Neural Networks-Deep Learning Neural Networks-Extreme Learning Machine Model-Convolutional Neural Networks: The Convolution Operation – Motivation – Pooling – Variants of the basic Convolution Function – Structured Outputs – Data Types – Efficient Convolution Algorithms – Neuroscientific Basis – Applications: Computer Vision, Image Generation, Image Compression.

### UNIT IV DEEP FEEDFORWARD NETWORKS

6

History of Deep Learning- A Probabilistic Theory of Deep Learning- Gradient Learning – Chain Rule and Backpropagation - Regularization: Dataset Augmentation – Noise Robustness -Early Stopping, Bagging and Dropout - batch normalization- VC Dimension and Neural Nets.

#### UNIT V RECURRENT NEURAL NETWORKS

6

Recurrent Neural Networks: Introduction – Recursive Neural Networks – Bidirectional RNNs – Deep Recurrent Networks - Applications: Image Generation, Image Compression, Natural Language Processing. Complete Auto encoder, Regularized Autoencoder, Stochastic Encoders and Decoders, Contractive Encoders.

> **30 PERIODS** 30 PERIODS

# LAB EXPERIMENTS:

- 1. Implement simple vector addition in TensorFlow.
- 2. Implement a regression model in Keras.
- 3. Implement a perceptron in TensorFlow/Keras Environment.
- 4. Implement a Feed-Forward Network in TensorFlow/Keras.
- 5. Implement an Image Classifier using CNN in TensorFlow/Keras.
- 6. Improve the Deep learning model by fine tuning hyper parameters.
- 7. Implement a Transfer Learning concept in Image Classification.
- 8. Using a pre trained model on Keras for Transfer Learning
- 9. Perform Sentiment Analysis using RNN
- 10. Implement an LSTM based Autoencoder in TensorFlow/Keras.
- Image generation using GAN 11.

# Additional Experiments:

- 12. Train a Deep learning model to classify a given image using pre trained model
- 13. Recommendation system from sales data using Deep Learning
- 14. Implement Object Detection using CNN
- 15. Implement any simple Reinforcement Algorithm for an NLP problem

**TOTAL: 60 PERIODS** 

# **COURSE OUTCOMES:**

# At the end of this course, the students will be able to:

CO1: Apply Convolution Neural Network for image processing.

CO2: Understand the basics of associative memory and unsupervised learning networks.

CO3: Apply CNN and its variants for suitable applications.

CO4: Analyze the key computations underlying deep learning and use them to build and train deep neural networks for various tasks.

CO5: Apply autoencoders and generative models for suitable applications.

### TEXT BOOKS:

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, "Deep Learning", MIT Press, 2016.
- 2. Francois Chollet, "Deep Learning with Python", Second Edition, Manning Publications, 2021.

# REFERENCES:

- 1. Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn and TensorFlow", Oreilly, 2018.
- 2. Josh Patterson, Adam Gibson, "Deep Learning: A Practitioner's Approach", O'Reilly Media,
- 3. Charu C. Aggarwal, "Neural Networks and Deep Learning: A Textbook", Springer International Publishing, 1st Edition, 2018.
- 4. Learn Keras for Deep Neural Networks, Jojo Moolayil, Apress, 2018

- 5. Deep Learning Projects Using TensorFlow 2, Vinita Silaparasetty, Apress, 2020
- 6. Deep Learning with Python, FRANÇOIS CHOLLET, MANNING SHELTER ISLAND, 2017.
- 7. S Rajasekaran, G A Vijayalakshmi Pai, "Neural Networks, FuzzyLogic and Genetic Algorithm, Synthesis and Applications", PHI Learning, 2017.
- 8. Pro Deep Learning with TensorFlow, Santanu Pattanayak, Apress, 2017
- 9. James A Freeman, David M S Kapura, "Neural Networks Algorithms, Applications, and Programming Techniques", Addison Wesley, 2003.

### CO's-PO's & PSO's MAPPING

| CO's | PO's |   |     |     |     |     |   |     |     |     |     |    | PSO' | S   |     |
|------|------|---|-----|-----|-----|-----|---|-----|-----|-----|-----|----|------|-----|-----|
|      | 1    | 2 | 3   | 4   | 5   | 6   | 7 | 8   | 9   | 10  | 11  | 12 | 1    | 2   | 3   |
| 1    | 3    | 2 | 3   | 2   | 3   | 1   | - | -   | 2   | 1   | -   | -  | 2    | 2   | 1   |
| 2    | 3    | 1 | 2   | 1   | -   | -   | - | -   | -   | 1   | 2   | 2  | -    | 1   | -   |
| 3    | 3    | 3 | 3   | 3   | 3   | 1   | - | -   | 2   | 1   | -   | -  | 2    | 2   | 1   |
| 4    | 3    | 3 | 3   | 3   | 3   | -   | - | - 1 | 2   | -// | 2   | 3  | 2    | 2   | 2   |
| 5    | 1    | 1 | 3   | 2   | 3   |     |   | - 1 | 2   |     | -   | -  | 1    | 1   | -   |
| AVg. | 2.6  | 2 | 2.8 | 2.2 | 2.4 | 0.4 | 0 | 0   | 1.6 | 0.6 | 8.0 | 1  | 1.4  | 1.6 | 0.8 |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

CCW332

DIGITAL MARKETING

L T P C 2 0 2 3

### COURSE OBJECTIVES:

- The primary objective of this module is to examine and explore the role and importance of digital marketing in today's rapidly changing business environment.
- It also focuses on how digital marketing can be utilized by organizations and how its effectiveness can be measured.

# UNIT I INTRODUCTION TO ONLINE MARKET

6

Online Market space- Digital Marketing Strategy- Components - Opportunities for building Brand Website - Planning and Creation - Content Marketing.

### UNIT II SEARCH ENGINE OPTIMISATION

6

Search Engine optimisation - Keyword Strategy- SEO Strategy - SEO success factors -On-Page Techniques - Off-Page Techniques. Search Engine Marketing- How Search Engine works- SEM components- PPC advertising -Display Advertisement

### UNIT III E- MAIL MARKETING

6

E- Mail Marketing - Types of E- Mail Marketing - Email Automation - Lead Generation - Integrating Email with Social Media and Mobile- Measuring and maximizing email campaign effectiveness. Mobile Marketing- Mobile Inventory/channels- Location based; Context based; Coupons and offers, Mobile Apps, Mobile Commerce, SMS Campaigns-Profiling and targeting

# UNIT IV SOCIAL MEDIA MARKETING

6

Social Media Marketing - Social Media Channels- Leveraging Social media for brand conversations and buzz. Successful /benchmark Social media campaigns. Engagement Marketing- Building Customer relationships - Creating Loyalty drivers - Influencer Marketing.

# UNIT V DIGITAL TRANSFORMATION

6

Digital Transformation & Channel Attribution- Analytics- Ad-words, Email, Mobile, Social Media, Web Analytics - Changing your strategy based on analysis- Recent trends in Digital marketing.

30 PERIODS 30 PERIODS

# PRACTICAL EXERCISES:

- 1. Subscribe to a weekly/quarterly newsletter and analyze how its content and structure aid with the branding of the company and how it aids its potential customer segments.
- 2. Perform keyword search for a skincare hospital website based on search volume and competition using Google keyword planner tool.
- 3. Demonstrate how to use the Google WebMasters Indexing API
- **4.** Discuss an interesting case study regarding how an insurance company manages leads.
- **5.** Discuss negative and positive impacts and ethical implications of using social media for political advertising.
- **6.** Discuss how Predictive analytics is impacting marketing automation

# **COURSE OUTCOMES:**

- **CO1:** To examine and explore the role and importance of digital marketing in today's rapidly changing business environment..
- **CO2:** To focuses on how digital marketing can be utilized by organizations and how its effectiveness can be measured.
- **CO3:** To know the key elements of a digital marketing strategy.
- CO4: To study how the effectiveness of a digital marketing campaign can be measured
- **CO5:** To demonstrate advanced practical skills in common digital marketing tools such as SEO, SEM, Social media and Blogs.

**TOTAL:60 PERIODS** 

### **TEXT BOOKS**

- 1. Fundamentals of Digital Marketing by Puneet Singh Bhatia; Publisher: Pearson Education;
- 2. First edition (July 2017);ISBN-10: 933258737X;ISBN-13: 978-9332587373.
- 3. Digital Marketing by Vandana Ahuja ;Publisher: Oxford University Press ( April 2015). ISBN-10: 0199455449
- Marketing 4.0: Moving from Traditional to Digital by Philip Kotler; Publisher: Wiley; 1st edition (April 2017); ISBN10: 9788126566938; ISBN 13: 9788126566938; ASIN: 8126566930.
- 5. Ryan, D. (2014). Understanding Digital Marketing: Marketing Strategies for Engaging the Digital Generation, Kogan Page Limited..
- 6. Barker, Barker, Bormann and Neher(2017), Social Media Marketing: A Strategic Approach, 2E South-Western ,Cengage Learning.
- 7. Pulizzi, J Beginner's Guide to Digital Marketing, Mcgraw Hill Education

| CO's | PO's |     |     |   |     |   |   |   |     |     |    |     | PSO' | S   |   |
|------|------|-----|-----|---|-----|---|---|---|-----|-----|----|-----|------|-----|---|
|      | 1    | 2   | 3   | 4 | 5   | 6 | 7 | 8 | 9   | 10  | 11 | 12  | 1    | 2   | 3 |
| 1    | 3    | 3   | 2   | 1 | 3   | - | - | - | 1   | 2   | 3  | 3   | 3    | 3   | 3 |
| 2    | 2    | 2   | 2   | 1 | 3   | - | - | - | 1   | 2   | 3  | 3   | 3    | 3   | 3 |
| 3    | 1    | 1   | 1   | 2 | 2   | - | - | - | 1   | 2   | 1  | 1   | 3    | 2   | 1 |
| 4    | 3    | 2   | 2   | 3 | 1   | - | - | - | 1   | 3   | 2  | 3   | 2    | 3   | 2 |
| 5    | 2    | 3   | 1   | 3 | 3   | - | - | - | 2   | 3   | 1  | 2   | 1    | 2   | 1 |
| AVg. | 2.2  | 2.2 | 1.6 | 2 | 2.4 | - | - | - | 1.2 | 2.4 | 2  | 2.4 | 2.4  | 2.6 | 2 |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

# **OPEN ELECTIVE II**

# OIE352 RESOURCE MANAGEMENT TECHNIQUES

LTPC 3 0 0 3

# **COURSE OBJECTIVES:**

- Learn to formulate linear programming problems and solve LPP using simple algorithm
- Learn to solve networking problems
- Learn to formulate and solve integer programming problems
- Learn to solve Non Linear programming problems
- Learn to understand and solve project management problems

## UNIT I LINEAR PROGRAMMING

9

Principal components of decision problem – Modeling phases – LP formulation and graphic solution – Resource allocation problems – simplex method – sensitivity analysis.

# UNIT II DUALITY AND NETWORKS

9

Definition of dual problems – primal – Dual relationships – Dual simplex method –post optimality analysis – Transportation and assignment model – Shortest route problem.

# UNIT III INTEGER PROGRAMMING

9

Cutting plan algorithm – Branch and bound methods, Multistage (Dynamic) programming.

### UNIT IV CLASSICAL OPTIMISATION THEROY:

9

Unconstrained external problems, Newton – Ralphson method – Equality constraints –Jacobean methods – Lagrangian method – Kuhn – Tucker conditions – Simple problems.

### UNIT V OBJECT SCHEDULOING:

Ç

Network diagram representation – Critical path method – Time charts and resource leveling – PERT.

**TOTAL: 45 PERIODS** 

# **COURSE OUTCOMES:**

Upon Completion of the course, the students should be able to:

CO1 : Understand to formulate linear programming problems and solve LPP using simple algorithm

CO2: Understand to solve networking problems

CO3: Understand to formulate and solve integer programming problems

CO4: Understand to solve Non Linear programming problems

CO5: Understand to understand and solve project management problems

### CO's-PO's & PSO's MAPPING

| CO's |   |   | PO's |   |   |   |   |   |   |    |    |    | PS | O's |   |
|------|---|---|------|---|---|---|---|---|---|----|----|----|----|-----|---|
|      | 1 | 2 | 3    | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1  | 2   | 3 |
| 1    |   | 3 | 3    | 2 |   |   |   |   |   |    |    |    | 3  | 2   | 3 |
| 2    |   | 3 | 3    | 2 |   |   |   |   |   |    |    |    | 3  | 2   | 3 |
| 3    |   | 3 | 3    | 2 |   |   |   |   |   |    |    |    | 3  | 2   | 3 |
| 4    |   | 3 | 3    | 2 |   |   |   |   |   |    |    |    | 3  | 2   | 3 |
| 5    |   | 3 | 3    | 2 |   |   |   |   |   |    |    |    | 3  | 2   | 3 |
| AVg. |   | 3 | 3    | 2 |   |   |   |   |   |    |    |    | 3  | 2   | 3 |

1 - low, 2 - medium, 3 - high, '-' - no correlation

### **TEXT BOOK:**

1. H.A. Taha, "Operation Research", Prentice Hall of India, 2002.

### RFERENCES:

- 1. Paneer selvam, 'Operations Research' Prentice Hall of India, 2002.
- 2. Anderson 'Quantitative Methods for Business', 8<sup>th</sup> Edition, Thomson Learning, 2002.
- 3. Winston 'Operations Research for Business', Thomson Learning, 2003.
- 4. Vohra, 'Quantitative Techniques in Management', Tata Mc Graw Hill, 2002.
- 5. Anand sarma, 'Operation Research' Himalaya Publishing House, 2003.

#### **OMG351**

# **FINTECH REGULATION**

LTPC 3 0 0 3

# **COURSE OBJECTIVES:**

- 1. To learn about Laws and Regulation
- 2. To acquire the knowledge of Regulations of Fintech firm and their role in Market

# UNIT I INTRODUCTION

9

The Role of the Regulators, Equal Treatment and Competition, Need for a regulatory assessment of Fintech, India Regulations, The Risks to Consider, Regtech and SupTech, The rise of TechFins, Regulatory sandboxes, compliance and whistleblowing.

### UNIT II INNOVATION AND REGULATION

9

The technology, market and the law, Regulation and Innovation in Banking and Finance, Regulations of Fintech Firms and their role in Market-Based Chains, Current Regulatory Approach, Fintech Innovations in Banking, Asset Management, Insurance, Pensions and Healthcare Schemes, Patentability of FinTech inventions.

# UNIT III CROWDFUNDING AND DIGITAL ASSETS

S

Types of crowdfunding, The Jobs Act, Regulation crowdfunding, Regulation A+, Regulation D crowdfunding, Intrastate offerings, Digital Assets – Three uses of Digital Assets, A world of Altcoins, Stablecoins, Digital Asset Forks, Initial Coin Offerings, Regulatory Framework for Digital and Crypto Assets, Central Bank Digital Currencies.

# UNIT IV MARKETPLACE LENDING AND MOBILE PAYMENTS

9

Online Lending Business Models, Payday Loans, Consumer Protection Laws, Debt Collection, Equal Credit Opportunity Act, Contract Formation and the E-Sign Act, Military Lending Act, Securities Laws Considerations, Mobile Devices, Payment Cards and the Law, Truth in Lending Act and Regulation Z, Card Act, Electronic Fund Transfer Act and Regulation E, Fair Credit Reporting Act, Federal Bank Secrecy Act, State Money Transmitter Laws.

# UNIT V ANTI-MONEY LAUNDERING AND CYBERSECURITY

(

Reporting requirements under the Bank Secrecy Act, Patriot Act, Panalties for violating the BSA, Virtual currencies and the Bank Secrecy Act, Cybersecurity Frameworks, Cybersecurity Act of 2015, Contractual and Self Regulatory obligations.

### **REFERENCES**

- 1. JelenaMadir, FinTech Law and Regulation, Edward Elgar Publishing Limited, 2019
- 2. Valerio Lemma, Fintech Regulation : Exploring New Challenges of the Capital Markets Union, Palgrave Macmillan, 2020
- 3. Chris Brummer, Fintech Law in a Nutshell, West Academic Publishing, 2020
- 4. Bernardo Nicoletti, The Future of Fintech, Integrating Finance and Technology in Financial Services, Springer Nature, 2017
- 5. Kevin C. Taylor, FinTech Law: A Guide to Technology Law in the Financial Services Industry, BNA Books, 2014
- 6. Lee Reiners, FinTech Law and Policy, 2018

### OFD351 HOLISTIC NUTRITION

LTPC 3003

# UNIT I NUTRITION AND HEALTH

q

Introduction to the principles of nutrition; Basics of nutrition including; micronutrients (vitamins and minerals), the energy-yielding nutrients (Carbohydrates, Lipids and Proteins), metabolism, digestion, absorption and energy balance. Lipids: their functions, classification, dietary requirements, digestion & absorption, metabolism and links to the major fatal diseases, heart disease and cancer.

### UNIT II AYURVEDA – MIND/BODY HEALING

9

Philosophy of Holistic Nutrition with spiritual and psychological approaches towards attaining optimal health; Principles and practical applications of Ayurveda, the oldest healing system in the world. Three forces – Vata, Pitta and Kapha, that combine in each being into a distinct constitution. Practical dietary and lifestyle recommendations for different constitutions will also be explored in real case studies.

# UNIT III NUTRITION AND ENVIRONMENT

9

Based on an underlying philosophy that environments maintain and promote health and that individuals have a right to self-determination and self-knowledge, Nutrition principles which promote health and prevent disease. Safety of our food supply, naturally occurring and environmental toxins in foods, microbes and food poisoning.

# UNIT IV COMPARATIVE DIETS

9

Evaluating principles of food dynamics, nutrient proportions, holistic individuality, the law of opposites, food combining, and more. Therapeutic benefits and limitations of several alternative diet approaches, including: modern diets (intermittent fasting, macrobiotics), food combining (colour-therapy/rainbow diet), high protein diets (Ketogenic, Paleo), Vegetarian approaches (plant-based/vegetarian/vegan variations, fruitarian, raw food), as well as cleansing and detoxification diets (caffeine, alcohol, and nicotine detoxes, juice fasts).

# UNIT V PREVENTIVE HEALTH CARE

9

Proper nutrition protection against, reverse and/or retard many ailments including: osteoporosis, diabetes, atherosclerosis and high blood pressure, arthritis, cancer, anemia, kidney disease and colon cancer. Current research developments on phytochemicals, antioxidants and nutraceuticals will be explored.

**TOTAL: 45 PERIODS** 

### **COURSE OUTCOMES**

- CO1 Discuss the role of essential nutrients in physical, mental and emotional wellness
- CO2 Discuss the role of deficiencies in essential nutrients in the disease process
- CO3 Explain how the standard American diet relates to the disease process
- CO4 Identify five contemporary eating "styles" and lists the pros and cons of each
- CO5 Discuss the concept of whole foods nutrition and its relationship to wellness

### **TEXTBOOKS**

- 1. Desai, B. B., Handbook of Nutrition and Diet. Marcel Dekker, New York. 2000
- 2. Macrae, R., Rolonson Roles and Sadlu, M.J. 1994. Encyclopedia of Food Science & Technology & Nutrition. Vol. XI. Academic Press

# **REFERENCES**

- 1. Modern Nutrition in Health & Disease by Young & Shils.
- 2. Food, Nutrition and Diet Therapy by Krause and Mahan 1996, Publisher- W.B. Saunders, ISBN: 0721658350
- 3. Nutritive Value of Indian Foods.- by C. Gopalan, B. V. Rama Sastri, S. C. Balasubramanian Published by National Institute of Nutrition, Indian Council of Medical Research, 1989

AI3021

# IT IN AGRICULTURAL SYSTEM

LTPC

3 0 0 3

# **COURSE OBJECTIVES:**

- To introduce the students to areas of agricultural systems in which IT and computers play a major role.
- To also expose the students to IT applications in precision farming, environmental control systems, agricultural systems management and weather prediction models.

# UNIT I PRECISION FARMING

9

Precision agriculture and agricultural management – Ground based sensors, Remote sensing, GPS, GIS and mapping software, Yield mapping systems, Crop production modeling.

# UNIT II ENVIRONMENT CONTROL SYSTEMS

9

Artificial light systems, management of crop growth in greenhouses, simulation of CO<sub>2</sub> consumption in greenhouses, on-line measurement of plant growth in the greenhouse, models of plant production and expert systems in horticulture.

# UNIT III AGRICULTURAL SYSTEMS MANAGEMENT

9

Agricultural systems - managerial overview, Reliability of agricultural systems, Simulation of crop growth and field operations, Optimizing the use of resources, Linear programming, Project scheduling, Artificial intelligence and decision support systems.

# UNIT IV WEATHER PREDICTION MODELS

9

Importance of climate variability and seasonal forecasting, Understanding and predicting world's climate system, Global climatic models and their potential for seasonal climate forecasting, General systems approach to applying seasonal climate forecasts.

# UNIT V E-GOVERNANCE IN AGRICULTURAL SYSTEMS

9

Expert systems, decision support systems, Agricultural and biological databases, e-commerce, e-

business systems & applications, Technology enhanced learning systems and solutions, elearning, Rural development and information society.

**TOTAL: 45 PERIODS** 

### TEXTBOOKS:

- 1. National Research Council, "Precision Agriculture in the 21st Century", National Academies Press, Canada, 1997.
- 2. H. Krug, Liebig, H.P. "International Symposium on Models for Plant Growth, Environmental Control and Farm Management in Protected Cultivation", 1989.

# **REFERENCES:**

- 1. Peart, R.M., and Shoup, W. D., "Agricultural Systems Management", Marcel Dekker, New York, 2004.
- 2. Hammer, G.L., Nicholls, N., and Mitchell, C., "Applications of Seasonal Climate", Springer, Germany, 2000.

# COURSE OUTCOME:

**CO1**: The students shall be able to understand the applications of IT in remote sensing applications such as Drones etc.

**CO2**: The students will be able to get a clear understanding of how a greenhouse can be automated and its advantages.

CO3: The students will be able to apply IT principles and concepts for management of field operations.

**CO4**: The students will get an understanding about weather models, their inputs and applications.

**CO5**: The students will get an understanding of how IT can be used for e-governance in agriculture.

| PO/PSO |                          | Cours | e Outc | ome |     |     | Overall        |
|--------|--------------------------|-------|--------|-----|-----|-----|----------------|
|        |                          | CO1   | CO2    | CO3 | CO4 | CO5 | correlation of |
|        |                          |       |        | -/  |     | 4   | CO s to POs    |
| PO1    | Knowledge of Engineering | 2     | 3      | 2   | 3   | 2   | 2              |
|        | Sciences                 |       |        |     | 1   |     |                |
| PO2    | Problem Analysis         | 3     | 3      | 3   | 3   | 3   | 3              |
| PO3    | Design/ Development of   | 3     | 3      | 3   | 3   | 3   | 3              |
|        | Solutions                | 1KUI  | JUП    | MM  | MYL | טעב |                |
| PO4    | Investigations           | 2     | 3      | 2   | 1   | 2   | 2              |
| PO5    | Modern Tool Usage        | 3     | 3      | 3   | 3   | 3   | 3              |
| PO6    | Individual and Team work | 1     | 1      | 2   | 2   | 3   | 2              |
| PO7    | Communication            | 3     | 3      | 3   | 3   | 3   | 3              |
| PO8    | The Engineer and Society | 3     | 3      | 2   | 3   | 3   | 3              |
| PO9    | Ethics                   | 1     | 1      | 2   | 1   | 2   | 1              |
| PO10   | Environment and          | 3     | 3      | 3   | 3   | 3   | 3              |
|        | Sustainability           |       |        |     |     |     |                |
| PO11   | Project Management and   | 3     | 3      | 3   | 3   | 3   | 3              |
|        | Finance                  |       |        |     |     |     |                |
| PO12   | Life Long Learning       | 3     | 3      | 3   | 3   | 3   | 3              |
| PSO1   | To make expertise in     | 1     | 1      | 2   | 2   | 3   | 2              |

|      | design and engineering problem solving approach in agriculture with proper knowledge and skill                                                         |   |   |   |   |   |   |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|
| PSO2 | To enhance students ability to formulate solutions to real-world problems pertaining to sustained agricultural productivity using modern technologies. | 1 | 1 | 2 | 2 | 3 | 2 |
| PSO3 | To inculcate entrepreneurial skills through strong Industry- Institution linkage.                                                                      | 1 | 1 | 2 | 2 | 3 | 2 |

1 - low, 2 - medium, 3 - high, '-' - no correlation

### OEI352 INTRODUCTION TO CONTROL ENGINEERING

LT P C 3 0 0 3

# **COURSE OBJECTIVES:**

- To introduce the control system components and transfer function model with their graphical representation
- To understand the analysis of system in time domain along with steady state error.
- To introduce frequency response analysis of systems.
- To accord basic knowledge in design of compensators.
- To introduce the state space models.

### UNIT – I MATHEMATICAL MODELLING

9

Introduction – transfer function – simple electrical, mechanical, ,pneumatic , hydraulic and thermal systems–analogies

# UNIT -II FEEDBACK CONTROL SYSTEMS

9

Control system components - Block diagram representation of control systems, Reduction of block diagrams, Signal flow graphs, Output to input ratios

# UNIT - III TIME DOMAIN ANALYSIS

9

Response of systems to different inputs viz., Step impulse, pulse, parabolic and sinusoidal inputs, Time response of first and second order systems, steady state errors and error constants of unity feedback circuit.

# UNIT - IV STABILITY ANALYSIS

9

Necessary and sufficient conditions, Routh-Hurwitzcriteria of stability, Rootlocus and Bodetechniques, Concept and construction, frequency response.

# UNIT - V STATE SPACE TECHNIQUE

9

State vectors-state space models-Digital Controllers-design aspects.

**TOTAL: 45 PERIODS** 

# SKILL DEVELOPMENT ACTIVITIES (Group Seminar/Mini Project/Assignment/Content Preparation / Quiz/ Surprise Test / Solving GATE questions/ etc) 5

- 1. Explore various controllers presently used in industries.
- 2. Develop control structures for industrial processes.
- 3. Implement the controllers for various transfer functions of industrial systems.
- 4. Using software tools for practical exposures to the controllers used in industries by undergoing training.
- 5. Realisation of various stability criterion techniques for economical operation of process.

### **COURSE OUTCOMES:**

- **CO1** To represent and develop systems in different forms using the knowledge gained (L5).
- CO2 To analyses the system in time and frequency domain (L4).
- CO3 Ability to Derive Transfer function Model of Electrical and Mechanical Systems. (L2)
- CO4 Ability to Obtain the transfer Function by the Reduction of Block diagram & Signal flow graph (L3)
- CO5 To analyses the stability of physical systems(L4).
- CO6 To acquire and analyse knowledge in State variable model for MIMO systems(L1)

### TEXT BOOKS:

- 1. Nagarath, I.J. and Gopal, M., "Control Systems Engineering", New Age International Publishers, 2017.
- 2. Benjamin C. Kuo, "Automatic Control Systems", Wiley, 2014

### REFERENCES:

- 1. Katsuhiko Ogata, "Modern Control Engineering", Pearson, 2015.
- 2. Richard C. Dorf and Bishop, R.H., "Modern Control Systems", Pearson Education, 2009.
- 3. John J.D., Azzo Constantine, H. and HoupisSttuart, N Sheldon, "Linear Control System Analysis and Design with MATLAB", CRC Taylor& Francis Reprint 2009.
- 4. RamesC.Panda and T. Thyagarajan, "An Introduction to Process Modelling Identification and
  - Control of Engineers", Narosa Publishing House, 2017.
- 5. M. Gopal, "Control System: Principle and design", McGraw Hill Education, 2012.
- 6. NPTEL Video Lecture Notes on "Control Engineering "by Prof. S. D. Agashe, IIT Bombay.

# List of Open Source Software/ Learning website:

- 1. https://nptel.ac.in/courses/112107240
- 2. https://onlinecourses.nptel.ac.in/noc20\_me25/preview
- 3. https://onlinecourses.nptel.ac.in/noc20\_ee90/preview
- 4. https://www.classcentral.com/course/swayam-automatic-control-9850

|      |   |   | PO' | S |   |   |   |   |   |    |    |    | P | SO's |   |
|------|---|---|-----|---|---|---|---|---|---|----|----|----|---|------|---|
| CO's | 1 | 2 | 3   | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2    | 3 |
| 1 L5 | 3 | 3 | 3   | 3 | - | - | - | 1 | - | 1  | -  | 1  |   |      |   |
| 2 L4 | 3 | 3 | 3   | 2 | 1 | - | 1 | 1 | - | 1  | -  | 1  |   |      |   |

| 3 L2 | 2   | 1   | 2 | 1   | - | - | - | 1 | - | 1 | - | 1 |  |  |
|------|-----|-----|---|-----|---|---|---|---|---|---|---|---|--|--|
| 4 L5 | 3   | 3   | 3 | 3   | - | - | - | 1 | - | 1 | - | 1 |  |  |
| 5 L4 | 3   | 3   | 3 | 2   | - | - | - | 1 | - | 1 | - | 1 |  |  |
| 6 L4 | 3   | 3   | 3 | 2   | - | - | - | 1 | - | 1 | - | 1 |  |  |
| AVg. | 2.8 | 2.6 | 3 | 2.1 | - | - | - | 1 | - | 1 | - | 1 |  |  |

1-low, 2-medium, 3-high, '-"- no correlation

Note: The average value of this course to be used for program articulation matrix.

## OPY351 PHARMACEUTICAL NANOTECHNOLOGY

LTPC 3003

### **COURSE OBJECTIVES:**

 The goal of this course is to provide an insight into the fundamentals of nanotechnology in biomedical and Pharmaceutical research. It will also guide the students to understand how nanomaterials can be used for a diversity of analytical and medicinal rationales.

## UNIT I NANOSTRUCTURES

9

Preparation, properties and characterization - Self-assembling nanostructure - vesicular and micellar polymerization-nanofilms - Metal Nanoparticles- lipid nanoparticles- nanoemulsion - Molecular nanomaterials: dendrimers, etc.,

### UNIT II NANOTECHNOLOGY IN BIOMEDICAL INDUSTRY

9

Reconstructive Intervention and Surgery- Nanomaterials in bone substitutes and dentistry – Implants and Prosthesis -in vivo imaging- genetic defects and other disease states — Nanorobotics in Surgery –Nanocarriers: sustained, controlled, targeted drug delivery systems.

# UNIT III NANOTECHNOLOGY IN CANCER THERAPY

9

Cancer Cell Targeting and Detection- Polymeric Nanoparticles for cancer treatment – mechanism of drug delivery to tumors -advantages and limitations - Multifunctional Agents - Cancer Imaging – Magnetic Resonance Imaging- Cancer Immunotherapy.

### UNIT IV NANOTECHNOLOGY IN COSMETICS

9

Polymers in cosmetics: Film Formers – Thickeners – Hair Colouring – Conditioning Polymers: conditioning, Cleansing – Silicons – Emulsions – Stimuli Responsive Polymeric Systems - Formulation of Nano Gels, Shampoos, Hair-conditioners - Micellar self-assembly Sun-screen dispersions for UV protection – Color cosmetics.

# UNIT V NANOTOXICITY

9

NanoToxicology- introduction, dose relationship- Hazard Classification-Risk assessment and management - factors affecting nano toxicity- Dermal Effects of Nanomaterials, Pulmonary, Neuro and Cardiovascular effects of Nanoparticles - Gene–Cellular and molecular Interactions of Nanomaterials.

### **TOTAL:45 PERIODS**

### **COURSE OUTCOMES:**

The student will be able to

**CO1**: Identify the process for the preparation and characterization of the different nanostructured materials.

CO2: Apply the nanotechnology in biomedical discipline with related to drug delivery and disease diagnosis

CO3: Develop the process, experiments and apply in identifying in a societal and global context.

**CO4**: Design and develop the process with suitable equipment for the preparation of nanomaterials in developing cosmetic products.

**CO5**: Understand the ethical principles to confirm the safety of the nano products with respect to risk assessment and its management.

**CO6**: Have the knowledge about nanotechnology products and its different applications in a societal and global context.

# **TEXT BOOKS:**

- 1. Springer Handbook of Nanotechnology- Ed. by B. Bhushan, Springer-Verlag 2004
- 2. Nanobiotechnology: Concepts, Applications and Perspectives,. CM.Niemeyer C A. Mirkin, (Eds), Wiley, 2004
- Nanotechnology: Health and Environmental Risks, Jo Anne Shatkin, Second Edition, CRC Press, 2013
- 4. Sarah E. Morgan, Kathleen O. Havelka, Robert Y. Lochhead "Cosmetic Nanotechnology: Polymers and Colloids in Cosmetics", American Chemical Society, 2006.

### **REFERENCES:**

- 1. Nanotechnology in Biology and Medicine: Methods, Devices and Applications, Tuan VoDinh, CRC Press, 2007
- 2. The Chemistry of Nanomaterials: Synthesis, Properties and Applications, C.N.R. Rao, A. Muller, A. K. Cheetham (Eds), Wiley-VCH Verlag 2004
- 3. Nanotechnology: Environmental Health and safety, Risks, Regulation and Management, Matthew Hull and Diana Bowman, Elsevier, 2010.

# CO's-PO's & PSO's MAPPING

| Course Outcome<br>Statements |     | Ì | P   | 'rogr | amm | ie Oi | utcor | nes ( | (PO) |       | ١   |    | Programme<br>Specific<br>Outcomes<br>(PSO) |   |   |   |  |
|------------------------------|-----|---|-----|-------|-----|-------|-------|-------|------|-------|-----|----|--------------------------------------------|---|---|---|--|
|                              | 1   | 2 | 3   | 4     | 5   | 6     | 7     | 8     | 9    | 10    | 11  | 12 | 1                                          | 2 | 3 | 4 |  |
| CO1                          | 3   | 3 | ١.  |       |     |       |       |       | 1    | 2     |     | 2  | 3                                          |   |   | 2 |  |
| CO2                          | 3   | 3 | -01 |       | 2   | 2     | 3     | 1.17  | uл   | 11.11 |     | ΛE |                                            | 3 |   |   |  |
| CO3                          | KUL | 3 | 3   | 3     | 2   | 2     | U.    | l N   | 1    | WL    | ΞIJ | UE | 3                                          |   | 3 |   |  |
| CO4                          |     |   | 3   | 3     |     | 2     |       |       | 1    |       |     |    |                                            |   | 3 |   |  |
| CO5                          |     |   |     |       |     | 3     |       | 3     | 2    |       |     | 2  | 3                                          |   |   | 3 |  |
| CO6                          | 3   |   | 3   |       |     | 2     |       |       |      |       |     | 2  | 3                                          |   | 3 | 2 |  |
| Overall CO                   | 3   | 3 |     |       |     |       |       |       | 1    | 2     |     | 2  | 3                                          |   |   | 2 |  |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

(1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively.)

### **OAE351**

# **AVIATION MANAGEMENT**

LTPC 3003

### **COURSE OBJECTIVES:**

- To acquire solid background of managerial skills in aviation management
- To develop personality to face business difficulties.
- To control multicultural conditions.
- To identify the relevant analytical and logical skills to deal with problems in the airline industry.
- To learn the concepts of performing well in teams, professionalism, and the knowledge acquired in the field of airport planning, airport security, passengers forecasting, aerodromes work etc

## UNIT I INTRODUCTION

9

History of aviation – organisation, global, social & ethical environment – history of Aviation in India – major players in the airline industry - swot analysis of the different Airline companies in India – market potential of airline industry in India – new airport Development plans – current challenges in the airline industry - competition in the Airline industry – domestic and international from an Indian perspective

# UNIT II AIRPORT INFRASTRUCTURE AND MANAGEMENT

8

Airport planning – terminal planning design and operation – airport operations – Airport functions – organisation structure in an airline - airport authority of India - Comparison of global and Indian airport management – role of AAI -airline privatisation - full Privatisation - gradual privatisation – partial privatization

### UNIT III AIR TRANSPORT SERVICES

12

Various airport services - international air transport services - Indian scenario - an Overview of airports in Delhi, Mumbai, Hyderabad and Bangalore - the role of private Operators - airport development fees, rates, tariffs

# UNIT IV INSTITUTIONAL FRAMEWORK

8

Role of DGCA - slot allocation – methodology followed by AFC and DGCA -management of Bilaterals – economic regulations

# UNIT V CONTROLLING

8

Role of air traffic control - airspace and navigational aids – control process – case Studies in airline industry – Mumbai Delhi airport privatisation – Navi Mumbai airport Tendering process – 6 cases in the airline industry

**TOTAL: 45 PERIODS** 

## **TEXT BOOKS**

- 1. Graham.A. Managing Airports: An International Perspective Butterworth Heinemann, Oxford 2001.
- 2. Wells.A. Airport Planning and Management, 4th Edition McGraw- Hill, London 2000.

# **REFERENCES**

- 1. Doganis. R. The Airport Business Routledge, London 1992
- 2. Alexender T. Wells, Seth Young, Principles of Airport Management, McGraw Hill 2003
- 3. P S Senguttavan Fundementals of Air Transport Management, Excel Books 2007

- 4. Richard de Neufille, Airport Systems: Planning, Design and Management, McGraw-Hill London 2007.
- 5.. Manual of Aerodrome licensing of AAI airports AAI website freely downloadable issue may 2010

### **COURSE OUTCOMES:**

CO1: To interpret business difficulties.

**CO2**: To Dissect multicultural conditions.

**CO3**: To identify and apply the relevant analytical and logical skills to deal with problems in the airline industry.

CO4: To Develop well in teams, professionalism etc.

**CO5**: To apply the knowledge acquired in the field of airport planning, airport security, passengers forecasting, aerodromes work etc.

CCS342 DEVOPS L T P C 2 0 2 3

# **COURSE OBJECTIVES:**

- To introduce DevOps terminology, definition & concepts
- To understand the different Version control tools like Git, Mercurial
- To understand the concepts of Continuous Integration/ Continuous Testing/ Continuous Deployment)
- To understand Configuration management using Ansible
- Illustrate the benefits and drive the adoption of cloud-based Devops tools to solve real world problems

## UNIT I INTRODUCTION TO DEVOPS

6

Devops Essentials - Introduction To AWS, GCP, Azure - Version control systems: Git and Github.

### UNIT II COMPILE AND BUILD USING MAVEN & GRADLE

6

Introduction, Installation of Maven, POM files, Maven Build lifecycle, Build phases(compile build, test, package) Maven Profiles, Maven repositories(local, central, global), Maven plugins, Maven create and build Artificats, Dependency management, Installation of Gradle, Understand build using Gradle

# UNIT III CONTINUOUS INTEGRATION USING JENKINS

6

Install & Configure Jenkins, Jenkins Architecture Overview, Creating a Jenkins Job, Configuring a Jenkins job, Introduction to Plugins, Adding Plugins to Jenkins, Commonly used plugins (Git Plugin, Parameter Plugin, HTML Publisher, Copy Artifact and Extended choice parameters). Configuring Jenkins to work with java, Git and Maven, Creating a Jenkins Build and Jenkins workspace.

# UNIT IV CONFIGURATION MANAGEMENT USING ANSIBLE

6

Ansible Introduction, Installation, Ansible master/slave configuration, YAML basics, Ansible modules, Ansible Inventory files, Ansible playbooks, Ansible Roles, adhoc commands in ansible

### UNIT V BUILDING DEVOPS PIPELINES USING AZURE

6

Create Github Account, Create Repository, Create Azure Organization, Create a new pipeline, Build a sample code, Modify azure-pipelines.yaml file

### COURSE OUTCOMES:

**CO1:** Understand different actions performed through Version control tools like Git.

**CO2:** Perform Continuous Integration and Continuous Testing and Continuous Deployment using Jenkins by building and automating test cases using Maven & Gradle.

CO3: Ability to Perform Automated Continuous Deployment

CO4: Ability to do configuration management using Ansible

CO5: Understand to leverage Cloud-based DevOps tools using Azure DevOps

30 PERIODS
30 PERIODS

### PRACTICAL EXERCISES:

- 1. Create Maven Build pipeline in Azure
- 2. Run regression tests using Maven Build pipeline in Azure
- 3. Install Jenkins in Cloud
- 4. Create CI pipeline using Jenkins
- 5. Create a CD pipeline in Jenkins and deploy in Cloud
- 6. Create an Ansible playbook for a simple web application infrastructure
- 7. Build a simple application using Gradle
- 8. Install Ansible and configure ansible roles and to write playbooks

**TOTAL:60 PERIODS** 

#### **TEXT BOOKS**

- 1. Roberto Vormittag, "A Practical Guide to Git and GitHub for Windows Users: From Beginner to Expert in Easy Step-By-Step Exercises", Second Edition, Kindle Edition, 2016.
- 2. Jason Cannon, "Linux for Beginners: An Introduction to the Linux Operating System and Command Line", Kindle Edition, 2014

### REFERENCES

- Hands-On Azure Devops: Cicd Implementation For Mobile, Hybrid, And Web Applications
  Using Azure Devops And Microsoft Azure: CICD Implementation for ... DevOps and
  Microsoft Azure (English Edition) Paperback 1 January 2020
- 2. by Mitesh Soni
- 3. Jeff Geerling, "Ansible for DevOps: Server and configuration management for humans", First Edition, 2015.
- 4. David Johnson, "Ansible for DevOps: Everything You Need to Know to Use Ansible for DevOps", Second Edition, 2016.
- Mariot Tsitoara, "Ansible 6. Beginning Git and GitHub: A Comprehensive Guide to Version Control, Project Management, and Teamwork for the New Developer", Second Edition, 2019.
- 6. https://www.jenkins.io/user-handbook.pdf
- 7. https://maven.apache.org/guides/getting-started/

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |    | PSO's |   |   |  |  |
|------|------|---|---|---|---|---|---|---|---|----|----|----|-------|---|---|--|--|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1     | 2 | 3 |  |  |
| 1    | 3    | 3 | 3 | 2 | 3 | - | - | - | - | -  | -  | -  | 2     | 2 | 2 |  |  |
| 2    | 3    | 3 | 3 | 2 | 3 | - | - | - | - | -  | -  | -  | 2     | 2 | 2 |  |  |
| 3    | 3    | 3 | 3 | 2 | 3 | - | - | - | - | -  | -  | -  | 2     | 2 | 2 |  |  |
| 4    | 3    | 3 | 3 | 2 | 3 | - | - | - | - | -  | -  | -  | 2     | 2 | 2 |  |  |
| 5    | 3    | 3 | 3 | 2 | 3 | - | - | - | ı | -  | 1  | -  | 2     | 2 | 2 |  |  |

| AVg. | 3 | 3 | 3 | 2 | 3 | • | - | - | ı | - | - | - | 2 | 2 | 2 | l |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

1 - low, 2 - medium, 3 - high, '-' - no correlation

### **CCS361**

### ROBOTIC PROCESS AUTOMATION

LT P C 2 0 2 3

### **COURSE OBJECTIVES:**

- To understand the basic concepts of Robotic Process Automation.
- To expose to the key RPA design and development strategies and methodologies.
- To learn the fundamental RPA logic and structure.
- To explore the Exception Handling, Debugging and Logging operations in RPA.
- To learn to deploy and Maintain the software bot.

### UNIT I INTRODUCTION TO ROBOTIC PROCESS AUTOMATION

6

Emergence of Robotic Process Automation (RPA), Evolution of RPA, Differentiating RPA from Automation - Benefits of RPA - Application areas of RPA, Components of RPA, RPA Platforms. Robotic Process Automation Tools - Templates, User Interface, Domains in Activities, Workflow Files.

### UNIT II AUTOMATION PROCESS ACTIVITIES

6

Sequence, Flowchart & Control Flow: Sequencing the Workflow, Activities, Flowchart, Control Flow for Decision making. Data Manipulation: Variables, Collection, Arguments, Data Table, Clipboard management, File operations Controls: Finding the control, waiting for a control, Act on a control, UiExplorer, Handling Events

# UNIT III APP INTEGRATION, RECORDING AND SCRAPING

6

App Integration, Recording, Scraping, Selector, Workflow Activities. Recording mouse and keyboard actions to perform operation, Scraping data from website and writing to CSV. Process Mining.

# UNIT IV EXCEPTION HANDLING AND CODE MANAGEMENT

6

Exception handling, Common exceptions, Logging- Debugging techniques, Collecting crash dumps, Error reporting. Code management and maintenance: Project organization, Nesting workflows, Reusability, Templates, Commenting techniques, State Machine.

# UNIT V DEPLOYMENT AND MAINTENANCE

6

Publishing using publish utility, Orchestration Server, Control bots, Orchestration Server to deploy bots, License management, Publishing and managing updates. RPA Vendors - Open Source RPA, Future of RPA

**30 PERIODS** 

# PRACTICAL EXERCISES:

**30 PERIODS** 

# Setup and Configure a RPA tool and understand the user interface of the tool:

- 1. Create a Sequence to obtain user inputs display them using a message box;
- Create a Flowchart to navigate to a desired page based on a condition;
- 3. Create a State Machine workflow to compare user input with a random number.
- 4. Build a process in the RPA platform using UI Automation Activities.
- Create an automation process using key System Activities, Variables and Arguments
- Also implement Automation using System Trigger

- 7. Automate login to (web)Email account
- 8. Recording mouse and keyboard actions.
- Scraping data from website and writing to CSV
- 10. Implement Error Handling in RPA platform
- 11. Web Scraping
- 12. Email Query Processing

**TOTAL:60 PERIODS** 

# **TEXT BOOKS:**

- 1. Learning Robotic Process Automation: Create Software robots and automate business processes with the leading RPA tool UiPath by Alok Mani Tripathi, Packt Publishing, 2018.
- 2. <u>Tom Taulli</u>, "The Robotic Process Automation Handbook: A Guide to Implementing RPA Systems", Apress publications, 2020.

### REFERENCES:

- Frank Casale (Author), Rebecca Dilla (Author), Heidi Jaynes (Author), Lauren Livingston (Author), Introduction to Robotic Process Automation: a Primer, Institute of Robotic Process Automation, Amazon Asia-Pacific Holdings Private Limited, 2018
- Richard Murdoch, Robotic Process Automation: Guide To Building Software Robots, Automate Repetitive Tasks & Become An RPA Consultant, Amazon Asia-Pacific Holdings Private Limited, 2018
- 3. A Gerardus Blokdyk, "Robotic Process Automation Rpa A Complete Guide", 2020

### CO's- PO's & PSO's MAPPING

| CO's | PO's |     |   |     |     |      |   |      |     |     |     |     | PSO' | S   |     |
|------|------|-----|---|-----|-----|------|---|------|-----|-----|-----|-----|------|-----|-----|
|      | 1    | 2   | 3 | 4   | 5   | 6    | 7 | 8    | 9   | 10  | 11  | 12  | 1    | 2   | 3   |
| 1    | 3    | 2   | 2 | 1   | 3   | -    | - | -    | 1   | 3   | 3   | 2   | 2    | 2   | 1   |
| 2    | 1    | 1   | 2 | 3   | 3   | 1-7- | - | Υ.   | 1   | 2   | 3   | 1   | 3    | 2   | 1   |
| 3    | 2    | 3   | 2 | 3   | 3   | 1- " | - |      | 2   | 3   | 1   | 1   | 3    | 3   | 3   |
| 4    | 1    | 2   | 1 | 2   | 2   |      | - | 1- 4 | 1   | 2   | 1   | 3   | 3    | 3   | 2   |
| 5    | 3    | 3   | 3 | 3   | 3   |      |   |      | 3   | 1   | 1   | 1   | 3    | 2   | 1   |
| AVg. | 2    | 2.2 | 2 | 2.4 | 2.8 | -    | - | -    | 1.6 | 2.2 | 1.8 | 1.6 | 2.8  | 2.4 | 1.6 |

COURSE

OPEN ELCTIVE III

**OHS351** 

**ENGLISH FOR COMPETITIVE EXAMINATIONS** 

LIPC

# **Course Description:**

Students aspiring to take up competitive exams of which the English language is a vital component will find this course useful. Designed for students in the higher semesters, the course will help students to familiarise themselves with those aspects of English that are tested in these examinations.

### **COURSE OBJECTIVES:**

- To train the students in the language components essential to face competitive examinations both at the national (UPSC, Banking, Railway, Defence) and the international level (GRE, TOEFL, IELTS).
- To enhance an awareness of the specific patterns in language testing and the respective skills to tackle verbal reasoning and verbal ability tests.
- To inculcate effective practices in language-learning in order to improve accuracy in usage of grammar and coherence in writing.
- To improve students' confidence to express their ideas and opinions in formal contexts
- To create awareness of accuracy and precision in communication

UNIT I 9

Orientation on different formats of competitive exams - Vocabulary - Verbal ability - Verbal reasoning - Exploring the world of words - Essential words - Meaning and their usage - Synonyms-antonyms - Word substitution - Word analogy - Idioms and phrases - Commonly confused words - Spellings - Word expansion - New words in use.

UNIT II

Grammar – Sentence improvement –Sentence completion – Rearranging phrases into sentences – Error identification –Tenses – Prepositions – Adjectives – Adverbs – Subject-verb agreement – Voice – Reported speech – Articles – Clauses – Speech patterns.

UNIT III 9

Reading - Specific information and detail – Identifying main and supporting ideas – Speed reading techniques – Improving global reading skills – Linking ideas – Summarising – Understanding argument – Identifying opinion/attitude and making inferences - Critical reading.

UNIT IV 9

Writing – Pre-writing techniques – Mindmap - Describing pictures and facts - Paragraph structure – organising points – Rhetoric writing – Improving an answer – Drafting, writing and developing an argument – Focus on cohesion – Using cohesive devices –Analytic writing – Structure and types of essay – Mind maps – Structure of drafts, letters, memos, emails – Statements of Purpose – Structure, Content and Style.

UNIT V PROGRESS TURSULGULGULGULGES 9

Listening and Speaking – Contextual listening – Listening to instructions – Listening for specific information – Identifying detail, main ideas – Following signpost words – Stress, rhythm and intonation - Speaking to respond and elicit ideas – Guided speaking – Opening phrases – Interactive communication – Dysfluency -Sentence stress – Speaking on a topic – Giving opinions – Giving an oral presentation – Telling a story or a personal anecdote – Talking about oneself - Utterance – Speech acts- Brainstorming ideas – Group discussion.

**TOTAL: 45 PERIODS** 

# **LEARNING OUTCOMES:**

At the end of the course, learners will be able

**CO1**: expand their vocabulary and gain practical techniques to read and comprehend a wide range of texts with the emphasis required

CO2: identify errors with precision and write with clarity and coherence

CO3: understand the importance of task fulfilment and the usage of task-appropriate vocabulary

CO4: communicate effectively in group discussions, presentations and interviews

CO5: write topic based essays with precision and accuracy

### CO's-PO's & PSO's MAPPING

| СО   |   |     |     | PS |     |     |     |     |   |    |     |    |   |   |   |
|------|---|-----|-----|----|-----|-----|-----|-----|---|----|-----|----|---|---|---|
| CO   | 1 | 2   | 3   | 4  | 5   | 6   | 7   | 8   | 9 | 10 | 11  | 12 | 1 | 2 | 3 |
| 1    | 1 | 3   | 3   | 1  | 3   | 3   | 3   | 3   | 1 | 3  | 1   | 3  | - | - | - |
| 2    | 2 | 3   | 3   | 2  | 3   | 3   | 3   | 3   | 1 | 3  | 3   | 3  | - | - | - |
| 3    | 3 | 3   | 3   | 3  | 3   | 3   | 3   | 3   | 3 | 3  | 3   | 3  | - | - | - |
| 4    | 2 | 2   | 2   | 2  | 2   | 2   | 2   | 2   | 3 | 3  | 3   | 3  | - | - | - |
| 5    | 2 | 2   | 2   | 2  | 2   | 2   | 2   | 2   | 2 | 3  | 2   | 3  | - | - | - |
| AVg. | 2 | 2.6 | 2.6 | 2  | 2.6 | 2.6 | 2.6 | 2.6 | 2 | 3  | 2.4 | 3  | - | - | - |

<sup>1-</sup>low, 2-medium, 3-high, '-"- no correlation

**Note:** The average value of this course to be used for program articulation matrix.

# **Teaching Methods:**

Instructional methods will involve discussions, taking mock tests on various question papers – Objective, multiple-choice and descriptive. Peer evaluation, self-check on improvement and peer feedback - Practice sessions on speaking assessments, interview and discussion – Using multimedia.

# **Evaluative Pattern:**

Internal Tests - 50%

End Semester Exam - 50%

### **TEXTBOOKS:**

1. R.P.Bhatnagar - General English for Competitive Examinations. Macmillan India Limited, 2009.

# **REFERENCEBOOKS:**

- 1. Educational Testing Service The Official Guide to the GRE Revised General Test, Tata McGraw Hill, 2010.
- 2. The Official Guide to the TOEFL Test, Tata McGraw Hill, 2010.
- 3. R Rajagopalan- General English for Competitive Examinations, McGraw Hill Education (India) Private Limited, 2008.

### **Websites**

http://www.examenglish.com/, http://www.ets.org/, http://www.bankxams.com/
http://civilservicesmentor.com/, http://www.educationobserver.com
http://www.cambridgeenglish.org/in/

# OMG352 NGOS AND SUSTAINABLE DEVELOPMENT

L T P C 3 0 0 3

# **COURSE OBJECTIVES**

• . to understand the importance of sustainable development

- to acquire a reasonable knowledge on the legal frameworks pertaining to pollution control and environmental management
- to comprehend the role of NGOs in attaining sustainable development

### Unit I ENVIRONMENTAL CONCERNS

9

Introduction to sustainable development goals, Global responsibility of environmental concern, Importance of environmental preservation, Environmental threats, Pollution and its types, Effects of Pollution, Pollution control, Treatment of wastes

### UNIT II ROLE OF NGOS

9

Role of NGO's in national development, NGO's and participatory management, Challenges and limitations of NGO's, Community Development programmes, Role of NGO's in Community Development programmes, Participation of NGO's in environment management, Corporate Social responsibility, NGO's and corporate social responsibility

# UNIT III SUSTAINABLE DEVELOPMENT

9

Issues and Challenges of Sustainable Development, Bioenergy, Sustainable Livelihoods and Rural Poor in Sustainable Development, Protecting ecosystem services for sustainable development, Non-renewable sources of energy and its effect, Renewable sources of energy for sustainability, Nuclear resources and Legal Regulation of Hazardous Substances, Sustainable Development: Programme and Policies, Sustainability assessment and Indicators

### UNIT IV NGO'S FOR SUSTAINABILITY

9

Civil Society Initiatives in Environment Management, Civil Society Initiatives for Sustainable Development, Global Initiatives in Protecting Global Environment, World Summit on Sustainable Development (Johannesburg Summit 2002), Ecological economics, Environmental sustainability, Social inclusion, Health for all, education for all, Food security and Water security, NGOs and Sustainable Development strategies

# UNIT V LEGAL FRAMEWORKS

9

Need for a Legal framework and its enforcement, Legal measures to control pollution, Environmental Legislations in India, Mechanism to implement Environmental Laws in India, Legal Protection of Forests Act 1927, Legal Protection of Wild Life, Role of NGO's in implementing environmental laws, Challenges in the implementation of environmental legislation

**TOTAL 45 : PERIODS** 

# **COURSE OUTCOMES**

Upon completion of this course, the student will:

CO1 Have a thorough grounding on the issues and challenges being faced in attaining sustainable development

CO2 have a knowledge on the role of NGOs towards sustainable developemnt

CO 3 present strategies for NGOs in attaining sustainable development

CO 4 recognize the importance of providing energy, food security and health equity to all members of the society without damaging the environment

CO 5 understand the environmental legislations

### **REFERENCES**

- 1. Kulsange, S and Kamble, R. (2019). Environmental NGO's: Sustainability Stewardship, Lap Lambert Academic Publishing, India, ISBN-13: 978-6200442444.
- 2. Dodds, F. (2007). NGO diplomacy: The influence of nongovernmental organizations in international environmental negotiations. Mit Press, Cambridge, ISBN-13: 978-0262524766.
- 3. Ghosh, S. (Ed.). (2019). Indian environmental law: Key concepts and principles. Orient BlackSwan, India, ISBN-13: 978-9352875795.
- 4. Alan Fowler and Chiku Malunga (2010) NGO Management: The Earthscan Companion, Routledge, ISBN-13: 978-1849711197.

**OMG353** 

# **DEMOCRACY AND GOOD GOVERNANCE**

L T P C 3 0 0 3

**TOTAL 45: PERIODS** 

(9)

UNIT-I

Structure and Process of Governance: Indian Model of Democracy, Parliament, Party Politics and Electoral Behaviour, Federalism, the Supreme Court and Judicial Activism, Units of Local Governance

UNIT-II (9)

Regulatory Institutions - SEBI, TRAI, Competition Commission of India,

UNIT-III (9)

Lobbying Institutions: Chambers of Commerce and Industries, Trade Unions, Farmers Associations, etc.

UNIT- IV (9)

Contemporary Political Economy of Development in India: Policy Debates over Models of Development in India, Recent trends of Liberalisation of Indian Economy in different sectors, E-governance

UNIT-V (9)

Dynamics of Civil Society: New Social Movements, Role of NGO's, Understanding the political significance of Media and Popular Culture.

### REFERENCES:

- 1. Atul Kohli (ed.): The Success of India's Democracy, Cambridge University Press, 2001.
- 2. Corbridge, Stuart and John Harris: Reinventing India: Liberalisation, Hindu Nationalism and Popular Democracy, Oxford University Press, 2000.
- 3. J.Dreze and A.Sen, India: Economic Development and Social Opportunity, Clarendon, 1995.
- 4. Saima Saeed: Screening the Public Sphere: Media and Democracy in India,2013
- 5. Himat Singh: Green Revolution Reconsidered: The Rural World of Punjab, OUP, 2001.
- 6. Jagdish Bhagwati: India in Transition: Freeing The Economy, 1993.
- 7. Smitu Kothari: Social Movements and the Redefinition of Democracy, Boulder, Westview, 1993.

### **CME365**

### RENEWABLE ENERGY TECHNOLOGIES

LTPC 3 0 0 3

### **COURSE OBJECTIVES**

- To know the Indian and global energy scenario
- To learn the various solar energy technologies and its applications.
- To educate the various wind energy technologies.
- To explore the various bio-energy technologies.
- · To study the ocean and geothermal technologies.

### UNIT – I ENERGY SCENARIO

9

Indian energy scenario in various sectors – domestic, industrial, commercial, agriculture, transportation and others – Present conventional energy status – Present renewable energy status-Potential of various renewable energy sources-Global energy status-Per capita energy consumption - Future energy plans

# UNIT – II SOLAR ENERGY

9

Solar radiation – Measurements of solar radiation and sunshine – Solar spectrum - Solar thermal collectors – Flat plate and concentrating collectors – Solar thermal applications – Solar thermal energy storage – Fundamentals of solar photo voltaic conversion – Solar cells – Solar PV Systems – Solar PV applications.

### UNIT – III WIND ENERGY

9

Wind data and energy estimation – Betz limit - Site selection for windfarms – characteristics - Wind resource assessment - Horizontal axis wind turbine – components - Vertical axis wind turbine – Wind turbine generators and its performance – Hybrid systems – Environmental issues - Applications.

# UNIT – IV BIO-ENERGY

9

Bio resources – Biomass direct combustion – thermochemical conversion - biochemical conversion-mechanical conversion - Biomass gasifier - Types of biomass gasifiers - Cogeneration — Carbonisation – Pyrolysis - Biogas plants – Digesters –Biodiesel production – Ethanol production - Applications.

# UNIT – V OCEAN AND GEOTHERMAL ENERGY

9

Small hydro - Tidal energy - Wave energy - Open and closed OTEC Cycles - Limitations - Geothermal energy - Geothermal energy sources - Types of geothermal power plants - Applications - Environmental impact.

TOTAL: 45 PERIODS

# **COURSE OUTCOMES:**

At the end of the course the students would be able to

CO1: Discuss the Indian and global energy scenario.

**CO2**: Describe the various solar energy technologies and its applications.

CO3: Explain the various wind energy technologies.

CO4: Explore the various bio-energy technologies.

**CO5**: Discuss the ocean and geothermal technologies.

#### **TEXT BOOKS:**

- Fundamentals and Applications of Renewable Energy | Indian Edition, by Mehmet Kanoglu, Yunus A. Cengel, John M. Cimbala, cGraw Hill; First edition (10 December 2020), ISBN-10: 9390385636
- Renewable Energy Sources and Emerging Technologies, by Kothari, Prentice Hall India Learning Private Limited; 2nd edition (1 January 2011), ISBN-10: 8120344707

#### REFERENCES:

- 1. Godfrey Boyle, "Renewable Energy, Power for a Sustainable Future", Oxford University Press, U.K., 2012.
- 2. Rai.G.D., "Non-Conventional Energy Sources", Khanna Publishers, New Delhi, 2014.
- 3. Sukhatme.S.P., "Solar Energy: Principles of Thermal Collection and Storage", Tata McGraw Hill Publishing Company Ltd., New Delhi, 2009.
- 4. Tiwari G.N., "Solar Energy Fundamentals Design, Modelling and applications", Alpha Science Intl Ltd, 2015.
- 5. Twidell, J.W. & Weir A., "Renewable Energy Resources", EFNSpon Ltd., UK, 2015.

## CO's-PO's & PSO's MAPPING

| 60 |   |   |   |     |        | РО |       |         |   |         |    |    |   | PSO |   |
|----|---|---|---|-----|--------|----|-------|---------|---|---------|----|----|---|-----|---|
| СО | 1 | 2 | 3 | 4   | 5      | 6  | 7     | 8       | 9 | 10      | 11 | 12 | 1 | 2   | 3 |
| 1  | 1 | 1 | 1 | 1   | 1      | 2  | 3     | 2       | 2 | 1       | 1  | 3  | 2 | 1   | 2 |
| 2  | 3 | 2 | 2 | 1   | 1      | 1  | 3     | 1       | 1 | 1       | 2  | 3  | 2 | 1   | 2 |
| 3  | 3 | 2 | 3 | 1   | 2      | 1  | 3     | 1       | 1 | 1       | 1  | 3  | 1 | 1   | 2 |
| 4  | 2 | 2 | 2 | 1   | 2      | 1  | 3     | 1       | 1 | 1       | 2  | 3  | 2 | 2   | 2 |
| 5  | 2 | 1 | 2 | 1   | 2      | 1  | 3     | 1       | 1 | 1       | 1  | 3  | 2 | 1   | 2 |
|    |   |   |   | Lov | v (1); | M  | edium | n (2) ; | F | ligh (3 | 3) |    |   |     |   |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

**OME354** 

## APPLIED DESIGN THINKING

LTPC 3 0 0 3

## **COURSE OBJECTIVES:**

The course aims to

- Introduce tools & techniques of design thinking for innovative product
- development Illustrate customer-centric product innovation using on simple
- use cases Demonstrate development of Minimum usable Prototypes
- Outline principles of solution concepts & their evaluation
- Describe system thinking principles as applied to complex systems

## UNIT I DESIGN THINKING PRINCIPLES

9

Exploring Human-centered Design - Understanding the Innovation process, discovering areas of opportunity, Interviewing & empathy-building techniques, Mitigate validation risk with FIR [Forge Innovation rubric] - Case studies

## UNIT II ENDUSER-CENTRIC INNOVATION

9

Importance of customer-centric innovation - Problem Validation and Customer Discovery - Understanding problem significance and problem incidence - Customer Validation. Target user, User persona & user stories. Activity: Customer development process - Customer interviews and field visit

## UNIT III APPLIED DESIGN THINKING TOOLS

9

Concept of Minimum Usable Prototype [MUP] - MUP challenge brief - Designing & Crafting the value proposition - Designing and Testing Value Proposition; Design a compelling value proposition; Process, tools and techniques of Value Proposition Design

#### UNIT IV CONCEPT GENERATION

9

Solution Exploration, Concepts Generation and MUP design- Conceptualize the solution concept; explore, iterate and learn; build the right prototype; Assess capability, usability and feasibility. Systematic concept generation; evaluation of technology alternatives and the solution concepts

#### UNIT V SYSTEM THINKING

9

System Thinking, Understanding Systems, Examples and Understandings, Complex Systems

**TOTAL: 45 PERIODS** 

#### **COURSE OUTCOMES**

At the end of the course, learners will be able to:

**CO1**: Define & test various hypotheses to mitigate the inherent risks in product innovations.

**CO2**: Design the solution concept based on the proposed value by exploring alternate solutions to achieve value-price fit.

CO3: Develop skills in empathizing, critical thinking, analyzing, storytelling & pitching

CO4: Apply system thinking in a real-world scenario

#### **TEXT BOOKS**

- 1. Steve Blank, (2013), The four steps to epiphany: Successful strategies for products that win, Wiley
- 2. Alexander Osterwalder, Yves Pigneur, Gregory Bernarda, Alan Smith, Trish Papadakos, (2014), Value
- 3. Proposition Design: How to Create Products and Services Customers Want, Wiley
- 4. Donella H. Meadows, (2015), "Thinking in Systems -A Primer", Sustainability Institute.
- 5. Tim Brown,(2012) "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", Harper Business.

## **REFERENCES**

- 1. https://www.ideou.com/pages/design-thinking#process
- https://blog.forgefor ward.in/valuation-risk-versus-validation-risk-in-product-innovations-49f253ca86 24
- 3. <a href="https://blog.forgefor.ward.in/product-innovation-rubric-adf5ebdfd356">https://blog.forgefor.ward.in/product-innovation-rubric-adf5ebdfd356</a>
- 4. <a href="https://blog.forgefor.ward.in/evaluating-product-innovations-e8178e58b86e">https://blog.forgefor.ward.in/evaluating-product-innovations-e8178e58b86e</a>
- 5. <a href="https://blog.forgefor.ward.in/user-quide-for-product-innovation-rubric-857181b253dd">https://blog.forgefor.ward.in/user-quide-for-product-innovation-rubric-857181b253dd</a>
- 6. <a href="https://blog.forgefor.ward.in/star-tup-failure-is-like-true-lie-7812cdfe9b85">https://blog.forgefor.ward.in/star-tup-failure-is-like-true-lie-7812cdfe9b85</a>

#### **COURSE OBJECTIVES:**

- The main learning objective of this course is to prepare students for:
- Applying the fundamental concepts and principles of reverse engineering in product design and development.
- Applying the concept and principles material characteristics, part durability and life limitation in reverse engineering of product design and development.
- Applying the concept and principles of material identification and process verification in reverse engineering of product design and development.
- Analysing the various legal aspect and applications of reverse engineering in product design and development.
- Understand about 3D scanning hardware & software operations and procedure to generate 3D model

#### UNIT I INTRODUCTION & GEOMETRIC FORM

9 Hours

Definition – Uses – The Generic Process – Phases – Computer Aided Reverse Engineering - Surface and Solid Model Reconstruction – Dimensional Measurement – Prototyping.

UNIT II MATERIAL CHARACTERISTICS AND PROCESS IDENTIFICATION 9 Hours

.Alloy Structure Equivalency – Phase Formation and Identification – Mechanical Strength – Hardness –Part Failure Analysis – Fatigue – Creep and Stress Rupture – Environmentally Induced Failure Material Specification - Composition Determination - Microstructure Analysis - Manufacturing Process Verification.

### UNIT III DATA PROCESSING

9 Hours

Statistical Analysis – Data Analysis – Reliability and the Theory of Interference – Weibull Analysis – Data Conformity and Acceptance – Data Report – Performance Criteria – Methodology of Performance Evaluation – System Compatibility.

#### UNIT IV 3D SCANNING AND MODELLING

9 Hours

Introduction, working principle and operations of 3D scanners: Laser, White Light, Blue Light - Applications- Software for scanning and modelling: Types- Applications- Preparation techniques for Scanning objects- Scanning and Measuring strategies - Calibration of 3D Scanner- Step by step procedure: 3D scanning - Geometric modelling – 3D inspection- Case studies.

#### UNIT V INDUSTRIAL APPLICATIONS

9 Hours

Reverse Engineering in the Automotive Industry; Aerospace Industry; Medical Device Industry. Case studies and Solving Industrial projects in Reverse Engineering.Legality: Patent – Copyrights –Trade Secret – Third-Party Materials.

**TOTAL: 45 PERIODS** 

## **COURSE OUTCOMES:**

Upon completion of this course, the students will be able to:

**CO1**: Apply the fundamental concepts and principles of reverse engineering in product design and development.

**CO2**: Apply the concept and principles material characteristics, part durability and life limitation in reverse engineering of product design and development.

**CO3**: Apply the concept and principles of material identification and process verification in reverse engineering of product design and development.

**CO4**: Apply the concept and principles of data processing, part performance and system compatibility in reverse engineering of product design and development.

**CO5**: Analyze the various legal aspect

CO6: Applications of reverse engineering in product design and development.

#### **TEXT BOOKS:**

- 1. Robert W. Messler, Reverse Engineering: Mechanisms, Structures, Systems & Materials, 1st Edition, McGraw-Hill Education, 2014
- 2. Wego Wang, Reverse Engineering Technology of Reinvention, CRC Press, 2011

### **REFERENCES:**

- 1. Scott J. Lawrence, Principles of Reverse Engineering, Kindle Edition, 2022
- 2. Kevin Otto and Kristin Wood, Product Design: Techniques in Reverse Engineering and New Product Development, Prentice Hall, 2001
- 3. Kathryn, A. Ingle, "Reverse Engineering", McGraw-Hill, 1994.
- 4. Linda Wills, "Reverse Engineering", Kluver Academic Publishers, 1996
- 5. Vinesh Raj and Kiran Fernandes, "Reverse Engineering: An Industrial Perspective", Springer-Verlag London Limited 2008.

#### **OPR351**

## SUSTAINABLE MANUFACTURING

LTPC 3 0 0 3

## **COURSE OBJECTIVES:**

- To be acquainted with sustainability in manufacturing and its evaluation.
- To provide knowledge in environment and social sustainability.
- To provide the student with the knowledge of strategy to achieve sustainability.
- To familiarize with trends in sustainable operations.
- To create awareness in current sustainable practices in manufacturing industry.

#### UNIT – I ECONOMIC SUSTAINABILITY

Ć

Industrial Revolution-Economic sustainability: globalization and international issues Sustainability status - Emerging issues- Innovative products- Reconfiguration manufacturing enterprises - Competitive manufacturing strategies - Performance evaluation- Management for sustainability - Assessments of economic sustainability

## UNIT – II SOCIAL AND ENVIRONMENTAL SUSTAINABILITY

9

Social sustainability – Introduction-Work management -Human rights - Societal commitment - Customers -Business practices -Modelling and assessing social sustainability. Environmental issues pertaining to the manufacturing sector: Pollution - Use of resources -Pressure to reduce costs - Environmental management: Processes that minimize negative environmental impacts - environmental legislation and energy costs - need to reduce the carbon footprint of manufacturing Operations-Modelling and assessing environmental sustainability

### UNIT – III SUSTAINABILITY PRACTICES

9

Sustainability awareness - Measuring Industry Awareness-Drivers and barriers -Availability of

sustainability indicators -Analysis of sustainability practicing -Modeling and assessment of sustainable practicing -Sustainability awareness -Sustainability drivers and barriers - Availability of sustainability indicators- Designing questionnaires- Optimizing Sustainability Indexes-Elements – Cost and time model.

### UNIT – IV MANUFACTURING STRATEGY FOR SUSTAINABILITY

9

Concepts of competitive strategy and manufacturing strategies and development of a strategic improvement programme - Manufacturing strategy in business success strategy formation and formulation - Structured strategy formulation - Sustainable manufacturing system design options - Approaches to strategy formulation - Realization of new strategies/system designs.

### UNIT – V TRENDS IN SUSTAINABLE OPERATIONS

9

**TOTAL: 45 PERIODS** 

Principles of sustainable operations - Life cycle assessment manufacturing and service activities - influence of product design on operations - Process analysis - Capacity management - Quality management - Inventory management - Just-In-Time systems - Resource efficient design - Consumerism and sustainable well-being.

## **COURSE OUTCOMES**

Upon successful completion of the course, students should be able to:

CO1: Discuss the importance of economic sustainability.

CO2: Describe the importance of sustainable practices.

CO3: Identify drivers and barriers for the given conditions.

CO4: Formulate strategy in sustainable manufacturing.

CO5: Plan for sustainable operation of industry with environmental, cost consciousness.

## **TEXT BOOKS:**

- 1. Ibrahim Garbie, "Sustainability in Manufacturing Enterprises Concepts, Analyses and Assessments for Industry 4.0", Springer International Publishing., United States, 2016, ISBN-13: 978-3319293042.
- 2. Davim J.P., "Sustainable Manufacturing", John Wiley & Sons., United States, 2010,ISBN: 978-1-848-21212-1.

## **REFERENCES:**

- Jovane F, Emper, W.E. and Williams, D.J., "The ManuFuture Road: Towards Competitive and Sustainable High-Adding-Value Manufacturing", Springer, 2009, United States, ISBN 978-3-540-77011-4.
- 2. Kutz M., "Environmentally Conscious Mechanical Design", John Wiley & Sons., United States, 2007, ISBN: 978-0-471-72636-4.
- 3. Seliger G., "Sustainable Manufacturing: Shaping Global Value Creation", Springer, United States, 2012, ISBN 978-3-642-27289-9.

| CO's-PO's & | PSO's | MAP | PING |   |   |   |   |   |   |    |    |    |    |    |   |
|-------------|-------|-----|------|---|---|---|---|---|---|----|----|----|----|----|---|
| COs/Pos     | PO    | S   |      |   |   |   |   |   |   |    |    |    | PS | Эs |   |
| &PSOs       | 1     | 2   | 3    | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1  | 2  | 3 |
| CO1         | 3     | -   | 2    | - | - | - | 2 | 2 | - | 1  | 1  | 2  | 2  | 2  | 1 |
| CO2         | 3     | -   | -    | - | - | - | 2 | - | - | 1  | 1  | 2  | 1  | 2  | 2 |
| CO3         | 3     | -   | -    | - | - | - | 2 | 3 | - | 1  | 1  | 2  | 1  | 2  | 2 |
| CO4         | 3     | -   | 3    | - | - | - | 2 |   | - | 1  | 1  | 2  | 2  | 2  | 1 |

| CO5                    | 3    | -      | 3      | -      | -     | -      | 2 | 2 | - | 1 | 1 | 2 | 2 | 2 | 1 |
|------------------------|------|--------|--------|--------|-------|--------|---|---|---|---|---|---|---|---|---|
| CO/PO &<br>PSO Average | 3    | -      | 3      | -      | -     | -      | 2 | 2 | - | 1 | 1 | 2 | 2 | 2 | 1 |
| 1 - low, 2 - med       | ium, | 3 - hi | gh, '- | ' - no | corre | elatio | n |   |   |   |   |   |   |   |   |

#### AU3791

### **ELECTRIC AND HYBRID VEHICLES**

LTPC 3003

#### **COURSE OBJECTIVES:**

The objective of this course is to prepare the students to know about the general aspects of Electric and Hybrid Vehicles (EHV), including architectures, modelling, sizing, and sub system design and hybrid vehicle control.

## UNIT I DESIGN CONSIDERATIONS FOR ELECTRIC VEHICLES

9

Need for Electric vehicle- Comparative study of diesel, petrol, hybrid and electric Vehicles. Advantages and Limitations of hybrid and electric Vehicles. - Design requirement for electric vehicles- Range, maximum velocity, acceleration, power requirement, mass of the vehicle. Various Resistance- Transmission efficiency- Electric vehicle chassis and Body Design, Electric Vehicle Recharging and Refuelling Systems.

#### UNIT II ENERGY SOURCES

9

Battery Parameters- - Different types of batteries – Lead Acid- Nickel Metal Hydride - Lithium ion-Sodium based- Metal Air. Battery Modelling - Equivalent circuits, Battery charging- Quick Charging devices. Fuel Cell- Fuel cell Characteristics- Fuel cell types-Half reactions of fuel cell. Ultra capacitors. Battery Management System.

#### UNIT III MOTORS AND DRIVES

9

Types of Motors- DC motors- AC motors, PMSM motors, BLDC motors, Switched reluctance motors working principle, construction and characteristics.

## UNIT IV POWER CONVERTERS AND CONTROLLERS

9

Solid state Switching elements and characteristics – BJT, MOSFET, IGBT, SCR and TRIAC - Power Converters – rectifiers, inverters and converters - Motor Drives - DC, AC motor, PMSM motors, BLDC motors, Switched reluctance motors – four quadrant operations –operating modes

### UNIT V HYBRID AND ELECTRIC VEHICLES

a

**TOTAL: 45 PERIODS** 

Main components and working principles of a hybrid and electric vehicles, Different configurations of hybrid and electric vehicles. Power Split devices for Hybrid Vehicles - Operation modes - Control Strategies for Hybrid Vehicle - Economy of hybrid Vehicles - Case study on specification of electric and hybrid vehicles.

#### **COURSE OUTCOMES:**

At the end of this course, the student will be able to

CO1: Understand the operation and architecture of electric and hybrid vehicles

**CO2**: Identify various energy source options like battery and fuel cell

CO3: Select suitable electric motor for applications in hybrid and electric vehicles.

**CO4**: Explain the role of power electronics in hybrid and electric vehicles

**CO5**: Analyze the energy and design requirement for hybrid and electric vehicles.

#### **TEXT BOOKS:**

- 1. Iqbal Husain, "Electric and Hybrid Vehicles-Design Fundamentals", CRC Press,2003
- 2. Mehrdad Ehsani, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles", CRCPress, 2005.

### **REFERENCES:**

- 1. James Larminie and John Lowry, "Electric Vehicle Technology Explained " John Wiley & Sons,2003
- 2. Lino Guzzella, "Vehicle Propulsion System" Springer Publications, 2005
- 3. Ron HodKinson, "Light Weight Electric/ Hybrid Vehicle Design", Butterworth Heinemann Publication, 2005.

### CO's-PO's & PSO's MAPPING

| СО   |   |   |   |   |     | F | 20 |    |    |     |     |    |   | PSO |   |
|------|---|---|---|---|-----|---|----|----|----|-----|-----|----|---|-----|---|
| CO   | 1 | 2 | 3 | 4 | 5   | 6 | 7  | 8  | 9  | 10  | 11  | 12 | 1 | 2   | 3 |
| 1    | 1 | 1 | 2 | 1 | A   | 3 | 2  |    |    |     |     | 2  |   | 1   | 3 |
| 2    | 1 | 1 | 2 | 1 |     | 3 | 2  |    |    |     | //  | 2  |   | 1   | 3 |
| 3    | 1 | 1 | 2 | 1 |     | 3 | 2  | IV |    | K 1 |     | 2  |   | 1   | 3 |
| 4    | 1 | 1 | 2 | 1 | 7 6 | 3 | 2  |    | 21 | Y 6 |     | 2  |   | 1   | 3 |
| 5    | 1 | 1 | 2 | 1 |     | 3 | 2  |    | ·  | T.  | 7). | 2  |   | 1   | 3 |
| Avg. | 1 | 1 | 2 | 1 | W.  | 3 | 2  |    |    |     |     | 2  |   | 1   | 3 |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

OAS352 SPACE ENGINEERING

L T P C 3 0 0 3

### **COURSE OBJECTIVES:**

- Use the standard atmosphere tables and equations.
- Find lift and drag coefficient data from NACA plots.
- · Apply the concept of static stability to flight vehicles.
- Describe the concepts of stress, strain, Young's modulus, Poisson's ratio, yield strength.
- Demonstrate a basic knowledge of dynamics relevant to orbital mechanics.

## UNIT I STANDARD ATMOSPHERE

6

History of aviation – standard atmosphere - pressure, temperature and density altitude.

## UNIT II AERODYNAMICS

10

Aerodynamic forces – Lift generation Viscosity and its implications - Shear stress in a velocity profile - Lagrangian and Eulerian flow field - Concept of a streamline – Aircraft terminology and geometry - Aircraft types - Lift and drag coefficients using NACA data.

## UNIT III PERFORMANCE AND PROPULSION

9

Viscous and pressure drag - flow separation - aerodynamic drag - thrust calculations -thrust/power available and thrust/power required.

## UNIT IV AIRCRAFT STABILITY AND STRUCTURAL THEORY

10

Degrees of freedom of aircraft motions - stable, unstable and neutral stability - concept of static stability - Hooke's Law- brittle and ductile materials - moment of inertia - section

modulus.

## UNIT V SPACE APPLICATIONS

10

History of space research - spacecraft trajectories and basic orbital manoeuvres - six orbital elements - Kepler's laws of orbits - Newtons law of gravitation.

**TOTAL: 45 PERIODS** 

#### **COURSE OUTCOMES:**

CO1: Illustrate the history of aviation & developments over the years

CO2: Ability to identify the types & classifications of components and control systems

CO3: Explain the basic concepts of flight & Physical properties of Atmosphere

**CO4**: Identify the types of fuselage and constructions.

CO5: Distinguish the types of Engines and explain the principles of Rocket

#### **TEXT BOOKS:**

- 1. John D. Anderson, Introduction to Flight, 8 th Ed., McGraw-Hill Education, New York, 2015.
- 2. E Rathakrishnan, "Introduction to Aerospace Engineering: Basic Principles of Flight", John Wiley, NJ, 2021.
- 3. Stephen. A. Brandt, " Introduction to Aeronautics: A design perspective " American Institute of Aeronautics & Damp; Astronautics, 1997.

### **REFERENCE:**

1. Kermode, A.C., "Mechanics of Flight", Himalayan Book, 1997.

#### **OIM351**

#### INDUSTRIAL MANAGEMENT

LT PC 3 0 0 3

#### **COURSE OBJECTIVES:**

- To introduce fundamental concepts of industrial management
- To understand the approaches to the study of Management
- To learn about Decision Making, Organizing and leadership
- To analyze the Managerial Role and functions
- To know about the Supply Chain Management'

#### UNIT I INTRODUCTION

ć

Technology Management - Definition - Functions - Evolution of Modern Management - Scientific Management Development of Management Thought. Approaches to the study of Management, Forms of Organization - Individual Ownership - Partnership - Joint Stock Companies - Co-operative Enterprises - Public Sector Undertakings, Corporate Frame Work- Share Holders - Board of Directors - Committees - Chief Executive Line and Functional Managers, - Financial-Legal-Trade Union

## UNITII FUNCTIONS OF MANAGEMENT

9

Planning - Nature and Purpose - Objectives - Strategies - Policies and Planning Premises - Decision Making - Organizing - Nature and Process - Premises - Departmentalization - Line and staff - Decentralization - Organizational culture, Staffing - selection and training .Placement - Performance appraisal - Career Strategy - Organizational Development. Leading - Managing human factor - Leadership .Communication, Controlling - Process of Controlling - Controlling techniques, productivity and operations management - Preventive control, Industrial Safety.

#### UNIT III **ORGANIZATIONAL BEHAVIOUR**

9

Definition - Organization - Managerial Role and functions -Organizational approaches, Individual behaviour - causes - Environmental Effect - Behaviour and Performance, Perception -Organizational Implications. Personality - Contributing factors - Dimension - Need Theories -Process Theories - Job Satisfaction, Learning and Behaviour-Learning Curves, Work Design and approaches.

#### **UNIT IV GROUPDYNAMICS**

9

Group Behaviour - Groups - Contributing factors - Group Norms, Communication - Process -Barriers to communication - Effective communication, leadership - formal and informal characteristics - Managerial Grid - Leadership styles - Group Decision Making - Leadership Role in Group Decision, Group Conflicts - Types -Causes - Conflict Resolution -Inter group relations and conflict, Organization centralization and decentralization - Formal and informal - Organizational Structures Organizational Change and Development -Change Process - Resistance to Change -Culture and Ethics.

#### **UNIT V MODERN CONCEPTS**

9

Management by Objectives (MBO) - Management by Exception (MBE), Strategic Management -Planning for Future direction - SWOT Analysis -Evolving development strategies, information technology in management Decisions support system-Management Games Business Process Reengineering(BPR) - Enterprises Resource Planning (ERP) - Supply Chain Management (SCM) -Activity Based Management (AM) - Global Perspective - Principles and Steps Advantages and disadvantage

**TOTAL: 45 PERIODS** 

## **COURSE OUTCOMES:**

CO1: Understand the basic concepts of industrial management

CO2: Identify the group conflicts and its causes.

CO3: Perform swot analysis

CO4: Analyze the learning curves

CO5: Understand the placement and performance appraisal

## REFERENCES:

Maynard H.B, "Industrial Engineering Hand book", McGraw-Hill, sixth 2008

## CO's-PO's & PSO's MAPPING

| CO's |   |     | PO's | - Pa - Ba |   |   |   |   |   |    |    |    | PS  | O's |     |
|------|---|-----|------|-----------|---|---|---|---|---|----|----|----|-----|-----|-----|
|      | 1 | 2   | 3    | 4         | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1   | 2   | 3   |
| 1    | 2 | 1   |      |           |   |   |   |   |   |    |    |    | 2   | 1   |     |
| 2    |   | 3   | 2    | 3         |   |   |   |   |   |    |    |    |     |     | 2   |
| 3    | 2 | 3   | 2    | 3         |   |   |   |   |   |    |    |    | 1   | 2   | 3   |
| 4    | 2 | 2   | 3    | 3         |   |   |   |   |   |    |    |    |     | 3   | 3   |
| 5    | 2 | 2   |      |           |   |   |   |   |   |    |    |    | 2   |     |     |
| AVg. | 2 | 2.2 | 2.3  | 3         |   |   |   |   |   |    |    |    | 1.8 | 2   | 2.6 |

1 - low, 2 - medium, 3 - high, '-' - no correlation

#### **COURSE OBJECTIVES**

- Developing a clear knowledge in the basics of various quality concepts.
- Facilitating the students in understanding the application of control charts and its techniques.
- Developing the special control procedures for service and processoriented industries.
- Analyzing and understanding the process capability study.
- Developing the acceptance sampling procedures for incoming raw material.

#### UNIT I INTRODUCTION

9

Quality Dimensions—Quality definitions—Inspection-Quality control—Quality Assurance—Quality planning-Quality costs—Economics of quality—Quality loss function

### UNIT II CONTROLCHARTS

9

Chance and assignable causes of process variation, statistical basis of the control chart, control charts for variables- X, R and S charts, attribute control charts - p, np, c and u- Construction and application.

### UNIT III SPECIAL CONTROL PROCEDURES

9

Warning and modified control limits, control chart for individual measurements, multi-vari chart, Xchart with a linear trend, chart for moving averages and ranges, cumulative-sum and exponentially weighted moving average control charts.

#### UNIT IV STATISTICAL PROCESS CONTROL

9

Process stability, process capability analysis using a Histogram or probability plots and control chart. Gauge capability studies, setting specification limits.

#### UNITY ACCEPTANCES AMPLING

O

**TOTAL: 45 PERIODS** 

The acceptance sampling fundamental, OC curve, sampling plans for attributes, simple, double, multiple and sequential, sampling plans for variables, MIL-STD-105D and MIL-STD-414E&IS2500 standards.

#### COURSE OUTCOMES:

Students will be able to:

**CO1**: Control the quality of processes using control charts for variables in manufacturing industries.

CO2: Control the occurrence of defective product and the defects in manufacturing companies.

**CO3:** Control the occurrence of defects in services.

**CO4:** Analyzing and understanding the process capability study.

CO5: Developing the acceptance sampling procedures for incoming raw material.

CO's-PO's & PSO's MAPPING

|      | PO's |   |   |   |   |   |   |   |   |    |    |    | PSO's | S |   |
|------|------|---|---|---|---|---|---|---|---|----|----|----|-------|---|---|
| CO's | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1     | 2 | 3 |
| 1    | 2    | 3 | 3 |   | 3 |   |   | 1 | 2 |    |    | 2  | 1     |   |   |
| 2    |      | 3 | 3 |   | 3 | 3 |   |   | 3 |    |    | 3  |       | 2 |   |
| 3    | 3    | 3 | 3 |   | 3 |   |   |   | 3 |    |    | 3  | 1     |   |   |
| 4    | 3    |   | 2 |   | 3 |   |   |   |   |    | 1  |    | 1     |   |   |

226

| 5   |     | 2   |     | 3 |   |   | 3   |   | 3   |   |   | 1 |
|-----|-----|-----|-----|---|---|---|-----|---|-----|---|---|---|
| ΑVç | 2.6 | 2.7 | 2.7 | 3 | 3 | 1 | 2.7 | 1 | 2.7 | 1 | 2 | 1 |

1 - low, 2 - medium, 3 - high, '-' - no correlation

#### OSF351 FIRE SAFETY ENGINEERING

LTPC

3 0 0 3

#### **COURSE OBJECTIVES**

- To enable the students to acquire knowledge of Fire and Safety Studies
- To learn about the effect of fire on materials used for construction, the method of test for non-combustibility & fire resistance
- To learn about fire area, fire stopped areas and different types of fire-resistant doors
- To learn about the method of fire protection of structural members and their repair due to fire damage.
- To develop safety professionals for both technical and management through systematic and quality-based study programmes

## UNIT I INHERENT SAFETY CONCEPTS

9

Compartment fire-factors controlling fire severity, ventilation controlled and fuel controlled fires; Spread of fire in rooms, within building and between buildings. Effect of temperature on the properties of structural materials- concrete, steel, masonry and wood; Behavior of non-structural materials on fire- plastics, glass, textile fibres and other house hold materials.

#### UNIT II PLANT LOCATIONS

q

Compartment temperature-time response at pre-flashover and post flashover periods; Equivalence of fire severity of compartment fire and furnace fire; Fire resistance test on structural elements-standard heating condition, Indian standard test method, performance criteria.

## UNIT III WORKING CONDITIONS

9

Fire separation between building- principle of calculation of safe distance. Design principles of fire resistant walls and ceilings; Fire resistant screens- solid screens and water curtains; Local barriers; Fire stopped areas-in roof, in fire areas and in connecting structures; Fire doors- Low combustible, Non-combustible and Spark-proof doors; method of suspension of fire doors; Air-tight sealing of doors;

## UNIT IV FIRE SEVERITY AND REPAIR TECHNIQUES

9

Fabricated fire proof boards-calcium silicate, Gypsum, Vermiculite, and Perlite boards; Fire protection of structural elements - Wooden, Steel and RCC.. Reparability of fire damaged structures- Assessment of damage to concrete, steel, masonry and timber structures, Repair techniques- repair methods to reinforced concrete Columns, beams and slabs, Repair to steel structural members, Repair to masonry structures.

## UNIT V WORKING AT HEIGHTS

9

Safe Access - Requirement for Safe Work Platforms- Stairways - Gangways and Ramps-Fall Prevention & Fall Protection - Safety Belts - Safety nets - Fall Arrestors- Working on Fragile Roofs - Work Permit Systems-Accident Case Studies.

**TOTAL: 45 PERIODS** 

#### **COURSE OUTCOMES**

On completion of the course the student will be able to

CO1:Understand the effect of fire on materials used for construction

- **CO2**:Understand the method of test for non-combustibility and fire resistance; and will be able to select different structural elements and their dimensions for a particular fire resistance rating of a building.
- **CO3**:To understand the design concept of fire walls, fire screens, local barriers and fire doors and able to select them appropriately to prevent fire spread.
- **CO4**:To decide the method of fire protection to RCC, steel, and wooden structural elements and their repair methods if damaged due to fire.
- **CO5**:Describe the safety techniques and improve the analytical and intelligence to take the right decision at right time.

#### **TEXT BOOKS**

- Roytman, M. Y,"Principles of fire safety standards for building construction". Amerind Publishing Co. Pvt. Ltd., New Delhi,1975
- John A. Purkiss,"Fire safety engineering design of structures" (2nd edn.), Butterworth Heinemann, Oxford, UK,2009.

#### REFERENCES:

- 3. Smith, E.E. and Harmathy, T.Z. (Editors),"Design of buildings for fire safety". ASTM Special Publication 685, American Society for Testing and Materials, Boston, U.S.A,1979.
- 4. Butcher, E. G. and Parnell, A. C, "Designing of fire safety". JohnWiley and Sons Ltd., New York, U.S.A.1983.
- 5. Jain, V.K,"Fire safety in buildings" (2nd edn.). New Age International(P) Ltd., New Delhi,2010. 4. Hazop&Hazan,"Identifying and Assessing Process Industry Hazards", Fourth Edition ,1999
- 6. Frank R. Spellman, Nancy E. Whiting,"The Handbook of Safety Engineering: Principles and Applications", 2009

## CO's- PO's & PSO's MAPPING

|      | PO's |   |      |            |     |   |     |   |      |       |    |        | PSO' | S |   |
|------|------|---|------|------------|-----|---|-----|---|------|-------|----|--------|------|---|---|
| CO's | 1    | 2 | 3    | 4          | 5   | 6 | 7   | 8 | 9    | 10    | 11 | 12     | 1    | 2 | 3 |
| 1    | 2    | - | 1    | -          | -   | 1 | -   | - |      | -     | 7- | -      | -    | - | - |
| 2    | -    | - | 3    | -          | -   | - | -   | - | -    | -     | -  | -      | -    | - | - |
| 3    | 1    |   | 2    | -          | 0.0 | - | 3   |   | 17 h | 1/1/1 |    | M      | - 1  | - | - |
| 4    | -    | - | NUU  | <b>7-1</b> | 700 | 1 | 1   |   | 141  | 17.1  |    | / 12 [ | - 1  | - | - |
| 5    | 2    | - | 1    | -          | -   | 1 | 1   | 1 | -    | 1     | -  | 1      | - 1  | - | - |
| AVg. | 1.3  | - | 1.75 | -          | -   | 1 | 1.3 | 1 |      | 1     | -  | 1      | -    | - | - |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

#### OML351 INTRODUCTION TO NON-DESTRUCTIVE TESTING

L T P C 3 0 0 3

### **COURSE OBJECTIVES:**

The main learning objective of this course is to prepare the students for:

- Understanding the basic importance of NDT in quality assurance.
- Imbibing the basic principles of various NDT techniques, its applications, limitations, codes and standards.

- Equipping themselves to locate a flaw in various materials, products.
- Applying apply the testing methods for inspecting materials in accordance with industry specifications and standards.
- Acquiring the knowledge on the selection of the suitable NDT technique for a given application

### UNIT I INTRODUCTION TO NDT & VISUAL TESTING

9

Concepts of Non-destructive testing-relative merits and limitations-NDT Versus mechanical testing, Fundamentals of Visual Testing – vision, lighting, material attributes, environmental factors, visual perception, direct and indirect methods – mirrors, magnifiers, boroscopes and fibroscopes – light sources and special lighting.

### UNIT II LIQUID PENETRANT & MAGNETIC PARTICLE TESTING

9

Liquid Penetrant Inspection: principle, applications, advantages and limitations, dyes, developers and cleaners, Methods & Interpretation.

Magnetic Particle Inspection: Principles, applications, magnetization methods, magnetic particles, Testing Procedure, demagnetization, advantages and limitations, – Interpretation and evaluation of test indications.

#### UNIT III EDDY CURRENT TESTING & THERMOGRAPHY

9

Eddy Current Testing: Generation of eddy currents— properties— eddy current sensing elements, probes, Instrumentation, Types of arrangement, applications, advantages, limitations — Factors affecting sensing elements and coil impedance, calibration, Interpretation/Evaluation.

Thermography- Principle, Contact & Non-Contact inspection methods, Active & Passive methods, Liquid Crystal – Concept, example, advantages & limitations. Electromagnetic spectrum, infrared thermography- approaches, IR detectors, Instrumentation and methods, applications.

### UNIT IV ULTRASONIC TESTING & AET

9

Ultrasonic Testing: Types of ultrasonic waves, characteristics, attenuation, couplants, probes, EMAT. Inspection methods-pulse echo, transmission and phased array techniques, types of scanning and displays, angle beam inspection of welds, time of flight diffraction (TOFD) technique, Thickness determination by ultrasonic method, Study of A, B and C scan presentations, calibration. Acoustic Emission Technique – Introduction, Types of AE signal, AE wave propagation, Source location, Kaiser effect, AE transducers, Principle, AE parameters, AE instrumentation, Advantages & Limitations, Interpretation of Results, Applications.

#### UNIT V RADIOGRAPHY TESTING

9

Sources-X-rays and Gamma rays and their characteristics-absorption, scattering. Filters and screens, Imaging modalities-film radiography and digital radiography (Computed, Direct, Real Time, CT scan). Problems in shadow formation, exposure factors, inverse square law, exposure charts, Penetrameters, safety in radiography.

## **COURSE OUTCOMES:**

**TOTAL: 45 PERIODS** 

After completion of this course, the students will be able to

CO1: Realize the importance of NDT in various engineering fields.

**CO2**: Have a basic knowledge of surface NDE techniques which enables to carry out various inspection in accordance with the established procedures.

**CO3**: Calibrate the instrument and inspect for in-service damage in the components by means of Eddy current testing as well as Thermography testing.

**CO4**: Differentiate various techniques of UT and AET and select appropriate NDT methods for better evaluation.

**CO5**: Interpret the results of Radiography testing and also have the ability to analyse the influence of various parameters on the testing.

#### **TEXT BOOKS:**

- 1. Baldev Raj, T. Jayakumar and M. Thavasimuthu, Practical Non Destructive Testing, Alpha Science International Limited, 3rd edition, 2002.
- 2. J. Prasad and C. G. K. Nair, Non-Destructive Test and Evaluation of Materials, Tata McGraw-Hill Education, 2nd edition, 2011.
- 3. Ravi Prakash, "Non-Destructive Testing Techniques", 1st revised edition, New Age International Publishers, 2010.

#### REFERENCES:

- 1. ASM Metals Handbook, V-17, "Nondestructive Evaluation and Quality Control", American Society of Metals, USA, 2001.
- 2. Barry Hull and Vernon John, "Nondestructive Testing", Macmillan, 1989.
- 3. Chuck Hellier, "Handbook of Nondestructive Evaluation", Mc Graw Hill, 2012.
- 4. Louis Cartz, "Nondestructive Testing", ASM International, USA, 1995.

## CO's-PO's & PSO's MAPPING

|     |     |     |     |     |     |     |     |     |     |      |      |      | PSO | PSO | PSO |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|-----|-----|-----|
|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | 1   | 2   | 3   |
| C01 | 2   | 2   | 2   | 3   |     |     | 2   | 2   |     |      |      | 2    | 1   | 2   |     |
| C02 | 3   | 1   | 2   | 2   |     |     | 2   | 2   |     |      |      | 2    | 2   | 2   | 1   |
| C03 | 3   | 2   | 1   | 2   |     |     | 2   | 2   |     |      |      | 2    | 2   | 2   |     |
| CO4 | 3   | 1   | 2   | 2   |     | r   | 2   | 2   |     | 7    | _/   | 2    | 2   | 2   | 2   |
| CO5 | 3   | 2   | 2   | 2   |     |     | 2   | 2   |     |      |      | 2    | 2   | 2   | 1   |
| Avg | 2.8 | 1.6 | 1.8 | 2.2 | 1   | 1   | 2   | 2   |     |      |      | 2    | 1.8 | 2   | 1.3 |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

OMR351 MECHATRONICS L T P C 3 0 0 3

#### **COURSE OBJECTIVES:**

The main learning objective of this course is to prepare the students for:

- Selecting sensors to develop mechatronics systems.
- Explaining the architecture and timing diagram of microprocessor, and also interpret and develop programs.
- Designing appropriate interfacing circuits to connect I/O devices with microprocessor.
- Applying PLC as a controller in mechatronics system.
- Designing and develop the apt mechatronics system for an application.

#### UNIT – I INTRODUCTION AND SENSORS

9

Introduction to Mechatronics – Systems – Need for Mechatronics – Emerging areas of Mechatronics – Classification of Mechatronics. Sensors and Transducers: Static and Dynamic

Characteristics of Sensor, Potentiometers – LVDT – Capacitance Sensors – Strain Gauges – Eddy Current Sensor – Hall Effect Sensor – Temperature Sensors – Light Sensors.

### UNIT – II 8085 MICROPROCESSOR

9

Introduction – Pin Configuration - Architecture of 8085 – Addressing Modes – Instruction set, Timing diagram of 8085.

#### UNIT – III PROGRAMMABLE PERIPHERAL INTERFACE

9

Introduction – Architecture of 8255, Keyboard Interfacing, LED display – Interfacing, ADC and DAC Interface, Temperature Control – Stepper Motor Control – Traffic Control Interface.

## UNIT – IV PROGRAMMABLE LOGIC CONTROLLER

9

Introduction – Architecture – Input / Output Processing – Programming with Timers, Counters and Internal relays – Data Handling – Selection of PLC.

## UNIT - V ACTUATORS AND MECHATRONICS SYSTEM DESIGN

9

Types of Stepper and Servo motors – Construction – Working Principle – Characteristics, Stages of Mechatronics Design Process – Comparison of Traditional and Mechatronics Design Concepts with Examples – Case studies of Mechatronics Systems – Pick and Place Robot – Engine Management system – Automatic Car Park Barrier.

## **TOTAL: 45 PERIODS**

### **COURSE OUTCOMES**

Upon successful completion of the course, students should be able to:

CO1: Select sensors to develop mechatronics systems.

CO2: Explain the architecture and timing diagram of microprocessor, and also interpret and develop programs.

CO3: Design appropriate interfacing circuits to connect I/O devices with microprocessor.

CO 4: Apply PLC as a controller in mechatronics system.

CO 5: Design and develop the apt mechatronics system for an application.

| CO's-PO's & PSC    | 's M | APP   | ING      |      |      |       |     |   |     | 4   |    |    | 7  |     |   |
|--------------------|------|-------|----------|------|------|-------|-----|---|-----|-----|----|----|----|-----|---|
| COs/POs &          |      |       | <b>.</b> |      |      |       | POs | 3 |     |     |    |    | PS | SOs |   |
| PSOs               | 1    | 2     | 3        | 4    | 5    | 6     | 7   | 8 | 9   | 10  | 11 | 12 | 1  | 2   | 3 |
| CO1                | 3    | 2     | 1        | 3    |      | 2     | 110 |   | 171 | LAU |    | 2  | 3  | 2   | 3 |
| CO2                | 3    | 2     | 1        | 3    | H    | 2     | UK  | П | h   | UI  |    | 2  | 3  | 2   | 3 |
| CO3                | 3    | 2     | 1        | 3    |      | 2     |     |   |     |     |    | 2  | 3  | 2   | 3 |
| CO4                | 3    | 2     | 1        | 3    |      | 2     |     |   |     |     |    | 2  | 3  | 2   | 3 |
| CO5                | 3    | 2     | 1        | 3    |      | 2     |     |   |     |     |    | 2  | 3  | 2   | 3 |
| CO/PO & PSO        | 3    | 2     | 1        | 3    |      | 2     |     |   |     |     |    | 2  | 3  | 2   | 3 |
| Average            |      |       |          |      |      |       |     |   |     |     |    |    |    |     |   |
| 1 - low, 2 - mediu | m, 3 | - hig | h, '-'   | - no | corr | elati | on  |   |     | •   |    | •  |    | •   |   |

#### **TEXT BOOKS**

- 1. Bolton W., "Mechatronics", Pearson Education, 6th Edition, 2015.
- 2. Ramesh S Gaonkar, "Microprocessor Architecture, Programming, and Applications with the 8085", Penram International Publishing Private Limited, 6th Edition, 2013.

#### REFERENCES

- 1. Bradley D.A., Dawson D., Buru N.C. and Loader A.J., "Mechatronics", Chapman and Hall, 1993.
- 2. Davis G. Alciatore and Michael B. Histand, "Introduction to Mechatronics and Measurement systems", McGraw Hill Education, 2011.
- 3. Devadas Shetty and Richard A. Kolk, "Mechatronics Systems Design", Cengage Learning, 2010.
- 4. Nitaigour Premchand Mahalik, "Mechatronics Principles, Concepts and Applications", McGraw Hill Education, 2015.
- 5. Smaili. A and Mrad. F, "Mechatronics Integrated Technologies for Intelligent Machines", Oxford University Press, 2007.

| ORA351 | FOUNDATION OF ROBOTICS | L | Т | Р | С |
|--------|------------------------|---|---|---|---|
|        |                        | 3 | 0 | 0 | 3 |

### **COURSE OBJECTIVES:**

- To study the kinematics, drive systems and programming of robots.
- To study the basics of robot laws and transmission systems.
- To familiarize students with the concepts and techniques of robot manipulator, its kinematics.
- To familiarize students with the various Programming and Machine Vision application in robots.
- To build confidence among students to evaluate, choose and incorporate robots in engineering systems.

## UNIT – I FUNDAMENTALS OF ROBOT

9

Robot – Definition – Robot Anatomy – Co-ordinate systems, Work Envelope, types and classification – specifications – Pitch, yaw, Roll, Joint Notations, Speed of Motion, Pay Load – Robot Parts and their functions – Need for Robots – Different Applications.

## UNIT - II ROBOT KINEMATICS

9

Forward kinematics, inverse kinematics and the difference: forward kinematics and inverse Kinematics of Manipulators with two, three degrees of freedom (in 2 dimensional), four degrees of freedom (in 3 dimensional) – derivations and problems. Homogeneous transformation matrices, translation and rotation matrices.

### UNIT – III ROBOT DRIVE SYSTEMS AND END EFFECTORS

(

Pneumatic Drives – Hydraulic Drives – Mechanical Drives – Electrical Drives – D.C. Servo Motors, Stepper Motor, A.C. Servo Motors – Salient Features, Applications and Comparison of All These Drives. End Effectors – Grippers – Mechanical Grippers, Pneumatic and Hydraulic Grippers, Magnetic grippers, vacuum grippers, internal grippers and external grippers, selection and design considerations of a gripper

## UNIT – IV SENSORS IN ROBOTICS

9

Force sensors, touch and tactile sensors, proximity sensors, non-contact sensors, safety considerations in robotic cell, proximity sensors, fail safe hazard sensor systems, and compliance mechanism. Machine vision system - camera, frame grabber, sensing and digitizing image data – signal conversion, image storage, lighting techniques, image processing and analysis – data reduction, segmentation, feature extraction, object recognition, other

algorithms, applications – Inspection, identification, visual serving and navigation.

### UNIT – V PROGRAMMING AND APPLICATIONS OF ROBOT

q

Teach pendant programming, lead through programming, robot programming languages – VAL programming – Motion Commands, Sensors commands, End-Effector Commands, and simple programs - Role of robots in inspection, assembly, material handling, underwater, space and medical fields.

**TOTAL: 45 PERIODS** 

#### **COURSE OUTCOMES**

At the end of the course, students will be able to:

CO1: Interpret the features of robots and technology involved in the control.

CO2: Apply the basic engineering knowledge and laws for the design of robotics.

CO3: Explain the basic concepts like various configurations, classification and parts of end effectors compare various end effectors and grippers and tools and sensors used in robots.

CO4: Explain the concept of kinematics, degeneracy, dexterity and trajectory planning.

CO5: Demonstrate the image processing and image analysis techniques by machine vision system.

| COs/POs&    |   | 73 | 7 |   |    | F | Os |   |   |    | W  | 7  | P | SOs | , |
|-------------|---|----|---|---|----|---|----|---|---|----|----|----|---|-----|---|
| <b>PSOs</b> | 1 | 2  | 3 | 4 | 5  | 6 | 7  | 8 | 9 | 10 | 11 | 12 | 1 | 2   | 3 |
| CO1         | 3 | 2  | 1 | 1 |    |   |    |   |   |    |    | 1  |   |     | 3 |
| CO2         | 3 | 2  | 1 | 1 |    |   |    |   |   |    |    | 1  |   |     | 3 |
| CO3         | 3 | 2  | 1 | 1 |    |   |    |   |   |    |    | 1  |   |     | 3 |
| CO4         | 3 | 2  | 1 | 1 |    |   |    |   |   |    |    | 1  |   |     | 3 |
| CO5         | 3 | 2  | 1 | 1 |    |   |    |   |   |    |    | 1  |   |     | 3 |
| CO/PO &     |   |    |   |   |    |   |    |   |   | 7  |    |    |   |     |   |
| PSO         |   |    |   |   | 15 |   |    |   |   |    |    |    |   |     |   |
| Average     |   |    |   |   | 1  |   |    | 1 |   |    |    |    |   |     |   |

#### **TEXT BOOKS:**

- 1. Ganesh.S.Hedge,"A textbook of Industrial Robotics", Lakshmi Publications, 2006.
- 2. Mikell.P.Groover, "Industrial Robotics Technology, Programming and applications" McGraw Hill 2<sup>ND</sup> edition 2012.

## REFERENCES:

- 1. Fu K.S. Gonalz R.C. and ice C.S.G."Robotics Control, Sensing, Vision and Intelligence", McGraw Hill book co. 2007.
- 2. YoramKoren, "Robotics for Engineers", McGraw Hill Book, Co., 2002.
- 3. Janakiraman P.A., "Robotics and Image Processing", Tata McGraw Hill 2005.
- 4. John. J.Craig, "Introduction to Robotics: Mechanics and Control" 2nd Edition, 2002.
- 5. Jazar, "Theory of Applied Robotics: Kinematics, Dynamics and Control", Springer India reprint, 2010.

## OAE352 FUNDAMENTALS OF AERONAUTICAL ENGINEERING

LTPC 3003

#### **COURSE OBJECTIVES:**

- To acquire the knowledge on the Historical evaluation of Airplanes
- To learn the different component systems and functions
- To know the concepts of basic properties and principles behind the flight
- To learn the basics of different structures & construction
- To learn the various types of power plants used in aircrafts

### UNIT I HISTORY OF FLIGHT

8

Balloon flight-ornithopter-Early Airplanes by Wright Brothers, biplanes and monoplanes, Developments in aerodynamics, materials, structures and propulsion over the years.

## UNIT II AIRCRAFT CONFIGURATIONS AND ITS CONTROLS

10

Different types of flight vehicles, classifications-Components of an airplane and their functions-Conventional control, powered control- Basic instruments for flying-Typical systems for control actuation.

## UNIT III BASICS OF AERODYNAMICS

9

Physical Properties and structures of the Atmosphere, Temperature, pressure and altitude relationships, Newton's Law of Motions applied to Aeronautics-Evolution of lift, drag and moment. Aerofoils, Mach number, Maneuvers.

### UNIT IV BASICS OF AIRCRAFT STRUCTURES

9

General types of construction, Monocoque, semi-monocoque and geodesic constructions, typical wing and fuselage structure. Metallic and non-metallic materials. Use of Aluminium alloy, titanium, stainless steel and composite materials. Stresses and strains-Hooke's law- stress-strain diagrams-elastic constants-Factor of Safety.

## UNIT V BASICS OF PROPULSION

9

**TOTAL: 45 PERIODS** 

Basic ideas about piston, turboprop and jet engines – use of propeller and jets for thrust production- Comparative merits, Principle of operation of rocket, types of rocket and typical applications, Exploration into space.

## COURSE OUTCOMES:

CO1: Illustrate the history of aircraft & developments over the years

CO2: Ability to identify the types & classifications of components and control systems

CO3: Explain the basic concepts of flight & Physical properties of Atmosphere

**CO4**: Identify the types of fuselage and constructions.

CO5: Distinguish the types of Engines and explain the principles of Rocket

### **TEXT BOOKS**

- 1. Anderson, J.D., Introduction to Flight, McGraw-Hill; 8th edition, 2015
- 2. . E Rathakrishnan, "Introduction to Aerospace Engineering: Basic Principles of Flight", John Wiley, NJ, 2021
- 3. Stephen.A. Brandt, Introduction to aeronautics: A design perspective, 2nd edition, AIAA Education Series, 2004.

#### REFERENCE

- 1. SADHU SINGH, "INTERNAL COMBUSTION ENGINES AND GAS TURBINE"-, SS Kataraia & sons, 2015
- 2. KERMODE, "FLIGHT WITHOUT FORMULAE", -, Pitman; 4th Revised edition 1989

#### OGI351 REMOTE SENSING CONCEPTS

LTPC 3 0 0 3

## **COURSE OBJECTIVES:**

- To introduce the concepts of remote sensing processes and its components.
- To expose the various remote sensing platforms and sensors and to introduce the elements of data interpretation

## UNIT I REMOTE SENSING AND ELECTROMAGNETIC RADIATION 9

Definition – components of RS – History of Remote Sensing – Merits and demerits of data collation between conventional and remote sensing methods - Electromagnetic Spectrum – Radiation principles - Wave theory, Planck's law, Wien's Displacement Law, Stefan's Boltzmann law, Kirchoff's law – Radiation sources: active & passive - Radiation Quantities

## UNIT II EMR INTERACTION WITH ATMOSPHERE AND EARTH MATERIAL 9

Standard atmospheric profile – main atmospheric regions and its characteristics – interaction of radiation with atmosphere – Scattering, absorption and refraction – Atmospheric windows - Energy balance equation – Specular and diffuse reflectors – Spectral reflectance & emittance – Spectroradiometer – Spectral Signature concepts – Typical spectral reflectance curves for vegetation, soil and water – solid surface scattering in microwave region.

## UNIT III ORBITS AND PLATFORMS

9

Motions of planets and satellites – Newton's law of gravitation - Gravitational field and potential - Escape velocity - Kepler's law of planetary motion - Orbit elements and types – Orbital perturbations and maneuvers – Types of remote sensing platforms - Ground based, Airborne platforms and Space borne platforms – Classification of satellites – Sun synchronous and Geosynchronous satellites – Lagrange Orbit.

## UNIT IV SENSING TECHNIQUES

9

Classification of remote sensors – Resolution concept: spatial, spectral, radiometric and temporal resolutions - Scanners - Along and across track scanners – Optical-infrared sensors – Thermal sensors – microwave sensors – Calibration of sensors - High Resolution Sensors - LIDAR, UAV – Orbital and sensor characteristics of live Indian earth observation satellites

### UNIT V DATA PRODUCTS AND INTERPRETATION

9

Photographic and digital products – Types, levels and open source satellite data products – selection and procurement of data– Visual interpretation: basic elements and interpretation keys - Digital interpretation – Concepts of Image rectification, Image enhancement and Image classification

**TOTAL:45 PERIODS** 

#### **COURSE OUTCOMES:**

On completion of the course, the student is expected to

- CO 1 Understand the concepts and laws related to remote sensing
- CO 2 Understand the interaction of electromagnetic radiation with atmosphere and earth material
- **CO 3** Acquire knowledge about satellite orbits and different types of satellites
- CO 4 Understand the different types of remote sensors
- **CO 5** Gain knowledge about the concepts of interpretation of satellite imagery

### TEXTBOOKS:

- 1. Thomas M.Lillesand, Ralph W. Kiefer and Jonathan W. Chipman, Remote Sensing and Image interpretation, John Wiley and Sons, Inc, New York, 2015.
- 2. George Joseph and C Jeganathan, Fundamentals of Remote Sensing, Third Edition Universities Press (India) Private limited, Hyderabad, 2018

#### REFERENCES:

- 1. Janza, F.Z., Blue H.M. and Johnson, J.E. Manual of Remote Sensing. Vol.1, American Society of Photogrametry, Virginia, USA, 2002.
- 2. Verbyla, David, Satellite Remote Sensing of Natural Resources. CRC Press, 1995
- 3. Paul Curran P.J. Principles of Remote Sensing. Longman, RLBS, 1988.
- 4. Introduction to Physics and Techniques of Remote Sensing, Charles Elachi and JacobVan Zyl, 2006 Edition II, Wiley Publication.
- 5. Basudeb Bhatta, Remote Sensing and GIS, Oxford University Press, 2011

### CO's-PO's & PSO's MAPPING

|       | 1 1-1-1                                |      | Cour | se Out | come |     |         |
|-------|----------------------------------------|------|------|--------|------|-----|---------|
| PO    | Graduate Attribute                     | CO1  | CO2  | CO3    | CO4  | CO5 | Average |
| PO1   | Engineering Knowledge                  | 3    | 3    | 3      | 3    | 3   | 3       |
| PO2   | Problem Analysis                       |      |      |        | 3    | 3   | 3       |
| PO3   | Design/Development of Solutions        |      | 7    |        | 3    | 3   | 3       |
| PO4   | Conduct Investigations of Complex      |      |      |        | 3    | 3   | 3       |
|       | Problems                               |      |      | /      | 3    | 3   |         |
| PO5   | Modern Tool Usage                      |      |      |        | 3    | 3   | 3       |
| PO6   | The Engineer and Society               |      |      |        |      |     |         |
| PO 7  | Environment and Sustainability         |      |      | 1      |      |     |         |
| PO 8  | Ethics                                 |      |      |        |      |     |         |
| PO 9  | Individual and Team Work               | LI V | MAN  |        | 1/CE |     |         |
| PO 10 | Communication                          |      | HVI  |        | JUL  |     |         |
| PO 11 | Project Management and Finance         |      |      |        |      |     |         |
| PO 12 | Life-long Learning                     | 3    |      | 3      | 3    | 3   | 3       |
| PSO 1 | Knowledge of Geoinformatics discipline | 3    | 3    | 3      | 3    | 3   | 3       |
| PSO 2 | Critical analysis of Geoinformatics    | 3    | 3    | 3      | 3    | 3   | 3       |
|       | Engineering problems and innovations   | 3    | 3    | 3      | 3    | 3   |         |
| PSO 3 | Conceptualization and evaluation of    | 3    | 3    | 3      | 3    | 3   | 3       |
|       | Design solutions                       | J    | J    | J      | J    | J   |         |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

#### **COURSE OBJECTIVES:**

- To introduce the students the principles of agricultural crop production and the production practices of crops in modern ways.
- To delineate the role of agricultural engineers in relation to various crop production practices.

#### UNIT I INTRODUCTION

9

Benefits of urban agriculture- economic benefits, environmental benefits, social and cultural benefits, educational, skill-building and job training benefits, health, nutrition and food accessibility benefits.

#### UNIT II VERTICAL FARMING

9

**Vertical farming- types,** green facade, living/green wall-modular green wall, vegetated mat wall-Structures and components for green wall system: plant selection, growing media, irrigation and plant nutrition: Design, light, benefits of vertical gardening. Roof garden and its types. Kitchen garden, hanging baskets: The house plants/ indoor plants

### UNIT III SOIL LESS CULTIVATION

9

Hydroponics, aeroponics, aquaponics: merits and limitations, costs and Challenges, backyard gardens- tactical gardens- street landscaping- forest gardening, greenhouses, urban beekeeping

## UNIT IV MODERN CONCEPTS

9

Growth of plants in vertical pipes in terraces and inside buildings, micro irrigation concepts suitable for roof top gardening, rain hose system, Green house, polyhouse and shade net system of crop production on roof tops

## UNIT V WASTE MANAGEMENT

9

**TOTAL: 45 PERIODS** 

Concept, scope and maintenance of waste management- recycle of organic waste, garden wastessolid waste management-scope, microbiology of waste, other ingredients like insecticide, pesticides and fungicides residues, waste utilization.

## **COURSE OUTCOMES**

**CO1**: Demonstrate the principles behind crop production and various parameters that influences the crop growth on roof tops

**CO2**: Explain different methods of crop production on roof tops

CO3: Explain nutrient and pest management for crop production on roof tops

CO4: Illustrate crop water requirement and irrigation water management on roof tops

CO5: Explain the concept of waste management on roof tops

#### **TEXT BOOKS:**

- 1. Martellozzo F and J S Landry. 2020. Urban Agriculture. Scitus Academics Llc.
- 2. Rob Roggema. 2016. Sustainable Urban Agriculture and Food Planning. Routledge Taylor and Francis Group.
- 3. Akrong M O. 2012. Urban Agriculture. LAP Lambert Academic Publishing.

#### **REFERENCES:**

- 1. Agha Rokh A. 2008. Evaluation of ornamental flowers and fishes breeding in Bushehr urban wastewater using a pilot-scale aquaponic system. Water and Wastewater, 19 (65): 47–53.
- 2. Agrawal M, Singh B, Rajput M, Marshall F and Bell J. N. B. 2003. Effect of air pollution on periurban agriculture: A case study. Environmental Pollution, 126 (3): 323–329. <a href="https://www.sciencedirect.com/science/article/pii/S0269749103002458#aep-section-id24">https://www.sciencedirect.com/science/article/pii/S0269749103002458#aep-section-id24</a>.
- 3. Jac Smit and Joe Nasr. 1992. Urban agriculture for sustainable cities: using wastes and idle land and water bodies as resources. Environment and Urbanization, 4 (2):141-152.

### CO's-PO's & PSO's MAPPING

| PO/PSO |                                                                                                                                                        | CO1 | CO2              | CO3 | CO4   | CO5      | Overall correlation of COs with POs |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------|-----|-------|----------|-------------------------------------|
| PO1    | Engineering Knowledge                                                                                                                                  | 1   | 2                | 1   | 1     | 2        | 1                                   |
| PO2    | Problem Analysis                                                                                                                                       | 1   | 1                | 1   | 1     | 1        | 2                                   |
| PO3    | Design/ Development of Solutions                                                                                                                       | 1   | 2                | 1   | 1     | 3        | 2                                   |
| PO4    | Conduct Investigations of Complex Problems                                                                                                             | 1   | V <sub>1</sub> E | 2   | 2     | 1        | 1                                   |
| PO5    | Modern Tool Usage                                                                                                                                      | 1   | 2                | 1   | 1     | 1        | 2                                   |
| PO6    | The Engineer and Society                                                                                                                               | 1   | 2                | 1   | 2     | 1        | 1                                   |
| PO7    | Environment and sustainability                                                                                                                         | 1   | 2                | 1   | 1     | 2        | 1                                   |
| PO8    | Ethics                                                                                                                                                 | 2   | 1                | 1   | 1     | 2        | 1                                   |
| PO9    | Individual and team work:                                                                                                                              | 1   | 1                | 2   | 1     | 1        | 1                                   |
| PO10   | Communication                                                                                                                                          | 1   | 2                | 1   | 1     | 2        | 1                                   |
| PO11   | Project management and finance                                                                                                                         | 1   | 1                | 1   | 1     | 1        | 2                                   |
| PO12   | Life-long learning:                                                                                                                                    | 1   | 2                | 1   | 1     | 3        | 2                                   |
| PSO1   | To make expertise in design and engineering problem solving approach in agriculture with proper knowledge and skill                                    | 1   | 2                | 1   | 1     | 2        | 1                                   |
| PSO2   | To enhance students ability to formulate solutions to real-world problems pertaining to sustained agricultural productivity using modern technologies. | 2   | 1                | 2   | UI EI | 1<br>NGE | 1                                   |
| PSO3   | To inculcate entrepreneurial skills through strong Industry-Institution linkage.                                                                       | 1   | 2                | 1   | 2     | 1        | 2                                   |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

### OEN351 DRINKING WATER SUPPLY AND TREATMENT

LTPC 3 0 0 3

## **COURSE OBJECTIVE:**

• To equip the students with the principles and design of water treatment units and distribution system.

## UNIT I SOURCES OF WATER

9

Public water supply system – Planning, Objectives, Design period, Population forecasting; Water demand – Sources of water and their characteristics, Surface and Groundwater – Impounding Reservoir – Development and selection of source – Source Water quality – Characterization – Significance – Drinking Water quality standards.

### UNIT II CONVEYANCE FROM THE SOURCE

9

Water supply – intake structures – Functions; Pipes and conduits for water – Pipe materials – Hydraulics of flow in pipes – Transmission main design – Laying, jointing and testing of pipes – appurtenances – Types and capacity of pumps – Selection of pumps and pipe materials.

### UNIT III WATER TREATMENT

9

Objectives – Unit operations and processes – Principles, functions, and design of water treatment plant units, aerators of flash mixers, Coagulation and flocculation — sand filters - Disinfection — Construction, Operation and Maintenance aspects.

### UNIT IV ADVANCED WATER TREATMENT

9

Water softening – Desalination- R.O. Plant – demineralization – Adsorption - Ion exchange—Membrane Systems - Iron and Manganese removal - Defluoridation - Construction and Operation and Maintenance aspects

## UNIT V WATER DISTRIBUTION AND SUPPLY

9

Requirements of water distribution – Components – Selection of pipe material – Service reservoirs - Functions – Network design – Economics - Computer applications – Appurtenances – Leak detection - Principles of design of water supply in buildings – House service connection – Fixtures and fittings, systems of plumbing and types of plumbing.

#### **TOTAL: 45 PERIODS**

## **COURSE OUTCOMES**

CO1: an understanding of water quality criteria and standards, and their relation to public health

CO2: the ability to design the water conveyance system

CO3: the knowledge in various unit operations and processes in water treatment

CO4: an ability to understand the various systems for advanced water treatment

CO5: an insight into the structure of drinking water distribution system

#### **TEXTBOOKS:**

- 1. Garg. S.K., "Water Supply Engineering", Khanna Publishers, Delhi, September 2008.
- 2. Punmia B.C, Arun K.Jain, Ashok K.Jain, "Water supply Engineering" Lakshmi publication private limited, New Delhi, 2016.
- 3. Rangwala "Water Supply and Sanitary Engineering", February 2022
- 4. Birdie.G.S., "Water Supply and Sanitary Engineering", Dhanpat Rai and sons, 2018.

#### **REFERENCES:**

- 1. Fair. G.M., Geyer.J.C., "Water Supply and Wastewater Disposal", John Wiley and Sons, 1954.
- 2. Babbit.H.E, and Donald.J.J, "Water Supply Engineering", McGraw Hill book Co, 1984.
- 3. Steel. E.W.et al., "Water Supply Engineering", Mc Graw Hill International book Co, 1984.
- 4. Duggal. K.N., "Elements of public Health Engineering", S.Chand and Company Ltd,

#### CO's-PO's & PSO's MAPPING

|      | PO's PSO's |   |   |   |   |   |   |   |   |    |    |    |   |   |   |
|------|------------|---|---|---|---|---|---|---|---|----|----|----|---|---|---|
| CO's | 1          | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 |
| 1    |            | 3 |   |   |   |   |   | 3 |   | 3  |    |    | 3 |   |   |
| 2    |            | 3 |   | 2 |   | 2 |   |   |   | 3  |    |    | 3 |   |   |
| 3    |            |   |   | 2 |   | 2 |   |   |   | 3  |    |    | 3 |   |   |
| 4    |            |   | 3 | 2 |   |   |   | 3 | 2 | 3  |    |    | 3 |   |   |
| 5    |            |   | 3 | 2 |   |   | 1 |   | 2 | 3  |    | 1  |   |   |   |
| Avg. |            | 3 | 3 | 2 |   | 2 | 1 | 3 | 2 | 3  |    | 1  | 3 |   |   |

1.low, 2-medium, 3-high, '-"- no correlation

Note: The average value of this course to be used for program articulation matrix.

**OEE352** 

## **ELECTRIC VEHICLE TECHNOLOGY**

LTPC 3003

## **COURSE OBJECTIVES**

- To provide knowledge about electric machines and special machine
- To understand the basics of power converters
- To know the concepts of controlling DC and AC drive systems
- To understand the architecture and power train components.
- To impart knowledge on vehicle control for standard drive cycles of hybrid electrical vehicles (HEVs)

## UNIT I ROTATING POWER CONVERTERS

q

Magnetic circuits- DC machine and AC machine –Working principle of Generator and Motor-DC and AC - Voltage and torque equations – Characteristics and applications. Working principle of special machines like: Brushless DC motor, Switched reluctance motor and PMSM.

## UNIT II STATIC POWER CONVERTERS

9

Working and Characteristics of Power Diodes, MOSFET and IGBT. Working of uncontrolled rectifiers, controlled rectifiers (Single phase and Three phase), DC choppers, single and three phase inverters, Multilevel inverters and Matrix Converters.

### UNIT III CONTROL OF DC AND AC MOTOR DRIVES

9

Speed control for constant torque, constant HP operation of all electric motors - DC/DC chopper based four quadrant operation of DC motor drives, inverter based V/f Operation (motoring and braking) of induction motor drives, Transformation theory, vector control operation of Induction motor and PMSM, Brushless DC motor drives, Switched reluctance motor (SRM) drives

# UNIT IV HYBRID ELECTRIC VEHICLE ARCHITECTURE AND POWER TRAIN COMPONENTS

9

History of evolution of Electric Vehicles - Comparison of Electric Vehicles with Internal Combustion Engines - Architecture of Electric Vehicles (EV) and Hybrid Electric Vehicles (HEV) - Plug-in Hybrid Electric Vehicles (PHEV)- Power train components and sizing, Gears, Clutches, Transmission and Brakes.

## UNIT V MECHANICS OF HYBRID ELECTRIC VEHICLES AND CONTROL OF VEHICLES

9

Fundamentals of vehicle mechanics - tractive force, power and energy requirements for standard drive cycles of HEV's - motor torque and power rating and battery capacity. HEV supervisory control - Selection of modes - power spilt mode - parallel mode - engine brake mode - regeneration mode - series parallel mode

**TOTAL: 45 PERIODS** 

#### COURSE OUTCOMES:

CO1: Able to understand the principles of conventional and special electrical machines.

CO2: Acquired the concepts of power devices and power converters

CO3: Able to understand the control for DC and AC drive systems.

CO4: Learned the electric vehicle architecture and power train components.

CO5: Acquired the knowledge of mechanics of electric vehicles and control of electric vehicles.

## CO's-PO's & PSO's MAPPING

|     | PO | РО | PO | РО  | РО | РО | РО | РО | РО | РО | PO | РО | PS | PS | PS |
|-----|----|----|----|-----|----|----|----|----|----|----|----|----|----|----|----|
|     | 1  | 2  | 3  | 4   | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 01 | O2 | О3 |
| CO1 | 3  | 2  |    | 4// | 3  |    |    |    |    |    |    |    | 3  | 3  | 3  |
| CO2 | 3  | 2  | 2  | 7/  | 4  | 3  |    |    | 3  |    |    |    | 3  | 3  | 3  |
| CO3 | 3  |    |    | 3   |    | 2  | 2  |    |    |    |    |    | 3  | 3  | 3  |
| CO4 | 3  | 2  | 2  |     | 3  |    |    |    |    |    |    |    | 3  | 3  | 3  |
| CO5 | 3  |    | 2  |     |    |    |    |    |    |    | 2  |    | 3  | 3  | 3  |
| Avg | 3  | 2  | 2  | 3   | 3  | 1  | 2  |    | 3  |    | 2  |    | 3  | 3  | 3  |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

## **REFERENCES:**

- 1 Stephen D. Umans, "Fitzgerald & Kingsley's Electric Machinery", Tata McGraw Hill, 7<sup>th</sup> Edition, 2020
- 2 Bogdan M. Wilamowski, J. David Irwin, The Industrial Electronics Handbook, Second Edition, Power Electronics and Motor Drives, CRC Press, 2011
- Paul C. Krause, Oleg Wasynczuk, Scott D. Sudhoff, Steven D. Pekarek "Analysis of Electric Machinery and Drive Systems", 3<sup>rd</sup> Edition, Wiley-IEEE Press, 2013.
- 4 Rashid M.H., "Power Electronics Circuits, Devices and Applications", Pearson, fourth Edition, 10<sup>th</sup> Impression 2021.
- 5 Igbal Husain, 'Electric and Hybrid Electric Vehicles', CRC Press, 2021.
- 6 Wei Liu, 'Hybrid Electric Vehicle System Modeling and Control', Second Edition, WILEY, 2017
- 7 James Larminie and John Lowry, 'Electric Vehicle Technology Explained', Second Edition, Wiley, 2012

#### **OEI353**

#### INTRODUCTION TO PLC PROGRAMMING

LTPC

## 3 0 0 3

#### **COURSE OBJECTIVES:**

- Understand basic PLC terminologies digital principles, PLC architecture and operation.
- Familiarize different programming language of PLC.

- Develop PLC logic for simple applications using ladder logic.
- Understand the hardware and software behind PLC and SCADA.
- Exposures about communication architecture of PLC/SCADA.

### UNIT I INTRODUCTION TO PLC

9

Introduction to PLC: Microprocessor, I/O Ports, Isolation, Filters, Drivers, Microcontrollers/DSP, PLC/DDC- PLC Construction: What is a PLC, PLC Memories, PLC I/O, , PLC Special I/O, PLC Types.

### UNIT II PLC INSTRUCTIONS

9

PLC Basic Instructions: PLC Ladder Language- Function block Programming- Ladder/Function Block functions- PLC Basic Instructions, Basic Examples (Start Stop Rung, Entry/Reset Rung)-Configuration of Sensors, Switches, Solid State Relays-Interlock examples- Timers, Counters, Examples.

## UNIT III PLC PROGRAMMING

9

Different types of PLC program, Basic Ladder logic, logic functions, PLC module addressing, registers basics, basic relay instructions, Latching Relays, arithmetic functions, comparison functions, data handling, data move functions, timer-counter instructions, input-output instructions, sequencer instructions

## UNIT IV COMMUNICATION OF PLC AND SCADA

9

Communication Protocol – Modbus, HART, Profibus- Communication facilities SCADA: - Hardware and software, Remote terminal units, Master Station and Communication architectures

## UNIT V CASE STUDIES

a

Stepper Motor Control- Elevator Control-CNC Machine Control- conveyor control-Interlocking Problems

**TOTAL:45 PERIODS** 

# SKILL DEVELOPMENT ACTIVITIES (Group Seminar/Mini Project/Assignment/Content Preparation / Quiz/ Surprise Test / Solving GATE questions/ etc) 5

- 1. Market survey of the recent PLCs and comparison of their features.
- 2. Summarize the PLC standards
- 3. Familiarization of any one programming language (Ladder diagram/ Sequential Function Chart/ Function Block Diagram/ Equivalent open source software)
- 4. Market survey of Communication Network Used for PLC/SCADA.

#### **COURSE OUTCOMES:**

- **CO1** Know the basic requirement of a PLC input/output devices and architecture. (L1)
- CO2 Ability to apply Basics Instruction Sets used for ladder Logic and Function Block Programming.(L2)
- CO3 Ability to design PLC Programmes by Applying Timer/Counter and Arithmetic and Logic Instructions Studied for Ladder Logic and Function Block.(L3)
- **CO4** Able to develop a PLC logic for a specific application on real world problem. (L5)
- CO5 Ability to Understand the Concepts of Communication used for PLC/SCADA.(L1)

## **TEXT BOOKS:**

1. Frank Petruzzula, Programmable Logic Controllers, Tata Mc-Graw Hill Edition

2. John W. Webb, Ronald A. Reis, Programmable Logic Controllers Principles and Applications, PHI publication

## **REFERENCES:**

- 1. MadhuchanndMitra and SamerjitSengupta, Programmable Logic Controllers Industrial Automation an Introduction, Penram International Publishing Pvt. Ltd.
- 2. J. R. Hackworth and F. D. Hackworth, Programmable Logic Controllers Principles and Applications, Pearson publication

## **List of Open Source Software/ Learning website:**

- 1. https://nptel.ac.in/courses/108105063
- 2. https://www.electrical4u.com/industrial-automation/
- 3. <a href="https://www.etf.ues.rs.ba/~slubura/Procesni%20racunari/Programmable%20Logic%20">https://www.etf.ues.rs.ba/~slubura/Procesni%20racunari/Programmable%20Logic%20</a>
  <a href="mailto:Controllers%20Programming%20Methods.pdf">Controllers%20Programming%20Methods.pdf</a>
- 4. <a href="https://www.electrical4u.com/industrial-automation/">https://www.electrical4u.com/industrial-automation/</a>

CO's-PO's & PSO's MAPPING

| PO,<br>PSO<br>CO | PO<br>01 | PO<br>02 | PO<br>03 | PO<br>04 | PO<br>05 | PO<br>06 | PO<br>07 | PO<br>08 | PO<br>09 | PO<br>10 | PO<br>11 | PO<br>12 | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| CO1              | 3        | 2        | 1        | 1        |          |          |          | 1        |          | 1        |          | 7        |          |          |          |
| CO2              | 3        | 3        | 2        | 4        |          |          |          | 1        |          | 1        | 2        |          |          |          | 2        |
| CO3              | 3        | 3        | 3        | 3        | 1        |          |          | 1        |          | 1        |          |          |          |          |          |
| CO4              | 3        | 3        |          | 3        | 3        |          |          | 1        |          | 1        |          |          | 3        | 3        |          |
| CO5              | 3        | 3        | 3        | 2        | 1        |          |          | 1        |          | 1        |          |          | 3        | 3        | 3        |
| Avg              | 3        | 2.9      | 2.25     | 2.6      | 1.6      |          |          | 1        |          | 1        |          |          | 3        | 3        | 2.9      |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

OCH351 NANO TECHNOLOGY

L T PC 3 0 03

## UNIT I INTRODUCTION

8

General definition and size effects-important nano structured materials and nano particles-importance of nano materials- Size effect on thermal, electrical, electronic, mechanical, optical and magnetic properties of nanomaterials- surface area - band gap energy and applications. Photochemistry and Electrochemistry of nanomaterials –lonic properties of nanomaterials- Nano catalysis.

## UNIT II SYNTHESIS OF NANOMATERIALS

8

Bottom up and Top-down approach for obtaining nano materials - Precipitation methods – sol gel technique – high energy ball milling, CVD and PVD methods, gas phase condensation, magnetron sputtering and laser deposition methods – laser ablation, sputtering.

## UNIT III NANO COMPOSITES

10

Definition- importance of nanocomposites- nano composite materials-classification of compositesmetal/metal oxides, metal-polymer- thermoplastic based, thermoset based and elastomer basedinfluence of size, shape and role of interface in composites applications.

#### UNIT IV NANO STRUCTURES AND CHARACTERIZATION TECHNIQUES 10

Classifications of nanomaterials - Zero dimensional, one-dimensional and two-dimensional nanostructures- Kinetics in nanostructured materials- multilayer thin films and superlattice-clusters of metals, semiconductors and nanocomposites. Spectroscopic techniques, Diffraction methods, thermal analysis method, BET analysis method.

### UNIT V APPLICATIONS OF NANO MATERIALS

9

Overview of nanomaterials properties and their applications, nano painting, nano coating, nanomaterials for renewable energy, Molecular Electronics and Nanoelectronics – Nanobots-Biological Applications. Emerging technologies for environmental applications- Practice of nanoparticles for environmental remediation and water treatment.

**TOTAL: 45 PERIODS** 

#### COURSE OUTCOMES:

- CO1 understand the basic properties such as structural, physical, chemical properties of nanomaterials and their applications.
- CO2 able to acquire knowledge about the different types of nano material synthesis
- CO3 describes about the shape, size, structure of composite nano materials and their interference
- CO4 understand the different characterization techniques for nanomaterials
- CO5 develop a deeper knowledge in the application of nanomaterials in different fields.

#### **TEXT BOOKS**

- 1. Mick Wilson, Kamali Kannangara, Geoff Smith, Michelle Simmom, Burkhard Raguse, "Nano Technology: Basic Science & Engineering Technology", 2005, Overseas Press
- 2. G. Cao, "Nanostructures & Nanomaterials: Synthesis, Properties & Applications" Imperial College Press, 2004
- 3.William A Goddard "Handbook of Nanoscience, Engineering and Technology", 3<sup>rd</sup> Edition, CRC Taylor and Francis group 2012.

## **REFERENCES**

- 1. R.H.J.Hannink & A.J.Hill, Nanostructure Control, Wood Head Publishing Ltd., Cambridge, 2006
- 2. C.N.R.Rao, A.Muller, A.K.Cheetham, The Chemistry of Nanomaterials: Synthesis, Properties and Applications Vol. I & II, 2nd edition, 2005, Wiley VCH Verlag Gibtl & Co
- 3. Ivor Brodie and Julius J.Muray, 'The physics of Micro/Nano Fabrication', Springer International Edition, 2010

#### CO's-PO's & PSO's MAPPING

| Course             |                                                                                               | Program Outcome |    |    |    |    |    |    |    |    |    |    |    |    |    |            |
|--------------------|-----------------------------------------------------------------------------------------------|-----------------|----|----|----|----|----|----|----|----|----|----|----|----|----|------------|
| Course<br>Outcomes | Statement                                                                                     | РО              | РО | РО | РО | РО | РО | РО | РО | РО |    |    | РО | PS |    |            |
| Gatoomes           |                                                                                               | 1               | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 01 | 02 | <b>O</b> 3 |
| CO1                | understand the basic<br>properties such as<br>structural, physical,<br>chemical properties of | 2               | 3  | 2  | 3  | 3  | -  | -  | -  | 1  | 1  | -  | 3  | 1  | 1  | 3          |

|     | nanomaterials and                                                                                       |   |   |   |   |   |   |     |      |   |   |   |   |   |   |   |
|-----|---------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|-----|------|---|---|---|---|---|---|---|
| CO2 | their applications acquire knowledge about the different types of nano material                         | 2 | 3 | 1 | 3 | 3 | - | -   | -    | 1 | 1 | - | 3 | 2 | 1 | 3 |
| CO3 | synthesis  describes about the shape, size,structure of composite nano materials and their interference | 2 | 2 | 2 | 3 | 3 | 1 | 1   | -    | 1 | 1 | - | 3 | 2 | 1 | 3 |
| CO4 | understand the different characterization techniques for nanomaterials                                  | 2 | 2 | 1 | 3 | 3 | 1 | 1   | 1    | 1 | - | 1 | 3 | 1 | 1 | 3 |
| CO5 | develop a deeper knowledge in the application of nanomaterials in different fields                      | 2 | 2 | 1 | 3 | 3 | 1 | 183 | 1100 | 1 | - | 1 | 3 | 2 | 1 | 3 |
|     | Overall CO                                                                                              | 3 | 2 | 2 | 1 | 3 | 3 | 1   | 1    | 1 | 1 | 1 | 1 | 3 | 2 | 1 |

1 - low, 2 - medium, 3 - high, '-' - no correlation

**OCH352** 

## **FUNCTIONAL MATERIALS**

LT P C 3 0 0 3

#### COURSE OBJECTIVE:

The course emphasis on the molecular safe assembly and materials for polymer electronics

## UNIT I INTRODUCTION

O

Historical Perspectives, Lessons from the Nature, Engineering the Functions, Tuning the functions, Multiscale Modeling and Computation, Classification of Functional Materials, Functional Diversity of Materials, Hybrid Materials, Technological Relevance, Societal Impact.

## UNIT II MOLECULAR SELF ASSEMBLY

9

Molecular Organization, Self-Assembly in Biology, Energetics of Self-Organization, A Few Case Studies, Synthetic Protocols and Challenges, Solvent-assisted Self-Assembly, Directed Assembly-Langmuir-Blodgett and Langmuir-Schaefer techniques, Technological Applications of SAMs.

## UNIT III BIO-INSPIRED MATERIALS

9

Bio-inspired materials, Classification, Biomimicry, Spider Silk, Lotus Leaf, Gecko feet, Synovial fluid, 'Bionics'-Bio-inspired Information Technologies, Artificial Sensory Organs, Biomineralization-En route to Nanotechnology.

## UNIT IV SMART OR INTELLIGENT MATERIALS

9

Criteria for Smartness, Significance of Smart Materials, Representative Examples like Smart Gels and Polymers, Electro/Magneto Rheological Fluids, Smart Electroceramics, Technical Limitations and Challenges, Functional Nanocomposites, Polymer-carbon nanotube composities.

### UNIT V MATERIALS FOR POLYMER ELECTRONICS

9

Polymers for Electronics, Organic Light Emitting Diodes, Working Principle of OLEDs, Illustrated Examples, Organic Field-Effect Transistors Operating Principle, Design Considerations, Polymer FETs vs Inorganic FETs, Liquid Crystal Displays, Engineering Aspects of Flat Panel Displays, Intelligent Polymers for Data Storage, Polymer-based Data Storage-Principle, Magnetic Vs. Polymer-based Data Storage.

**TOTAL: 45 PERIODS** 

#### COURSE OUTCOME:

 Students will be able to differentiate among various functional properties and select appropriate material for certain functional applications, analyze the nature and potential of functional material.

### **TEXT BOOK:**

1. Vijayamohanan K. Pillai and MeeraParthasarathy, "Functional Materials: A chemist's perpective", Universities Press Hyderabad (2012).

#### REFERENCE:

1. Stephen Manne "Biomimetic Materials Chemistry" Wiley-VCH Newyork, 1966.

**OFD352** 

TRADITIONAL INDIAN FOODS

LTPC

3003

#### **COURSE OBJECTIVE:**

• To help students acquire a sound knowledge on diversities of foods, food habits and patterns in India with focus on traditional foods.

### UNIT I HISTORICAL AND CULTURAL PERSPECTIVES

9

Food production and accessibility - subsistence foraging, horticulture, agriculture and pastoralization, origin of agriculture, earliest crops grown. Food as source of physical sustenance, food as religious and cultural symbols; importance of food in understanding human culture - variability, diversity, from basic ingredients to food preparation; impact of customs and traditions on food habits, heterogeneity within cultures (social groups) and specific social contexts - festive occasions, specific religious festivals, mourning etc. Kosher, Halal foods; foods for religious and other fasts.

## UNIT II TRADITIONAL METHODS OF FOOD PROCESSING

9

Traditional methods of milling grains – rice, wheat and corn – equipments and processes as compared to modern methods. Equipments and processes for edible oil extraction, paneer, butter and ghee manufacture – comparison of traditional and modern methods. Energy costs, efficiency, yield, shelf life and nutrient content comparisons. Traditional methods of food preservation – sundrying, osmotic drying, brining, pickling and smoking.

#### UNIT III TRADITIONAL FOOD PATTERNS

9

Typical breakfast, meal and snack foods of different regions of India.Regional foods that have gone Pan Indian / Global. Popular regional foods; Traditional fermented foods, pickles and preserves, beverages, snacks, desserts and sweets, street foods; IPR issues in traditional foods

## UNIT IV COMMERCIAL PRODUCTION OF TRADITIONAL FOODS

9

Commercial production of traditional breads, snacks, ready-to-eat foods and instant mixes, frozen foods – types marketed, turnover; role of SHGs, SMES industries, national and multinational companies; commercial production and packaging of traditional beverages such as tender coconut water, neera, lassi, buttermilk, dahi. Commercial production of intermediate foods – ginger and garlic pastes, tamarind pastes, masalas (spice mixes), idli and dosa batters.

#### UNIT V HEALTH ASPECTS OF TRADIONAL FOODS

9

Comparison of traditional foods with typical fast foods / junk foods – cost, food safety, nutrient composition, bioactive components; energy and environmental costs of traditional foods; traditional foods used for specific ailments /illnesses.

#### **COURSE OUTCOMES:**

**TOTAL: 45 PERIODS** 

CO1To understand the historical and traditional perspective of foods and food habits CO2 To understand the wide diversity and common features of traditional Indian foods and meal patterns.

## **TEXT BOOKS:**

- 1. Sen, Colleen Taylor "Food Culture in India" Greenwood Press, 2005.
- 2. Davidar, Ruth N. "Indian Food Science: A Health and Nutrition Guide to Traditional Recipes: East West Books, 2001.

## **OFD353**

## INTRODUCTION TO FOOD PROCESSING

LTPC

3003

#### COURSE OBJECTIVE:

• The course aims to introduce the students to the area of Food Processing. This is necessary for effective understanding of a detailed study of food processing and technology subjects. This course will enable students to appreciate the importance of food processing with respect to the producer, manufacturer and consumer.

#### UNIT I PROCESSING OF FOOD AND ITS IMPORTANCE

9

Source of food - plant, animal and microbial origin; different foods and groups of foods as raw materials for processing – cereals, pulses, grains, vegetables and fruits, milk and animal foods, sea weeds, algae, oil seeds & fats, sugars, tea, coffee, cocoa, spices and condiments, additives; need and significance of processing these foods.

#### UNIT II METHODS OF FOOD HANDLING AND STORAGE

9

Nature of harvested crop, plant and animal; storage of raw materials and products using low temperature, refrigerated gas storage of foods, gas packed refrigerated foods, sub atmospheric storage, Gas atmospheric storage of meat, grains, seeds and flour, roots and tubers; freezing of raw and processed foods.

## UNIT III LARGE-SCALE FOOD PROCESSING

12

Milling of grains and pulses; edible oil extraction; Pasteurisation of milk and yoghurt; canning and bottling of foods; drying – Traditional and modern methods of drying, Dehydration of fruits, vegetables, milk, animal products etc; preservation by use of acid, sugar and salt; Pickling and curing with microorganisms, use of salt, and microbial fermentation; frying, baking, extrusion cooking, snack foods.

#### UNIT IV FOOD WASTES IN VARIOUS PROCESSES

6

Waste disposal-solid and liquid waste; rodent and insect control; use of pesticides; ETP; selecting and installing necessary equipment.

### UNIT V FOOD HYGIENE

9

**TOTAL: 45 PERIODS** 

Food related hazards – Biological hazards – physical hazards – microbiological considerations in foods. Food adulteration – definition, common food adulterants, contamination with toxic metals, pesticides and insecticides; Safety in food procurement, storage handling and preparation; Relationship of microbes to sanitation, Public health hazards due to contaminated water and food; Personnel hygiene; Training& Education for safe methods of handling and processing food; sterilization and disinfection of manufacturing plant; use of sanitizers, detergents, heat, chemicals, Cleaning of equipment and premises.

## **COURSE OUTCOMES:**

On completion of the course the students are expected to

CO1 Be aware of the different methods applied to processing foods.

CO2 Be able to understand the significance of food processing and the role of foodand beverage industries in the supply of foods.

## **TEXT BOOKS/REFERENCES:**

- 1. Karnal, Marcus and D.B. Lund "Physical Principles of Food Preservation". Rutledge, 2003.
- 2. VanGarde, S.J. and Woodburn. M "Food Preservation and Safety Principles and Practice". Surbhi Publications, 2001.
- 3. Sivasankar, B. "Food Processing & Preservation", Prentice Hall of India, 2002.
- 4. Khetarpaul, Neelam, "Food Processing and Preservation", Daya Publications, 2005.

**OPY352** 

## IPR FOR PHARMA INDUSTRY

LTPC 3003

#### **COURSE OBJECTIVES:**

- To provide the basic fundamental knowledge of different forms of Intellectual Property Rights in national and international level.
- To provide the significance of the Intellectual Property Rights about the patents, copyrights, industrial design, plant and geographical indications.
- This paper is to study significance of the amended patent act on pharma industry.

## UNIT I INTRODUCTION- INTELLECTUAL PROPERTY RIGHTS

9

Introduction, Types of Intellectual Property Rights -patents, plant varieties protection, geographical indicators, copyright, trademark, trade secrets.

UNIT II PATENTS 9

Patents-Objective, Introduction, Requirement for patenting- Novelty, Inventive step (Non-obviousness) and industrial application (utility), Non-patentable inventions, rights of patent owner, assignment of patent rights, patent specification (provisional and complete), parts of complete specification, claims, procedure for obtaining patents, compulsory license.

# UNIT III PLANT VARIETY-TRADITIONAL KNOWLEDGE –GEOGRAPHICAL INDICATIONS

9

Plant variety- Justification, criteria for protection of plant variety and protection in India. Traditional knowledge- Concept of traditional knowledge, protection of traditional knowledge under Intellectual Property frame works in national level and Traditional knowledge digital library (TKDL). Geographical Indications – Justification for protection, National and International position.

#### UNIT IV ENFORCEMENT AND PRACTICAL ASPECTS OF IPR

9

Introduction – civil remedies – injunction, damage, account of profit – criminal remedies – patent, trademark. Practical aspects – Introduction, benefits of licensing, licensing of basic types of IPR, licensing clauses of IPR. Case studies of patent infringement, compulsory licensing, simple patent license agreements.

UNIT V INTERNATIONAL BACKGROUND OF INTELLECTUAL PROPERTY 9

International Background of Intellectual Property- Paris Convention, Berne convention, World Trade Organization (WTO), World Intellectual Property Organization (WIPO), Trade Related Aspects of Intellectual Property Rights (TRIPS) and Patent Co-operation Treaty (PCT).

**TOTAL:45 PERIODS** 

#### **TEXT BOOKS:**

- 1. N. Nagpal, M. Arora, M.R.D. Usman, S. Rahar, "Intellectual Property Rights" Edu creation Publishing, New Delhi, 2017.
- 2. The Patents Act, 1970 (Bare Act with Short Notes) (New Delhi: Universal Law Publishing Company Pvt. Ltd. 2012.
- 3. B.S. Rao, P.V. Appaji, "Intellectual Property Rights in Pharmaceutical Industry: Theory and Practice", 2015.

## **REFERENCES:**

- 1. Patents for Chemicals, Pharmaceuticals, & Biotechnology-Fundamentals of Global Law, Practice and Strategy. Philip W. Grubb, Oxford University Press, 2004.
- Basic Principles of patent law Basics principles and acquisition of IPR. Ramakrishna T. CIPRA, NLSIU, Bangalore, 2005
- 3. S. Lakshmana Prabu, TNK. Suriyaprakash, "Intellectual Property Rights", 1st ed., In Tech open access, Croatia, 2017.

#### COURSE OUTCOME

The student will be able to

- **C1** Understand and differentiate the categories of intellectual property rights.
- **C2** Describe about patents and procedure for obtaining patents.
- C3 Distinguish plant variety, traditional knowledge and geographical indications under IPR.
- **C4** Provide the information about the different enforcements and practical aspects involved in protection of IPR.
- C5 Provide different organizations role and responsibilities in the protection of IPR in the

international level.

**C6** Understand the interrelationships between different Intellectual Property Rights on International Society

| CO's-PC | CO's-PO's & PSO's MAPPING                      |   |   |   |   |   |   |   |   |   |   |    |  |  |  |
|---------|------------------------------------------------|---|---|---|---|---|---|---|---|---|---|----|--|--|--|
|         | IPR FOR PHARMA INDUSTRY                        |   |   |   |   |   |   |   |   |   |   |    |  |  |  |
|         | PO1 PO2 PO PO4 PO5 PO6 PO7 PO8 PO9 PO1 PO11 PO |   |   |   |   |   |   |   |   |   |   |    |  |  |  |
|         |                                                |   | 3 |   |   |   |   |   |   | 0 |   | 12 |  |  |  |
| C1      | 3                                              | 3 |   | 2 |   |   |   |   | 2 | 2 |   |    |  |  |  |
| C2      |                                                | 3 | 3 |   |   |   | 2 | 2 |   |   |   |    |  |  |  |
| C3      | 3                                              | 3 |   |   |   |   | 2 | 2 |   |   |   | 1  |  |  |  |
| C4      |                                                |   |   |   | 2 |   | 3 | 3 |   | 2 | 2 |    |  |  |  |
| C5      | =                                              | 3 |   |   |   |   | 3 |   |   | 2 |   | 1  |  |  |  |
| C6      | 3                                              | 2 |   | _ |   | 2 | 2 |   |   |   |   | 2  |  |  |  |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

**OTT351** 

### **BASICS OF TEXTILE FINISHING**

LT PC 3 0 0 3

### **COURSE OBJECTIVE:**

 To enable the students to understand the basics and different types of finishes required for textile materials and machines used for finishing.

### UNIT I RESIN FINISHING

g

Importance of finishing and its classification. Resin finishing: Mechanism of creasing, Types of Resins .Anti crease, wash and wear, durable press resin finishing. Study about eco friendly method of anti crease finishing.

### **UNIT II FLAME PROOF & WATERPROOF**

Ç

Concept of Flame proof & flame retardancy. Flame retardant finishes for cotton, Concept of waterproof and water repellent Finishes, Durable & Semi durable and Temporary finishes, Concept of Antimicrobial finish.

## **UNIT III SOIL RELEASE AND ANTISTATIC FINISHES**

9

Soil Release Finishing: Mechanism of soil retention & soil release. Anti pilling Finishing: chemical and mechanical methods to produce anti pilling. Concept of UV Protection finishes- Concept of antistatic finishes.

### **UNIT IV MECHANICAL FINISHES**

9

Mechanical finishing of textile materials - calendaring, compacting, Sanforising, Peach finishing. Object of Heat setting. Various methods of heat setting and mechanism of heat setting.

### **UNIT V STIFFENING AND SOFTENING**

9

Concept of stiffening and softening of textile materials. Mechanism in the weight reduction of PET .Concept of Micro encapsulation techniques in finishing process, Nano finish, Plasma Treatment and Bio finishing.

**TOTAL: 45 PERIODS** 

#### **COURSE OUTCOMES:**

Upon completion of the course, the students will be able to Understand the

- CO: 1 Basics of Resin Finishing Process.
- CO: 2 Concept of Flame proof & flame retardancy, waterproof and water repellent, Antimicrobial finishes.
- CO: 3 Concept of Soil Release, Anti Pilling, UV Protection and Antistatic finishes.
- CO: 4 Concept of Mechanical finishing.
- CO: 5 Basics of Micro encapsulation techniques, Nano finish, Plasma Treatment.

### **TEXT BOOKS:**

- 1. V.A.Shennai, "Technology of Finishing", Vol X, Sevak Publications, Mumbai
- 2. Perkins, W.S., "Textile colouration and finishing", Carolina Academic Press., U.K, ISBN: 0890898855.2004.

#### REFERENCES:

- 1. Microencapsulation in finishing, Review of progress of Colouration, SDC, 2001 62
- 2. Chakraborty, J.N, Fundamentals and Practices in colouration of Textiles, Woodhead Publishing India, 2009, ISBN-13:978-81-908001-4-3
- 3. W. D. Schindler and P. J. Hauser "Chemical finishing of textiles", Woodhead Publishing Cambridge England, 2004.

#### OTT352 INDUSTRIAL ENGINEERING FOR GARMENT INDUSTRY

1003 1003

## **COURSE OBJECTIVES:**

 To enable the students to learn about basics of industrial engineering and different tools of industrial engineering and its application in apparel industry

## UNIT I INTRODUCTION

9

Scope of industrial engineering in apparel Industry, role of industrial engineers.

**Productivity:** Definition - Productivity, Productivity measures .Reduction of work content due to the product and process, Reduction of ineffective time due to the management, due to the worker. Causes for low productivity in apparel industry and measures for improvement.

## UNIT II WORK STUDY

9

Definition, Purpose, Basic procedure and techniques of work-study.

**Work environment** – Lighting, Ventilation, Climatic condition on productivity. Temperature control, humidity control, noise control measures. Safety and ergonomics on work station and work environment

**Material Handling** – Objectives, Classification and characteristics of material handling equipments, Specialized material handling equipments.

#### UNIT III METHOD STUDY

9

Definition, Objectives, Procedure, Process charts and symbols. Various charts – Charts indicating process sequence: Outline process chart, flow process chart (man type, material type and equipment type); Charts using time scale – multiple activity chart. Diagrams indicating movement – flow diagram, string diagram, cycle graph, chrono cycle graph, travel chart **MOTION STUDY:** Principle of motion economy, Two handed process chart, micro motion analysis – therbligs, SIMO chart.

#### UNIT IV WORK MEASUREMENT

Definition, purpose, procedure, equipments, techniques. Time study - Definition, basics of time study- equipments. Time study forms, Stop watch procedure. Predetermined motion time standards (PMTS). Time Study rating, calculation of standard time, Performance rating – relaxation and other allowances. Calculation of SAM for different garments, GSD.

### UNIT V WORK STUDY APPLICATION

9

9

Application of work study techniques in cutting, stitching and packing in garment industry. Workaids in sewing, Pitch diagram, Line balancing, Capacity planning, scientific method of training.

**TOTAL: 45 PERIODS** 

### **COURSE OUTCOMES:**

Upon the completion of the course the student shall be able to understand

CO1: Fundamental concepts of industrial Engineering and productivity

CO2: Method study

CO3: Motion analysis

CO4: Work measurement and SAM

CO5: Ergonomics and its application to garment industry

#### TEXTBOOKS:

- George Kanwaty, "Introduction to Work Study ", ILO, Geneva, 1996, ISBN: 9221071081 IISBN-13: 9789221071082
- **2.** Enrick N. L., "Time study manual for Textile industry", Wiley Eastern (P) Ltd., 1989, ISBN: 0898740444 | ISBN-13: 9780898740448
- **3.** Khanna O. P., and Sarup A., "Industrial Engineering and Management", Dhanpat Rai Publications, New Delhi, 2010, ISBN: 818992835X / ISBN: 978-8189928353

## **REFERENCES**

- 1. Norberd Lloyd Enrick., "Industrial Engineering Manual for Textile Industry", Wiley Eastern (P) Ltd., New Delhi, 1988, ISBN: 0882756311 | ISBN-13: 9780882756318
- 2. Chuter A. J., "Introduction to Clothing Production Management", Wiley-Black well Science, U.S. A., 1995, ISBN: 0632039396 | ISBN-13: 9780632039395
- **3.** GordanaColovic., "Ergonomics in the garment industry", Wood publishing India Pvt. Ltd., India, 2014, ISBN: 0857098225 | ISBN-13: 9780857098221
- 4. Rajesh Bheda, "Managing Productivity in Apparel Industry "CBS Publishers & Distributors, 2008

## CO's-PO's & PSO's MAPPING:

| Course |               | Prog | ram ( | Outco | me  |     |     |     |     |     |    |    |    |    |     |    |
|--------|---------------|------|-------|-------|-----|-----|-----|-----|-----|-----|----|----|----|----|-----|----|
| Outco  | Statement     | PO1  | PO2   | PO3   | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | РО | РО | PO | PS | PS  | PS |
| mes    |               |      |       |       |     |     |     |     |     |     | 10 | 11 | 12 | 01 | O 2 | O3 |
| CO1    | Fundament     |      |       |       |     |     |     |     |     |     |    |    |    |    |     |    |
|        | al concepts   |      |       |       |     |     |     |     |     |     |    |    |    |    |     |    |
|        | of industrial | 2    | 2     | 3     | 3   | 2   | 1   | 1   | 2   | 2   | 1  | 2  | 2  | 1  | 1   |    |
|        | Engineering   | _    | _     | J     | 3   | _   | '   | '   |     | _   | ı  |    |    | •  | '   | _  |
|        | and           |      |       |       |     |     |     |     |     |     |    |    |    |    |     |    |
|        | productivity  |      |       |       |     |     |     |     |     |     |    |    |    |    |     |    |
| CO2    | Method        | 1    | 2     | 3     | 3   | 2   | 1   | 1   | 2   | 2   | 1  | 2  | 2  | 1  | 1   |    |
|        | study         | '    | ~     | 3     | 3   | _   | '   |     |     | 2   | •  | _  | _  | l  |     | _  |
| CO3    | Motion        | 1    | 2     | 3     | 3   | 2   | 1   | 1   | 2   | 2   | 1  | 2  | 2  | 1  | 1   | -  |

|            | analysis                                           |     |   |   |   |   |   |     |   |   |   |     |   |   |   |   |
|------------|----------------------------------------------------|-----|---|---|---|---|---|-----|---|---|---|-----|---|---|---|---|
| CO4        | Work                                               |     |   |   |   |   |   |     |   |   |   |     |   |   |   |   |
|            | measureme                                          | 1   | 2 | 3 | 3 | 2 | 1 | 1   | 2 | 2 | 1 | 3   | 2 | 1 | 1 | - |
|            | nt and SAM                                         |     |   |   |   |   |   |     |   |   |   |     |   |   |   |   |
| CO5        | Ergonomics and its application to garment industry | 1   | 2 | 3 | 3 | 2 | 1 | 2   | 2 | 2 | 1 | 3   | 2 | 1 | 1 | - |
| Overall Co | 0                                                  | 1.2 | 2 | 3 | 3 | 2 | 1 | 1.2 | 2 | 2 | 1 | 2.4 | 2 | 1 | 1 |   |

1 - low, 2 - medium, 3 - high, '-' - no correlation

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively

**OTT353** 

#### **BASICS OF TEXTILE MANUFACTURE**

LTPC 3003

#### COURSE OBJECTIVES:

To enable the students to learn about the basics of fibre forming, yarn production, fabric formation, coloration of fabrics and garment manufacturing

#### UNIT I NATURAL FIBRES

9

Introduction: Definition of staple fibre, filament; Classification of natural and man-made fibres, essential and desirable properties of fibres. Production and cultivation of Natural Fibers: Cultivation of cotton, production of silk (sericulture), wool and jute – physical and chemical structure of these fibres..

# UNIT II REGENERATED AND SYNTHETIC FIBRES

9

Production sequence of regenerated and modified cellulosic fibres: viscose rayon, Acetate Rayon, high wet modulus and high tenacity fibres; synthetic fibres – chemical structure, fibre forming polymers, production principles.

# UNIT III BASICS OF SPINNING

9

Spinning – principle of yarn formation, sequence of machines for yarn production with short staple fibres and blends, principles of opening and cleaning machines; yarn numbering - calculation

#### UNIT IV BASICS OF WEAVING

9

Woven fabric – warp, weft, weaving, path of warp; looms – classification, handloom and its parts, powerloom, automatic looms, shuttleless looms, special type of looms; preparatory machines for weaving process and their objectives; basic weaving mechanism - primary, secondary and auxiliary mechanisms,

#### UNIT V BASICS OF KNITTING AND NONWOVEN

9

Knitting – classification, principle, types of fabrics; nonwoven process –classification, principle,

types of fabrics.

# **COURSE OUTCOMES:**

On completion of this course, the students shall have the basic knowledge on

CO1: Classification of fibres and production of natural fibres

CO2: Regenerated and synthetic fibres

CO3: Yarn spinning

CO4: Weaving

CO5: Knitting and nonwoven

#### **TEXTBOOKS**

1. Mishra S. P., "A Text Book of Fibre Science and Technology", New Age Publishers, 2000, ISBN: 8122412505

**TOTAL: 45 PERIODS** 

- 2. Marks R., and Robinson. T.C., "Principles of Weaving", The Textile Institute, Manchester, 1989, ISBN: 0 900739 258.
- 3. Spencer D.J., "Knitting Technology", III Ed., Textile Institute, Manchester, 2001, ISBN: 185573 333 1.

# REFERENCES:

- Hornberer M., Eberle H., Kilgus R., Ring W. and Hermeling H., "Clothing Technology: From Fibre to Fabric", Europa LehrmittelVerlag, 2008, ISBN: 3808562250 / ISBN: 978-3808562253.
- 2. Wynne A., "Motivate Series-Textiles", Maxmillan Publications, London, 1997.
- 3. Carr H. and Latham B., "The Technology of Clothing Manufacture" Backwell Science, U.K., 1994, ISBN: 0632037482 / ISBN:13: 9780632037483. Klein W., "The Rieter Manual of Spinning, Vol.1", Rieter Machine Works Ltd., Winterthur, 2014, ISBN 10 3-9523173-1-4 / ISBN 13 978-3-9523173-1-0.
- 4. Klein W., "The Rieter Manual of Spinning, Vol.2", Rieter Machine Works Ltd., Winterthur, 2014, ISBN 10 3-9523173-2-2 / ISBN 13 978-3-9523173-2-7.
- 5. Klein W., "The Rieter Manual of Spinning, Vol.1-3", Rieter Machine Works Ltd., Winterthur, 2014, ISBN 10 3-9523173-3-0 / ISBN 13 978-3-9523173-3-4.
- 6. Talukdar. M.K., Sriramulu. P.K., and Ajgaonkar. D.B., "Weaving: Machines, Mechanisms, Management", Mahajan Publishers, Ahmedabad, 1998, ISBN: 81-85401-16-0.
- 7. Morton W. E., and Hearle J. W. S., "Physical Properties of Textile Fibres", The Textile Institute, Washington D.C., 2008, ISBN 978-1-84569-220-95
- 8. Gohl E. P. G., "Textile Science", CBS Publishers and distributors, 1987, ISBN 0582685958

#### CO's-PO's & PSO's MAPPING

| Course       | Statement                                                 | Pr          | ogra        | am (        | Outo        | omo         | е           |             |             |             |              |              |              |                  |                  |          |
|--------------|-----------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|--------------|--------------|------------------|------------------|----------|
| Outcome<br>s |                                                           | P<br>O<br>1 | P<br>O<br>2 | P<br>O<br>3 | P<br>O<br>4 | P<br>O<br>5 | P<br>O<br>6 | P<br>O<br>7 | P<br>O<br>8 | P<br>O<br>9 | P<br>O<br>10 | P<br>O<br>11 | P<br>O<br>12 | P<br>S<br>O<br>1 | P<br>S<br>O<br>2 | PS<br>O3 |
| CO1.         | Classification of fibres and production of natural fibres | -           | -           | -           | -           | -           | -           | -           | 2           | 1           | -            | 1            | 1            | -                | 1                | -        |
| CO2.         | Regenerated and synthetic fibres                          | -           | -           | -           | -           | -           | -           | -           | 2           | 1           | -            | 1            | 1            | -                | 1                | -        |
| CO3.         | Yarn spinning                                             | -           |             | -           | -           | -           | -           | -           | 2           | 1           | -0-          | 1            | 1            | -                | 1                | -        |
| CO4.         | Weaving                                                   | -           |             | -           | -           | -           | -           | -           | 2           | 1           | -            | 1            | 1            | -                | 1                | -        |
| CO5.         | Knitting and nonwoven                                     | -           | 5           | -           | ٦           | - 1         |             | V           | 2           | 1           | 5 4          | 1            | 1            | -                | 1                | -        |
| Overall CO   |                                                           | -/          | 4           |             | -           | -           | -           | -           | 2           | 1           | -47          | 1            | 1            | -                | 1                | -        |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

# OPE351 INTRODUCTION TO PETROLEUM REFINING AND PETROCHEMICALS

LTPC 3 0 0 3

# COURSE OBJECTIVE:

The course is aimed to

Gain knowledge about petroleum refining process and production of petrochemical products.

# UNIT I ORIGIN, FORMATION AND REFINING OF CRUDE OIL

9

Origin, Formation and Evaluation of Crude Oil. Testing of Petroleum Products. Refining of Petroleum - Atmospheric and Vacuum Distillation.

# UNIT II CRACKING

9

Cracking, Thermal Cracking, Vis-breaking, Catalytic Cracking (FCC), Hydro Cracking, Coking and Air Blowing of Bitumen

#### UNIT III REFORMING AND HYDROTREATING

9

Catalytic Reforming of Petroleum Feed Stocks. Lube oil processing- Solvent Treatment Processes, Dewaxing, Clay Treatment and Hydrofining. Treatment Techniques: Removal of Sulphur Compounds in all Petroleum Fractions to improve performance.

# UNIT IV INTRODUCTION TO PETROCHEMICALS

9

Petrochemicals - Cracking of Naphtha and Feed stock gas for the production of Ethylene, Propylene, Isobutylene and Butadiene. Production of Acetylene from Methane, and Extraction of Aromatics.

# UNIT V PRODUCTION OF PETROCHEMICALS

9

Production of Petrochemicals like Dimethyl Terephathalate(DMT), Ethylene Glycol, Synthetic

glycerine, Linear Alkyl Benzene (LAB), Acrylonitrile, Methyl Methacrylate (MMA), Vinyl Acetate Monomer, Phthalic Anhydride, Maleic Anhydride, Phenol, Acetone, Methanol, Formaldehyde, Acetaldehyde, Pentaerythritol and production of Carbon Black.

**TOTAL: 45 PERIODS** 

#### **COURSE OUTCOMES:**

On the completion of the course students are expected to

- **CO1:** Understand the classification, composition and testing methods of crude petroleum and its products. Learn the mechanism of refining process.
- **CO2:** Understand the insights of primary treatment processes to produce the precursors.
- **CO3:** Study the secondary treatment processes cracking, vis-breaking and coking to produce more petroleum products.
- **CO4:** Appreciate the need of treatment techniques for the removal of sulphur and other impurities from petroleum products.
- **CO5:** Understand the societal impact of petrochemicals and learn their manufacturing processes.
- **CO6:** Learn the importance of optimization of process parameters for the high yield of petroleum products.

#### **TEXT BOOKS**

- 1. Nelson, W. L., "Petroleum Refinery Engineering", 4th Edition., McGraw Hill, New York, 1985.
- 2. Wiseman. P., "Petrochemicals", UMIST Series in Science and Technology, John Wiley & Sons,1986.

#### REFERENCES

- 1. Bhaskara Rao, B. K., "Modern Petroleum Refining Processes", 2nd Edition, Oxford and IBH Publishing Company, New Delhi, 1990.
- 2. Bhaskara Rao, B. K. "A Text on Petrochemicals", 1st Edition, Khanna Publishers

# CPE334 ENERGY CONSERVATION AND MANAGEMENT

L T P C 3 0 0 3

#### COURSE OBJECTIVES:

At the end of the course, the student is expected to

- understand and analyse the energy data of industries
- carryout energy accounting and balancing
- conduct energy audit and suggest methodologies for energy savings and
- utilise the available resources in optimal ways

# UNIT I INTRODUCTION

9

Energy - Power - Past & Present scenario of World; National Energy consumption Data - Environmental aspects associated with energy utilization - Energy Auditing: Need, Types, Methodology and Barriers. Role of Energy Managers. Instruments for energy auditing.

# UNIT II ELECTRICAL SYSTEMS

9

Components of EB billing – HT and LT supply, Transformers, Cable Sizing, Concept of Capacitors, Power Factor Improvement, Harmonics, Electric Motors - Motor Efficiency Computation, Energy Efficient Motors, Illumination – Lux, Lumens, Types of lighting, Efficacy, LED Lighting and scope of Encon in Illumination.

# **UNIT III THERMAL SYSTEMS**

9

Stoichiometry, Boilers, Furnaces and Thermic Fluid Heaters – Efficiency computation and encon measures. Steam: Distribution &U sage: Steam Traps, Condensate Recovery, Flash Steam Utilization, Insulators & Refractories

# UNIT IV ENERGY CONSERVATION IN MAJOR UTILITIES

9

Pumps, Fans, Blowers, Compressed Air Systems, Refrigeration and Air Conditioning Systems – Cooling Towers – D.G. sets

## UNIT V ECONOMICS

9

Energy Economics – Discount Rate, Payback Period, Internal Rate of Return, Net Present Value, Life Cycle Costing –ESCO concept

**TOTAL: 45 PERIODS** 

#### **COURSE OUTCOMES:**

Upon completion of this course, the students can able to analyze the energy data of industries.

- CO1: Remember the knowledge for Basic combustion and furnace design and selection of thermal and mechanical energy equipment.
- CO2: Study the Importance of Stoichiometry relations, Theoretical air required for complete combustion.
- CO3: Skills on combustion thermodynamics and kinetics.
- CO4: Apply calculation and design tube still heaters.
- CO5: Studied different heat treatment furnace.
- CO6: Practical and theoretical knowledge burner design.

# **TEXT BOOKS:**

 Energy Manager Training Manual (4 Volumes) available at www.energymanagertraining.com. a website administered by Bureau of Energy Efficiency (BEE), a statutory body under Ministry of Power, Government of India, 2004.

# **REFERENCES:**

- 1. Witte. L.C., P.S. Schmidt, D.R. Brown, "Industrial Energy Management and Utilisation" Hemisphere Publ, Washington, 1988.
- 2. Callaghn, P.W. "Design and Management for Energy Conservation", Pergamon Press, Oxford, 1981.
- 3. Dryden. I.G.C., "The Efficient Use of Energy" Butterworths, London, 1982
- 4. Turner, W.C., "Energy Management Hand book", Wiley, New York, 1982.
- 5. Murphy. W.R. and G. Mc KAY, "Energy Management", Butterworths, London 1987

LT PC 3 0 0 3

# **COURSE OBJECTIVES**

- Understand the fundamentals of plastics processing, such as the relationships between material structural properties and required processing parameters, and so on
- To gain practical knowledge on the polymer selection and its processing
- Understanding the major plastic material processing techniques (Extrusion, Injection molding, Compression and Transfer molding, Blow molding, Thermoforming and casting)
- To understand suitable additives for plastics compounding
- To Propose troubleshooting mechanisms for defects found in plastics products manufactured by various processing techniques

# UNIT I INTRODUCTION TO PLASTICS PROCESSING

9

Introduction to plastic processing – Principles of plastic processing: processing of plastics vs. metals and ceramics. Factors influencing the efficiency of plastics processing: molecular weight, viscosity and rheology. Difference in approach for thermoplastic and thermoset processing. Additives for plastics compounding and processing: antioxidants, light stabilizers, UV stabilizers, lubricants, impact modifiers, flame retardants, antistatic agents, stabilizers and plasticizers. Compounding: plastic compounding techniques, plasticization, pelletization.

#### UNIT II EXTRUSION

9

Extrusion – Principles of extrusion. Features of extruder: barrel, screw, types of screws, drive mechanism, specifications, heating & cooling systems, types of extruders. Flow mechanism: process variables, die entry effects and exit instabilities. Die swell, Defects: melt fracture, shark skin, bambooing. Factors determining efficiency of an extruder. Extrusion of films: blown and cast films. Tube/pipe extrusion. Extrusion coating: wire & cable. Twin screw extruder and its applications. Applications of extrusion and new developments.

#### UNIT III INJECTION MOLDING

9

Injection molding – Principles and processing outline, machinery, accessories and functions, specifications, process variables, mould cycle. Types of clamping: hydraulic and toggle mechanisms. Start-up and shut down procedures-Cylinder nozzles- Press capacity projected area -Shot weight Basic theoretical concepts and their relationship to processing - Interaction of moulding process aspect effects in quoted variables. Basic mould types. Reciprocating vs. plunger type injection moulding. Thermoplastic vs. thermosetting injection moulding. Injection moulding vs. other plastic processing techniques. State-of-the art injection moulding techniques - Introduction to trouble shooting

# UNIT IV COMPRESSION AND TRANSFER MOLDING

9

Compression moulding – Basic principles of compression and transfer moulding-Meaning of terms-Bulk factor and flow properties, moulding materials, process variables and process cycle, Inter relation between flow properties-Curing time-Mould temperature and Pressure requirements. Preforms and preheating- Techniques of preheating. Machines used-Types of compression mould-positive, semi-positive and flash. Common moulding faults and their correction- Finishing of mouldings. Transfer moulding: working principle, equipment, Press capacity-Integral moulds and auxiliary ram moulds, moulding cycle, moulding tolerances, pot transfer, plunger transfer and screw transfer moulding techniques, advantages over compression moulding

# UNIT V BLOW MOLDING, THERMOFORMING AND CASTING

9

Blow moulding: principles and terminologies. Injection blow moulding. Extrusion blow moulding. Design guidelines for optimum product performance and appearance. Thermoforming: principle, vacuum forming, pressure forming mechanical forming. Casting: working principle, types and applications.

**TOTAL: 45 PERIODS** 

# **COURSE OUTCOMES**

**CO1:** Ability to find out the correlation between various processing techniques with product properties.

**CO2:** Understand the major plastics processing techniques used in moulding (injection, blow, compression, and transfer), extrusion, thermoforming, and casting.

CO3: Acquire knowledge on additives for plastic compounding and methods employed for the same

**CO4:**Familiarize with the machinery and ancillary equipment associated with various plastic processing techniques.

CO5:Select an appropriate processing technique for the production of a plastic product

## **REFERENCES**

- 1. S. S. Schwart, S. H. Goodman, Plastics Materials and Processes, Van Nostrad Reinhold Company Inc. (1982).
- 2. F. Hensen (Ed.), Plastic Extrusion Technology, Hanser Gardner (1997).
- 3. W. S. Allen and P. N. Baker, Hand Book of Plastic Technology, Volume-1, Plastic Processing Operations [Injection, Compression, Transfer, Blow Molding], CBS Publishers and Distributors (2004).
- 4. M. Chanda, S. K. Roy, Plastic Technology handbook, 4th Edn., CRC Press (2007).
- 5. I. I. Rubin, Injection Molding Theory & Practice, Society of Plastic Engineers, Wiley (1973).
- 6. D.V. Rosato, M. G. Rosato, Injection Molding Hand Book, Springer (2012).
- 7. M. L. Berins (Ed.), SPI Plastic Engineering Hand Book of Society of Plastic Industry Inc., Springer (2012).
- 8. B. Strong, Plastics: Material & Processing, A, Pearson Prentice hall (2005).
- 9. D.V Rosato, Blow Molding Hand Book, Carl HanserVerlag GmbH & Co (2003).

**OEC351** 

#### SIGNALS AND SYSTEMS

L T P C 3 0 0 3

# **COURSE OBJECTIVES:**

- To understand the basic properties of signal & systems
- To know the methods of characterization of LTI systems in time domain
- To analyze continuous time signals and system in the Fourier and Laplace domain
- To analyze discrete time signals and system in the Fourier and Z transform domain

## UNIT I CLASSIFICATION OF SIGNALS AND SYSTEMS

9

Standard signals- Step, Ramp, Pulse, Impulse, Real and complex exponentials and Sinusoids\_Classification of signals – Continuous time (CT) and Discrete Time (DT) signals, Periodic & Aperiodic signals, Deterministic & Random signals, Energy & Power signals - Classification of systems- CT systems and DT systems- – Linear & Nonlinear, Time-variant& Time-invariant, Causal & Non-causal, Stable & Unstable.

# UNIT II ANALYSIS OF CONTINUOUS TIME SIGNALS

C

Fourier series for periodic signals - Fourier Transform – properties- Laplace Transforms and Properties

#### UNIT III LINEAR TIME INVARIANT CONTINUOUS TIME SYSTEMS

9

Impulse response - convolution integrals- Differential Equation- Fourier and Laplace transforms in Analysis of CT systems - Systems connected in series / parallel.

# UNIT IV ANALYSIS OF DISCRETE TIME SIGNALS

9

Baseband signal Sampling–Fourier Transform of discrete time signals (DTFT)– Properties of DTFT - Z Transform & Properties

# UNIT V LINEAR TIME INVARIANT-DISCRETE TIME SYSTEMS

9

**TOTAL: 45 PERIODS** 

Impulse response—Difference equations-Convolution sum- Discrete Fourier Transform and Z Transform Analysis of Recursive & Non-Recursive systems-DT systems connected in series and parallel.

# **COURSE OUTCOMES:**

# At the end of the course, the student will be able to:

CO1:determine if a given system is linear/causal/stable

CO2: determine the frequency components present in a deterministic signal

CO3:characterize continuous LTI systems in the time domain and frequency domain

CO4:characterize discrete LTI systems in the time domain and frequency domain

CO5:compute the output of an LTI system in the time and frequency domains

# **TEXT BOOKS:**

- 1. Oppenheim, Willsky and Hamid, "Signals and Systems", 2nd Edition, Pearson Education, New Delhi, 2015.(Units I V)
- 2. Simon Haykin, Barry Van Veen, "Signals and Systems", 2nd Edition, Wiley, 2002

# **REFERENCES:**

- 1. B. P. Lathi, "Principles of Linear Systems and Signals", 2<sup>nd</sup> Edition, Oxford, 2009.
- 2. M. J. Roberts, "Signals and Systems Analysis using Transform methods and MATLAB", McGraw- Hill Education, 2018.
- 3. John Alan Stuller, "An Introduction to Signals and Systems", Thomson, 2007.

#### CO's-PO's & PSO's MAPPING

| С | РО | PO1 | PO1 | PO1 | PSO | PSO | PSO |
|---|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|
| 0 | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 0   | 1   | 2   | 1   | 2   | 3   |
| 1 | 3  | -  | 3  | -  | 3  | 2  | -  | -  | -  | -   |     | 3   | -   | -   | 1   |
| 2 | 3  | -  | 3  | -  | -  | 2  | -  | -  | -  | -   |     | 3   | -   | 3   | -   |
| 3 | 3  | 3  | -  | -  | 3  | 2  | -  | -  | -  | -   |     | 3   | 2   | -   | -   |
| 4 | 3  | 3  | -  | -  | 3  | 2  | -  | -  | -  | -   |     | 3   | -   | 3   | 1   |
| 5 | 3  | 3  | -  | 3  | 3  | 2  | -  | -  | -  | -   |     | 3   | -   | 3   | 1   |
| С | 3  | 3  | 3  | 3  | 3  | 2  | -  | -  | -  | -   | -   | 3   | 2   | 3   | 1   |

1 - low, 2 - medium, 3 - high, '-' - no correlation

# OEC352 FUNDAMENTALS OF ELECTRONIC DEVICES AND CIRCUITS

L T P C 3 0 0 3

# **COURSE OBJECTIVES:**

- To give a comprehensive exposure to all types of devices and circuits constructed with discrete components. This helps to develop a strong basis for building linear and digital integrated circuits
- To analyze the frequency response of small signal amplifiers
- To design and analyze single stage and multistage amplifier circuits
- To study about feedback amplifiers and oscillators principles
- To understand the analysis and design of multi vibrators

#### UNIT I SEMICONDUCTOR DEVICES

q

PN junction diode, Zener diode, BJT, MOSFET, UJT –structure, operation and V-I characteristics, Rectifiers – Half Wave and Full Wave Rectifier, Zener as regulator

# UNIT II AMPLIFIERS

9

Load line, operating point, biasing methods for BJT and MOSFET, BJT small signal model – Analysis of CE, CB, CC amplifiers- Gain and frequency response –Analysis of CS and Source follower – Gain and frequency response- High frequency analysis.

# UNIT III MULTISTAGE AMPLIFIERS AND DIFFERENTIAL AMPLIFIER

9

Cascode amplifier, Differential amplifier – Common mode and Difference mode analysis – Tuned amplifiers – Gain and frequency response – Neutralization methods.

# UNIT IV FEEDBACK AMPLIFIERS AND OSCILLATORS

9

Advantages of negative feedback – Analysis of Voltage / Current, Series , Shunt feedback Amplifiers – positive feedback–Condition for oscillations, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators.

# UNIT V POWER AMPLIFIERS AND DC/DC CONVERTERS

9

Power amplifiers- class A-Class B-Class AB-Class C-Temperature Effect- Class AB Power amplifier using MOSFET -DC/DC convertors - Buck, Boost, Buck-Boost analysis and design.

**TOTAL: 45 PERIODS** 

#### COURSE OUTCOMES:

At the end of the course the students will be able to

CO1: Explain the structure and working operation of basic electronic devices.

CO2: Design and analyze amplifiers.

CO3: Analyze frequency response of BJT and MOSFET amplifiers

CO4: Design and analyze feedback amplifiers and oscillator principles.

CO5: Design and analyze power amplifiers and supply circuits

## **TEXT BOOKS:**

- **1.** David A. Bell, "Electronic Devices and Circuits", Oxford Higher Education press, 5 th Edition, 2010.
- 2. Robert L. Boylestad and Louis Nasheresky, "Electronic Devices and Circuit Theory", 10th Edition, Pearson Education / PHI, 2008.

**3.** Adel .S. Sedra, Kenneth C. Smith, "Micro Electronic Circuits", Oxford University Press, 7 th Edition. 2014.

#### **REFERENCES:**

- 1. Donald.A. Neamen, "Electronic Circuit Analysis and Design", Tata McGraw Hill, 3 rd Edition, 2010.
- 2. D.Schilling and C.Belove, "Electronic Circuits", McGraw Hill, 3 rd Edition, 1989
- 3. Muhammad H.Rashid, "Power Electronics", Pearson Education / PHI, 2004.

# CO's-PO's & PSO's MAPPING

| СО | РО  | РО  | РО | РО  | РО | РО | PS | PS | PS |
|----|----|----|----|----|----|----|-----|-----|----|-----|----|----|----|----|----|
|    | 1  | 2  | 3  | 4  | 5  | 6  | 7   | 8   | 9  | 10  | 11 | 12 | 01 | 02 | О3 |
| 1  | 3  | 3  | 3  | 3  | 2  | 1  | -   | •   | -  | 1   | -  | 1  | 2  | 1  | 1  |
| 2  | 3  | 2  | 2  | 3  | 2  | 2  | -   | •   | -  | 1   | -  | 1  | 2  | 1  | 1  |
| 3  | 3  | 3  | 3  | 2  | 1  | 2  | -   | •   | •  | ı   | -  | 1  | 2  | 1  | 1  |
| 4  | 3  | 3  | 2  | 3  | 2  | 2  | -   | -   | •  | -   | -  | 1  | 2  | 1  | 1  |
| 5  | 3  | 2  | 3  | 2  | 2  | 1  | -   | -   | -  | - / | -  | 1  | 2  | 1  | 1  |
| CO | 3  | 3  | 3  | 3  | 2  | 2  | - 1 | - 1 | -  | -   | -  | 1  | 2  | 1  | 1  |

1 - low, 2 - medium, 3 - high, '-' - no correlation

**OMA352** 

#### OPERATIONS RESEARCH

L T P C 3 0 0 3

# **COURSE OBJECTIVES:**

This course will help the students to

- determine the optimum solution for Linear programming problems.
- study the Transportation and assignment models and various techniques to solve them.
- acquire the knowledge of optimality, formulation and computation of integer programming problems.
- acquire the knowledge of optimality, formulation and computation of dynamic programming problems.
- determine the optimum solution for non-linear programming problems.

# UNIT I LINEAR PROGRAMMING

9

Formulation of linear programming models – Graphical solution – Simplex method - Big M Method – Two phase simplex method - Duality - Dual simplex method.

# UNIT II TRANSPORTATION AND ASSIGNMENT PROBLEMS

9

Matrix form of Transportation problems – Loops in T.P – Initial basic feasible solution – Transportation algorithm – Assignment problem – Unbalanced assignment problems .

# UNIT III INTEGER PROGRAMMING

9

Introduction – All and mixed I.P.P – Gomory's method – Cutting plane algorithm – Branch and bound algorithm – Zero – one programming.

# UNIT IV DYNAMIC PROGRAMMING PROBLEMS

9

Recursive nature of computation – Forward and backward recursion – Resource Allocation model – Cargo – loading model – Work – force size model - Investment model – Solution of L.P.P by dynamic programming.

# UNIT V NON - LINEAR PROGRAMMING PROBLEMS

Lagrange multipliers – Equality constraints – Inequality constraints – Kuhn – Tucker Conditions – Quadratic programming.

**TOTAL:45 PERIODS** 

#### **COURSE OUTCOMES:**

At the end of the course, students will be able to

**CO1:** Could develop a fundamental understanding of linear programming models, able to develop a linear programming model from problem description, apply the simplex method for solving linear programming problems.

CO2: analyze the concept of developing, formulating, modeling and solving transportation and assignment problems.

**CO3:** solve the integer programming problems using various methods.

**CO4:** conceptualize the principle of optimality and sub-optimization, formulation and computational procedure of dynamic programming.

CO5: determine the optimum solution for non linear programming problems.

# **TEXT BOOKS:**

- 1. Kanti Swarup, P.K.Gupta and Man Mohan, "Operations Research", Sultan Chand & Sons, New Delhi, Fifth Edition, 1990.
- 2. Taha. H.A, "Operations Research An Introduction, Pearson Education, Ninth Edition, New Delhi, 2012.

#### **REFERENCES:**

- 1. J.K.Sharma , " Operations Research Theory and Applications " Mac Millan India Ltd , Second Edition , New Delhi , 2003.
- 2. Richard Bronson & Govindasami Naadimuthu, "Operations Research" (Schaum's Outlines TMH Edition) Tata McGraw Hill, Second Edition, New Delhi, 2004.
- 3. Pradeep Prabhakar Pai, "Operations Research and Practice", Oxford University Press, New Delhi, 2012.
- 4. J.P.Singh and N.P.Singh, "Operations Research, Ane Books Pvt.L.td, New Delhi, 2014.
- 5. F.S.Hillier and G.J. Lieberman, "Introduction to Operations Research", Tata McGraw Hill, Eighth Edition, New Delhi, 2005.

# CO's-PO's & PSO's MAPPING

|     | РО | РО | РО | РО  | РО | РО | РО | РО | РО | РО | РО | РО | PS | PS | PS |
|-----|----|----|----|-----|----|----|----|----|----|----|----|----|----|----|----|
|     | 01 | 02 | 03 | 04  | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 01 | 02 | О3 |
| CO1 | 3  | 3  | 0  | 0   | 0  | 0  | 0  | 0  | 2  | 0  | 0  | 2  | -  | -  | -  |
| CO2 | 3  | 3  | 3  | 2   | 0  | 0  | 0  | 0  | 2  | 0  | 0  | 2  | -  | -  | -  |
| CO3 | 3  | 3  | 0  | 0   | 0  | 0  | 0  | 0  | 2  | 0  | 0  | 2  | -  | -  | -  |
| CO4 | 3  | 3  | 0  | 0   | 0  | 0  | 0  | 0  | 2  | 0  | 0  | 2  | -  | -  | -  |
| CO5 | 3  | 3  | 2  | 2   | 0  | 0  | 0  | 0  | 2  | 0  | 0  | 2  | -  | -  | -  |
| Avg | 3  | 3  | 1  | 0.8 | 0  | 0  | 0  | 0  | 2  | 0  | 0  | 2  | -  | -  | -  |

1 - low, 2 - medium, 3 - high, '-' - no correlation

#### **COURSE OBJECTIVES:**

- To introduce the basic notions of groups, rings, fields which will then be used to solve related problems.
- To examine the key questions in the Theory of Numbers.
- To give an integrated approach to number theory and abstract algebra, and provide a firm basis for further reading and study in the subject.

#### UNIT I GROUPS AND RINGS

9

Groups: Definition - Properties - Homomorphism - Isomorphism - Cyclic groups - Cosets - Lagrange's theorem.

Rings: Definition - Sub rings - Integral domain - Field - Integer modulo n - Ring homomorphism.

#### UNIT II FINITE FIELDS AND POLYNOMIALS

9

9

Rings - Polynomial rings - Irreducible polynomials over finite fields - Factorization of polynomials over finite fields.

# UNIT III DIVISIBILITY THEORY AND CANONICAL DECOMPOSITIONS

Division algorithm- Base-b representations – Number patterns – Prime and composite numbers – GCD – Euclidean algorithm – Fundamental theorem of arithmetic – LCM.

# UNIT IV DIOPHANTINE EQUATIONS AND CONGRUENCES

a

 $\label{linear Diophantine equations - Congruence's - Linear Congruence's - Applications: Divisibility tests - Modular exponentiation - Chinese remainder theorem - 2x2 linear systems.$ 

# UNIT V CLASSICAL THEOREMS AND MULTIPLICATIVE FUNCTIONS

9

**TOTAL: 45 PERIODS** 

Wilson's theorem – Fermat's Little theorem – Euler's theorem – Euler's Phi functions – Tau and Sigma functions.

# **COURSE OUTCOMES:**

**CO1:** Explain the fundamental concepts of advanced algebra and their role in modern mathematics and applied contexts.

**CO2:** Demonstrate accurate and efficient use of advanced algebraic techniques.

CO3: The students should be able to demonstrate their mastery by solving non-trivial problems related to the concepts, and by proving simple theorems about the, statements proven by the text

# **TEXT BOOKS:**

- 1. Grimaldi, R.P and Ramana, B.V., "Discrete and Combinatorial Mathematics", Pearson Education, 5<sup>th</sup> Edition, New Delhi, 2007.
- 2. Thomas Koshy, "Elementary Number Theory with Applications", Elsevier Publications, New Delhi, 2002.

# **REFERENCES:**

1. San Ling and Chaoping Xing, "Coding Theory – A first Course", Cambridge Publications, Cambridge, 2004.

- 2. Niven.I, Zuckerman.H.S., and Montgomery, H.L., "An Introduction to Theory of Numbers", John Wiley and Sons, Singapore, 2004.
- 3. Lidl.R., and Pitz. G, "Applied Abstract Algebra", Springer Verlag, New Delhi, 2<sup>nd</sup> Edition, 2006.

#### CO's-PO's & PSO's MAPPING

|     | РО  | РО  | РО  | РО  | РО  | РО | РО  | РО | РО  | РО | РО  | РО  | PS | PS | PS |
|-----|-----|-----|-----|-----|-----|----|-----|----|-----|----|-----|-----|----|----|----|
|     | 01  | 02  | 03  | 04  | 05  | 06 | 07  | 08 | 09  | 10 | 11  | 12  | 01 | 02 | О3 |
| CO1 | 3   | 1   | 2   | -   | -   | -  | 2   | 1  | -   | 1  | 2   | 2   | -  | -  | -  |
| CO2 | 3   | 3   | 1   | 1   | 3   | 1  | 2   | 1  | 1   | 1  | 2   | 2   | -  | -  | -  |
| CO3 | 3   | 3   | 2   | 1   | 3   | 1  | 3   | 1  | 1   | 1  | 2   | 3   | -  | -  | -  |
| CO4 | 3   | 3   | 2   | 2   | 3   | 2  | 2   | 1  | 1   | 1  | 2   | 3   | -  | -  | -  |
| CO5 | 2   | 2   | 1   | -   | 3   | 1  | 2   | 1  | 1   | 1  | 3   | 3   | -  | -  | -  |
| Avg | 2.8 | 2.4 | 1.6 | 0.8 | 2.4 | 1  | 2.2 | 1  | 0.8 | 1  | 2.2 | 2.6 | -  | -  | -  |

1 - low, 2 - medium, 3 - high, '-' - no correlation

OMA354

# LINEAR ALGEBRA

LT P C 3003

# **COURSE OBJECTIVES:**

- To test the consistency and solve system of linear equations.
- To find the basis and dimension of vector space.
- To obtain the matrix of linear transformation and its eigenvalues and eigenvectors.
- To find orthonormal basis of inner product space and find least square approximation.
- To find eigenvalues of a matrix using numerical techniques and perform matrix decomposition.

# UNIT I MATRICES AND SYSTEM OF LINEAR EQUATIONS

9

Matrices - Row echelon form - Rank - System of linear equations - Consistency - Gauss elimination method - Gauss Jordan method.

#### UNIT II VECTOR SPACES

9

Vector spaces over Real and Complex fields - Subspace - Linear space - Linear independence and dependence - Basis and dimension.

# UNIT III LINEAR TRANSFORMATION

9

Linear transformation - Rank space and null space - Rank and nullity - Dimension theorem—Matrix representation of linear transformation - Eigenvalues and eigenvectors of linear transformation - Diagonalization.

# UNIT IV INNER PRODUCT SPACES

9

Inner product and norms - Properties - Orthogonal, Orthonormal vectors - Gram Schmidt orthonormalization process - Least square approximation.

# UNIT V EIGEN VALUE PROBLEMS AND MATRIX DECOMPOSITION

9

Eigen value Problems : Power method, Jacobi rotation method - Singular value decomposition – QR decomposition.

**TOTAL: 45 PERIODS** 

# **COURSE OUTCOMES:**

After the completion of the course the student will be able to

**CO1:** Test the consistency and solve system of linear equations.

CO2: Find the basis and dimension of vector space.

**CO3:** Obtain the matrix of linear transformation and its eigenvalues and eigenvectors.

**CO4:** Find orthonormal basis of inner product space and find least square approximation.

**CO5:** Find eigenvalues of a matrix using numerical techniques and perform matrix decomposition.

#### **TEXT BOOKS**

- 1. Faires J.D. and Burden R., Numerical Methods, Brooks/Cole (Thomson Publications), New Delhi. 2002.
- 2. Friedberg A.H, Insel A.J. and Spence L, Linear Algebra, Pearson Education, 5<sup>th</sup> Edition, 2019.

#### **REFERENCES**

- 1. Bernard Kolman, David R. Hill, Introductory Linear Algebra, Pearson Educations, New Delhi, 8<sup>th</sup> Edition, 2009.
- 2. Gerald C.F. and Wheatley P.O, Applied Numerical Analysis, Pearson Educations, New Delhi, 7<sup>th</sup> Edition, 2007.
- 3. Kumaresan S, Linear Algebra A geometric approach, Prentice Hall of India, New Delhi, Reprint, 2010.
- 4. Richard Branson, Matrix Operations, Schaum's outline series, 1989.
- 5. Strang G, Linear Algebra and its applications, Thomson (Brooks / Cole) New Delhi, 4<sup>th</sup> Edition, 2005.
- 6. Sundarapandian V, Numerical Linear Algebra, Prentice Hall of India, New Delhi, 2014.

# CO's-PO's & PSO's MAPPING

|     | PO | РО | РО | РО | РО  | РО | РО | РО | РО | РО | РО | РО | PS  | PS | PS |
|-----|----|----|----|----|-----|----|----|----|----|----|----|----|-----|----|----|
|     | 01 | 02 | 03 | 04 | 05  | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 01  | 02 | О3 |
| CO1 | 3  | 3  | 3  | 3  | 2   | 2  | 2  | 1  | 1  | 1  | 1  | 3  | -   | -  | -  |
| CO2 | 3  | 3  | 3  | 3  | 3   | 2  | 2  | 1  | 1  | 1  | 1  | 3  | -   | -  | -  |
| CO3 | 3  | 3  | 3  | 3  | 3   | 2  | 2  | 1  | 1  | 1  | 1  | 3  | -   | -  | -  |
| CO4 | 3  | 3  | 3  | 3  | 3   | 2  | 2  | 1  | 1  | 1  | 1  | 3  | - ) | -  | -  |
| CO5 | 3  | 3  | 3  | 3  | 3   | 2  | 2  | 1  | 1  | 1  | 1, | 3  | -   | -  | -  |
| Avg | 3  | 3  | 3  | 3  | 2.8 | 2  | 2  | 1  | 1  | 1  | 1  | 3  | -   | -  | -  |

1 - low, 2 - medium, 3 - high, '-' - no correlation

**OCE353** 

LEAN CONCEPTS, TOOLS AND PRACTICES

LTPC

3 0 0 3

#### **COURSE OBJECTIVE:**

• To impart knowledge about the basics of lean principles, tools and techniques, and implementation in the construction industry.

#### UNIT I INTRODUCTION

9

Introduction and overview of the construction project management - Review of Project Management & Productivity Measurement Systems - Productivity in Construction - Daily Progress Report-The state of the industry with respect to its management practices -construction project phases - The problems with current construction management techniques.

#### UNIT II LEAN MANAGEMENT

Introduction to lean management - Toyota's management principle-Evolution of lean in construction industry - Production theories in construction –Lean construction value - Value in construction - Target value design - Lean project delivery system- Forms of waste in construction industry - Waste Elimination.

# UNIT III CORE CONCEPTS IN LEAN

9

9

Concepts in lean thinking – Principles of lean construction – Variability and its impact – Traditional construction and lean construction – Traditional project delivery - Lean construction and workflow reliability – Work structuring – Production control.

# UNIT IV LEAN TOOLS AND TECHNIQUES

9

Value Stream Mapping – Work sampling – Last planner system – Flow and pull based production – Last Planner System – Look ahead schedule – constraint analysis – weekly planning meeting-Daily Huddles – Root cause analysis – Continuous improvement – Just in time.

# UNIT V LEAN IMPLEMENTATION IN CONSTRUCTION INDUSTRY

9

Lean construction implementation- Enabling lean through information technology - Lean in design - Design Structure - BIM (Building Information Modelling) - IPD (Integrated Project Delivery) - Sustainability through lean construction approach.

# **TOTAL: 45 PERIODS**

# **COURSE OUTCOME:**

On completion of this course, the student is expected to be able to

- **CO1** Explains the contemporary management techniques and the issues in present scenario.
- **CO2** Apply the basics of lean management principles and their evolution from manufacturing industry to construction industry.
- **CO3** Develops a better understanding of core concepts of lean construction tools and techniques and their importance in achieving better productivity.
- **CO4** Apply lean techniques to achieve sustainability in construction projects.
- CO5 Apply lean construction techniques in design and modeling.

#### REFERENCES:

- 1. Corfe, C. and Clip, B., Implementing lean in construction: Lean and the sustainability agenda, CIRIA, 2013.
- 2. Shang Gao and Sui Pheng Low, Lean Construction Management: The Toyota Way, Springer, 2014.
- 3. Dave, B., Koskela, L., Kiviniemi, A., Owen, R., andTzortzopoulos, P.,Implementing lean in construction: Lean construction and BIM, CIRIA, 2013.
- 4. Ballard, G., Tommelein, I., Koskela, L. and Howell, G., Lean construction tools and techniques, 2002.
- 5. Salem, O., Solomon, J., Genaidy, A. and Luegring, M., Site implementation and Assessment of Lean Construction Techniques, Lean Construction Journal, 2005.

#### **OBT352**

# **BASICS OF MICROBIAL TECHNOLOGY**

LTPC 3003

# **COURSE OBJECTIVE:**

 Enable the Non-biological student's to understand about the basics of life science and their pro and cons for living organisms.

# UNIT I BASICS OF MICROBES AND ITS TYPES

9

Introduction to microbes, existence of microbes, inventions of great scientist and history, types of microorganisms – Bacteria, Virus, Fungi.

# UNIT II MICROBIAL TECHNIQUES

9

Sterilization – types – physical and chemical sterilization, Decontamination, Preservation methods, fermentation, Cultivation and growth of microbes, Diagnostic methods.

#### UNIT III PATHOGENIC MICROBES

9

Infectious Disease – Awareness, Causative agent, Prevention and control - Cholera, Dengu, Malaria, Diarrhea, Tuberculosis, Typhoid, Covid, HIV.

# UNIT IV BENEFICIAL MICROBES

9

Applications of microbes – Clinical microbiology, agricultural microbiology, Food Microbiology, Environmental Microbiology, Animal Microbiology, Marine Microbiology.

#### UNIT V PRODUCTS FROM MICROBES

9

Fermentedproducts – Fermented Beverages, Curd, Cheese, Mushroom, Agricultural products – Biopesticide, Biofertilizers, Vermi compost, Pharmaceutical products - Antibiotics, Vaccines

**TOTAL: 45 PERIODS** 

## COURSE OUTCOME:

At the end of the course the students will be able to

CO1: Microbes and their types

CO2: Cultivation of microbes

CO3: Pathogens and control measures for safety

CO4: Microbes in different industry for economy.

#### **TEXT BOOKS**

- **1.** Talaron K, Talaron A, Casita, Pelczar and Reid. Foundations in Microbiology, W.C. Brown Publishers, 1993.
- 2. Pelczar MJ, Chan ECS and Krein NR, Microbiology, Tata McGraw Hill Edition, New Delhi, India.
- **3.** Prescott L.M., Harley J.P., Klein DA, Microbiology, 3rd Edition, Wm. C. Brown Publishers, 1996.

#### **OBT353**

#### **BASICS OF BIOMOLECULES**

LTPC 3 0 0 3

# **COURSE OBJECTIVES:**

 The objective is to offer basic concepts of biochemistry to students with diverse background in life sciences including but not limited to the structure and function of various biomolecules and their metabolism.

# UNIT I CARBOHYDRATES

9

Introduction to carbohydrate, classification, properties of monosaccharide, structural aspects of monosaccharides. Introduction to disaccharide (lactose, maltose, sucrose) and polysaccharide (Heparin, starch, and glycogen) biological function of carbohydrate.

# UNIT II LIPID AND FATTY ACIDS

9

Introduction to lipid, occurrence, properties, classification of lipid. Importance of phospholipids, sphingolipid and glycerolipid. Biological function of lipid. Fatty acid, Introduction, Nomenclature and classification of fatty acid Essential and non essential fatty acids.

#### UNIT III AMINO ACIDS AND PROTEIN.

9

Introduction to amino acid, structure, classification of protein based on polarity. Introduction to protein, classification of protein based on solubility, shape, composition and Function. Peptide bond– Structure of peptide bond. Denauration – renaturation of protein, properties of protein. Introduction to lipoprotein, glycoprotein and nucleoprotein.Biological function of protein.

# UNIT IV NUCLEIC ACIDS

9

Introduction to nucleic acid, Difference between nucleotide and nucleoside, composition of DNA & amp; RNA Structure of Nitrogen bases in DNA and RNA along with the nomenclature DNA double helix (Watson and crick) model, types of DNA, RNA.

# UNIT V VITAMINS AND HORMONES

9

Different types of vitamins, their diverse biochemical functions and deficiency related diseases. Overview of hormones. Hormone mediated signaling. Mechanism of action of steroid hormones, epinephrine, glucagons and insulin.Role of vitamins and hormones in metabolism; Hormonal disorders; Therapeutic uses of vitamins and hormones.

## **COURSE OUTCOMES:**

**CO1:** Students will learn about various kinds of biomolecules and their physiological role.

**CO2:** Students will gain knowledge about various metabolic disorders and will help them to know the importance of various biomolecules in terms of disease correlation.

# **TEXT BOOKS**

**TOTAL: 45 PERIODS** 

- Lehninger Principles of Biochemistry 6th Edition by David L. Nelson, Michael M. Cox W.H.Freeman and Company 2017
- 2. Satyanarayana, U. and U. Chakerapani, "Biochemistry" 3rd Rev. Edition, Books & Samp; Allied (P) Ltd., 2006. 3. Rastogi, S.C. "Biochemistry" 2nd Edition, Tata McGraw-Hill, 2003.
- 4. Conn, E.E., etal., "Outlines of Biochemistry" 5th Edition, John Wiley & Sons, 1987.
- 5. Outlines of Biochemistry, 5th Edition: By E E Conn, P K Stumpf, G Bruening and R Y Doi.pp 693. John Wiley and Sons, New York. 1987.

## **REFERENCES**

- 1. Berg, Jeremy M. et al. "Biochemsitry", 6th Edition, W.H. Freeman & Edition, W.H. Freeman & Edition, 2006.
- 2. Murray, R.K., etal "Harper's Illustrated Biochemistry", 31st Edition, McGraw-Hill, 2018.
- 3. Voet, D. and Voet, J.G., "Biochemistry", 4th Edition, John Wiley & Drs., 2010.

# OBT354 FUNDAMENTALS OF CELL AND MOLECULAR BIOLOGY

LTPC 3 003

# **COURSE OBJECTIVES:**

- To provide knowledge on the fundamentals of cell biology.
- To understand the signalling mechanisms.
- Understand basic principles of molecular biology at intracellular level to regulate growth, division and development.

#### UNIT-I INTRODUCTION TO CELL

9

Cell, cell wall and Extracellular Matrix (ECM), composition, cellular dimensions, Evolution, Organisation, differentiation of prokaryotic and Eukaryotic cells, Virus, bacteria, cyanobacteria, mycoplasma and prions.

#### UNIT II CELL ORGANELLES

9

Molecular organisation, biogenesis and functin Mitochondria, endoplasmic reticulam, golgi apparatus, plastids, chloroplast, leucoplast, centrosome, lysosome, ribosome, peroxisome, Nucleus and nucleolus. Endo membrane system, concept of compartmentalisation.

# UNIT III BIO-MEMBRANE TRANSPORT

9

Physiochemical properties of cell membranes. Molecular constitute of membranes, asymmetrical organisation of lipids and proteins. Solute transport across membrane's-fick's law, simple diffusion, passive-facilitated diffusion, active transport- primary and secondary, group translocation, transport ATPases, membrane transport in bacteria and animals. Transportmechanism- mobile carriers and pores mechanisms. Transport by vesicle formation, endocytosis, exocytosis, cell respiration.

## UNIT IV CELL CYCLE

9

Cell cycle- Cell division by mitosis and meosis, Comparision of meosis and mitosis, regulation of cell cycle, cell lysis, Cytokinesis, Cell signaling, Cell communication, Cell adhesion and Cell junction, cell cycle checkpoints.

# UNIT V CENTRAL DOGMA

9

**TOTAL: 45 PERIODS** 

Overview of Central dogma DNA replication: Meselson & DNA replication, Okazaki fragments. Structure and function of mRNA, rRNA and tRNA. RNA synthesis: Initiation, elongation and termination of RNA synthesis Introduction to Genetic code-Steps in translation: Initiation, Elongation and termination of protein synthesis.

#### COURSE OUTCOMES:

**CO1:** Understanding of cell at structural and functional level.

**CO2:** Understand the central dogma of life and its significance.

**CO3:** Comprehend the basic mechanisms of cell division.

#### **TEXTBOOKS:**

1. Cooper, G.M. and R.E. Hansman "The Cell: A Molecular Approach", 8th Edition, Oxford University Press, 2018

- 2. Friefelder, David. "Molecular Biology." Narosa Publications, 1999
- 3. Weaver, Robert F. "Molecular Biology" IInd Edition, Tata McGraw-Hill, 2003.

#### **REFERENCES:**

- 1. Lodish H, Berk A, MatsudairaP, Kaiser CA, Krieger M, Schot MP, Zipursky L, Darnell J. Molecular Cell Biology, 6th Edition, 2007.
- 2. Becker, W.M. etal., "The World of the Cell", 9th Edition, Pearson Education, 2003.
- 3. Campbell, N.A., J.B. Recee and E.J. Simon "Essential Biology", VIIrd Edition, Pearson International, 2007.
- 4. Alberts, Bruce etal., "Essential Cell Biology", 4th Edition, W.W. Norton, 2013.

# **OPEN ELECTIVE IV**

OHS352

# PROJECT REPORT WRITING

L T P C 3 0 0 3

#### **COURSE OBJECTIVE**

The Course will enable Learners to,

- Understand the essentials of project writing.
- Perceive the difference between general writing and technical writing
- Assimilate the fundamental features of report writing.
- Understand the essential differences that exist between general and technical writing.
- Learn the structure of a technical and project report.

UNITI 9

Writing Skills – Essential Grammar and Vocabulary – Passive Voice, Reported Speech, Concord, Signpost words, Cohesive Devices – Paragraph writing - Technical Writing vs. General Writing.

UNIT II

Project Report – Definition, Structure, Types of Reports, Purpose – Intended Audience – Plagiarism – Report Writing in STEM fields – Experiment – Statistical Analysis.

UNIT III 9

Structure of the Project Report: (Part 1) Framing a Title – Content – Acknowledgement – Funding Details -Abstract – Introduction – Aim of the Study – Background - Writing the research question - Need of the Study/Project Significance, Relevance – Determining the feasibility – Theoretical Framework.

UNIT IV DROCKERS TUROUSULVAIOUULEROE 9

Structure of the Project Report: (Part 2) – Literature Review, Research Design, Methods of Data Collection - Tools and Procedures - Data Analysis - Interpretation - Findings –Limitations - Recommendations – Conclusion – Bibliography.

UNIT V 9

Proof reading a report – Avoiding Typographical Errors – Bibliography in required Format – Font – Spacing – Checking Tables and Illustrations – Presenting a Report Orally – Techniques.

**TOTAL:45 PERIODS** 

#### **COURSE OUTCOMES**

By the end of the course, learners will be able to

**CO1:** Write effective project reports.

CO2: Use statistical tools with confidence.

**CO3:** Explain the purpose and intension of the proposed project coherently and with clarity.

**CO4:** Create writing texts to suit achieve the intended purpose.

CO5: Master the art of writing winning proposals and projects.

#### CO's-PO's & PSO's MAPPING

| CO   | РО  |     |     |     |   |     |     |     |     |    |     |    | PSO |   |   |
|------|-----|-----|-----|-----|---|-----|-----|-----|-----|----|-----|----|-----|---|---|
|      | 1   | 2   | 3   | 4   | 5 | 6   | 7   | 8   | 9   | 10 | 11  | 12 | 1   | 2 | 3 |
| 1    | 2   | 1   | 1   | 1   | 1 | 3   | 2   | 2   | 3   | 3  | 3   | 3  | -   | - | - |
| 2    | 2   | 2   | 2   | 1   | 1 | 1   | 2   | 1   | 2   | 3  | 2   | 3  | -   | - | - |
| 3    | 2   | 2   | 3   | 3   | 2 | 3   | 2   | 2   | 2   | 3  | 2   | 3  | -   | - | - |
| 4    | 3   | 3   | 3   | 3   | 3 | 3   | 3   | 3   | 3   | 3  | 3   | 3  | -   | - | - |
| 5    | 3   | 3   | 3   | 3   | 3 | 3   | 3   | 3   | 3   | 3  | 3   | 3  | -   | - | - |
| AVg. | 2.4 | 2.2 | 2.4 | 2.2 | 2 | 2.6 | 2.4 | 2.2 | 2.6 | 3  | 2.6 | 3  | -   | - | - |

<sup>1-</sup>low, 2-medium, 3-high, '-"- no correlation

Note: The average value of this course to be used for program articulation matrix.

#### **REFERENCES**

- 1. Gerson and Gerson Technical Communication: Process and Product, 7th Edition, Prentice Hall(2012)
- 2. Virendra K. Pamecha Guide to Project Reports, Project Appraisals and Project Finance (2012)
- Daniel Riordan Technical Report Writing Today (1998)
   Darla-Jean Weatherford Technical Writing for Engineering Professionals (2016) Penwell Publishers.

**OMA355** 

# ADVANCED NUMERICAL METHODS

LT P C 3 0 0 3

#### COURSE OBJECTIVE:

• To impart knowledge on numerical methods that will come in handy to solve numerically the problems that arise in engineering and technology. This will also serve as a precursor for future research.

# UNIT I ALGEBRAIC EQUATIONS AND EIGENVALUE PROBLEM

9

System of nonlinear equations: Fixed point iteration method - Newton's method; System of linear equations: Thomas algorithm for tri diagonal system - SOR iteration methods; Eigen value problems: Given's method - Householder's method.

# UNIT II INTERPOLATION

9

Central difference: Stirling and Bessel's interpolation formulae; Piecewise spline interpolation: Piecewise linear, piecewise quadratic and cubic spline; Least square approximation for continuous data (upto 3rd degree).

UNIT III NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS 9

Explicit Adams - Bashforth Techniques - Implicit Adams - Moulton Techniques, Predictor - Corrector Techniques - Finite difference methods for solving two - point linear boundary value problems - Orthogonal Collocation method.

# UNIT IV FINITE DIFFERENCE METHODS FOR ELLIPTIC EQUATIONS

Laplace and Poisson's equations in a rectangular region : Five point finite difference schemes - Leibmann's iterative methods - Dirichlet's and Neumann conditions - Laplace equation in polar coordinates : Finite difference schemes .

# UNIT V FINITE DIFFERENCE METHOD FOR TIME DEPENDENT PARTIAL DIFFERENTIAL EQUATIONS

Parabolic equations: Explicit and implicit finite difference methods – Weighted average approximation - Dirichlet's and Neumann conditions – First order hyperbolic equations - Method of characteristics - Different explicit and implicit methods; Wave equation: Explicit scheme – Stability of above schemes.

**TOTAL: 45 PERIODS** 

#### **COURSE OUTCOMES:**

Upon completion of this course, the students will be able to:

CO1: demonstrate the understandings of common numerical methods for nonlinear equations, system of linear equations and eigenvalue problems;

CO2: understand the interpolation theory;

CO3: understand the concepts of numerical methods for ordinary differential equations;

CO4: demonstrate the understandings of common numerical methods for elliptic equations:

CO5: understand the concepts of numerical methods for time dependent partial differential equations

## **TEXT BOOKS:**

- 1. Grewal, B.S., "Numerical Methods in Engineering & Science ", Khanna Publications, Delhi, 2013.
- 2. Gupta, S.K., "Numerical Methods for Engineers", (Third Edition), New Age Publishers, 2015.
- 3. Jain, M.K., Iyengar, S.R.K. and Jain, R.K., "Computational Methods for Partial Differential Equations", New Age Publishers, 1994.

#### **REFERENCES:**

- 1. Saumyen Guha and Rajesh Srivastava, "Numerical methods for Engineering and Science", Oxford Higher Education, New Delhi, 2010.
- 2. Burden, R.L., and Faires, J.D., "Numerical Analysis Theory and Applications", 9 th Edition, Cengage Learning, New Delhi, 2016.
- 3. Gupta S.K., "Numerical Methods for Engineers",4th Edition, New Age Publishers, 2019.
- 4. Sastry, S.S., "Introductory Methods of Numerical Analysis", 5th Edition, PHI Learning, 2015.
- 5. Morton, K.W. and Mayers D.F., "Numerical solution of Partial Differential equations", Cambridge University press, Cambridge, 2002.

# CO's-PO's & PSO's MAPPING

|     | РО | PS | PS        | PS |
|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----------|----|
|     | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 01 | <b>O2</b> | О3 |
| CO1 | 3  | 3  | 3  | 3  | 2  | 2  | 2  | 1  | 1  | 1  | 1  | 3  | -  | -         | -  |
| CO2 | 3  | 3  | 3  | 3  | 3  | 2  | 2  | 1  | 1  | 1  | 1  | 3  | -  | -         | -  |
| CO3 | 3  | 3  | 3  | 3  | 3  | 2  | 2  | 1  | 1  | 1  | 1  | 3  | -  | -         | -  |
| CO4 | 3  | 3  | 3  | 3  | 3  | 2  | 2  | 1  | 1  | 1  | 1  | 3  | -  | -         | -  |
| CO5 | 3  | 3  | 3  | 3  | 3  | 2  | 2  | 1  | 1  | 1  | 1  | 3  | -  | -         | -  |
| Avg | 3  | 3  | 3  | 3  | 3  | 2  | 2  | 1  | 1  | 1  | 1  | 3  | -  | -         | -  |

1 - low, 2 - medium, 3 - high, '-' - no correlation

#### **COURSE OBJECTIVES:**

- To introduce the basic concepts of probability, one and two dimensional random variables with applications to engineering which can describe real life phenomenon.
- To understand the basic concepts of random processes which are widely used in communication networks.
- To acquaint with specialized random processes which are apt for modelling the real time scenario
- To understand the concept of correlation and spectral densities.
- To understand the significance of linear systems with random inputs.

#### UNIT I RANDOM VARIABLES

9

Discrete and continuous random variables – Moments – Moment generating functions – Joint Distribution- Covariance and Correlation – Transformation of a random variable.

# UNIT II RANDOM PROCESSES

9

Classification – Characterization – Cross correlation and Cross covariance functions - Stationary Random Processes – Markov process - Markov chain.

# UNIT III SPECIAL RANDOM PROCESSES

9

Bernoulli Process - Gaussian Process - Poisson process - Random telegraph process.

# UNIT IV CORRELATION AND SPECTRAL DENSITIES

9

Auto correlation functions – Cross correlation functions – Properties – Power spectral density – Cross spectral density – Properties.

#### UNIT V LINEAR SYSTEMS WITH RANDOM INPUTS

9

Linear time invariant system – System transfer function – Linear systems with random inputs – Auto correlation and cross correlation functions of input and output.

#### **TOTAL: 45 PERIODS**

# **COURSE OUTCOMES**

Upon successful completion of the course, students should be able to:

**CO1:** Understand the basic concepts of one and two dimensional random variables and apply in engineering applications.

**CO2:** Apply the concept random processes in engineering disciplines.

CO3: Understand and apply the concept of correlation and spectral densities.

**CO4:** Get an exposure of various distribution functions and help in acquiring skills in handling situations involving more than one variable.

CO5: Analyze the response of random inputs to linear time invariant systems.

#### **TEXT BOOKS**

- 1. Ibe, O.C.," Fundamentals of Applied Probability and Random Processes ", 1<sup>st</sup> Indian Reprint, Elsevier, 2007.
- 2. Peebles, P.Z., "Probability, Random Variables and Random Signal Principles ", Tata McGraw Hill, 4<sup>th</sup> Edition, New Delhi, 2002.

#### **REFERENCES**

- 1. Cooper. G.R., McGillem. C.D., "Probabilistic Methods of Signal and System Analysis", Oxford University Press, New Delhi, 3<sup>rd</sup> Indian Edition, 2012.
- 2. Hwei Hsu, "Schaum's Outline of Theory and Problems of Probability, Random Variables and Random Processes", Tata McGraw Hill Edition, New Delhi, 2004.
- 3. Miller. S.L. and Childers. D.G., "Probability and Random Processes with Applications to Signal Processing and Communications", Academic Press, 2004.
- 4. Stark. H. and Woods. J.W., "Probability and Random Processes with Applications to Signal Processing", Pearson Education, Asia, 3<sup>rd</sup> Edition, 2002.
- 5. Yates. R.D. and Goodman. D.J., "Probability and Stochastic Processes", Wiley India Pvt. Ltd., Bangalore, 2<sup>nd</sup> Edition, 2012.

# CO's-PO's & PSO's MAPPING

|     | РО | PS  | PS | PS |
|-----|----|----|----|----|----|----|----|----|----|----|----|----|-----|----|----|
|     | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 01  | 02 | О3 |
| CO1 | 3  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 3  | 0  | 0  | 2  | -   | -  | -  |
| CO2 | 3  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 3  | 0  | 0  | 2  | -   | -  | -  |
| CO3 | 3  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 3  | 0  | 0  | 2  | -   | -  | -  |
| CO4 | 3  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 3  | 0  | 0  | 2  | -   | -  | -  |
| CO5 | 3  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 3  | 0  | 0  | 2  |     | -  | -  |
| Avg | 3  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 3  | 0  | 0  | 2  | - \ | -  | •  |

1 - low, 2 - medium, 3 - high, '-' - no correlation

**OMA357** 

#### **QUEUEING AND RELIABILITY MODELLING**

LT P C 3 0 0 3

# **COURSE OBJECTIVES:**

- To provide necessary basic concepts in probability and random processes for applications such as random signals, linear systems in communication engineering.
- To understand the concept of queueing models and apply in engineering.
- To provide the required mathematical support in real life problems and develop probabilistic models which can be used in several areas of science and engineering.
- To study the system reliability and hazard function for series and parallel systems.
- To implement Markovian Techniques for availability and maintainability which opens up new avenues for research.

# UNIT I RANDOM PROCESSES

9

Classification – Stationary process – Markov process – Poisson process – Discrete parameter Markov chain – Chapman Kolmogorov equations – Limiting distributions.

# UNIT II MARKOVIAN QUEUEING MODELS

9

Markovian queues – Birth and death processes – Single and multiple server queueing models – Little's formula - Queues with finite waiting rooms.

# UNIT III ADVANCED QUEUEING MODELS

9

M/G/1 queue – Pollaczek Khinchin formula - M/D/1 and  $M/E_K/1$  as special cases – Series queues – Open Jackson networks.

#### UNIT IV SYSTEM RELIABILITY

Reliability and hazard functions- Exponential, Normal, Weibull and Gamma failure distribution – Time - dependent hazard models – Reliability of Series and Parallel Systems.

#### UNIT V MAINTAINABILITY AND AVAILABILITY

9

9

Maintainability and Availability functions – Frequency of failures – Two Unit parallel system with repair – k out of m systems.

**TOTAL: 45 PERIODS** 

# **COURSE OUTCOMES**

Upon successful completion of the course, students should be able to:

**CO1:** Enable the students to apply the concept of random processes in engineering disciplines.

CO2: Students acquire skills in analyzing various queueing models.

**CO3:** Students can understand and characterize phenomenon which evolve with respect to time in a probabilistic manner.

**CO4:** Students can analyze reliability of the systems for various probability distributions.

**CO5:** Students can be able to formulate problems using the maintainability and availability analyses by using theoretical approach.

# **TEXT BOOKS**

- 1. Shortle J.F, Gross D, Thompson J.M, Harris C.M., "Fundamentals of Queueing Theory", John Wiley and Sons, New York, 2018.
- 2. Balagurusamy E., "Reliability Engineering", Tata McGraw Hill Publishing Company Ltd., New Delhi.2010.

#### REFERENCES

- 1. Medhi J, "Stochastic models of Queueing Theory", Academic Press, Elsevier, Amsterdam, 2003.
- 2. Taha, H.A., "Operations Research", 9th Edition, Pearson India Education Services, Delhi, 2016.
- 3. Trivedi, K.S., "Probability and Statistics with Reliability, Queueing and Computer Science Applications", 2<sup>nd</sup> Edition, John Wiley and Sons, 2002.
- 4. Govil A.K., "Reliability Engineering", Tata-McGraw Hill Publishing Company Ltd., New Delhi,1983.

# CO's-PO's & PSO's MAPPING

|     | РО | РО | РО  | РО  | РО | РО | РО | РО | РО | РО | РО | РО | PS | PS | PS |
|-----|----|----|-----|-----|----|----|----|----|----|----|----|----|----|----|----|
|     | 01 | 02 | 03  | 04  | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 01 | 02 | О3 |
| CO1 | 3  | 3  | 0   | 0   | 0  | 0  | 0  | 0  | 2  | 0  | 0  | 2  | jΕ | -  | -  |
| CO2 | 3  | 3  | 2   | 0   | 0  | 0  | 0  | 0  | 2  | 0  | 0  | 2  | -  | -  | -  |
| CO3 | 3  | 3  | 0   | 2   | 0  | 0  | 0  | 0  | 2  | 0  | 0  | 2  | -  | -  | -  |
| CO4 | 3  | 3  | 2   | 0   | 0  | 0  | 0  | 0  | 2  | 0  | 0  | 2  | -  | -  | -  |
| CO5 | 3  | 3  | 3   | 2   | 0  | 0  | 0  | 0  | 2  | 0  | 0  | 2  | -  | -  | -  |
| Avg | 3  | 3  | 1.4 | 0.8 | 0  | 0  | 0  | 0  | 2  | 0  | 0  | 2  | -  | -  | -  |

1 - low, 2 - medium, 3 - high, '-' - no correlation

# OMG354 PRODUCTION AND OPERATIONS MANAGEMENT FOR ENTREPRENEURS

L T P C 3 0 0 3

#### COURSE OBJECTIVES:

- To know the basic concept and function of Production and Operation Management for entrepreneurship.
- To understand the Production process and planning.
- To understand the Production and Operations Management Control for business owners.

## UNIT I INTRODUCTION TO PRODUCTION AND OPERATIONS MANGEMENT

q

Functions of Production Management - Relationship between production and other functions – Production management and operations management, Characteristics of modern production and operation management, organisation of production function, recent trends in production /operations management - production as an organisational function, decision making in production Operations research

## **UNIT II PRODUCTION & OPERATION SYSTEMS**

9

Production Systems- principles – Models - CAD and CAM- Automation in Production - Functions and significance- Capacity and Facility Planning: Importance of capacity planning- Capacity measurement – Capacity Requirement Planning (CRP) process for manufacturing and service industry

#### **UNIT III PRODUCTION & OPERATIONS PLANNING**

9

Facility Planning – Location of facilities – Location flexibility – Facility design process and techniques – Location break even analysis-Production Process Planning: Characteristic of production process systems – Steps for production process- Production Planning Control Functions – Planning phase- Action phase- Control phase - Aggregate production planning

# **UNIT IV PRODUCTION & OPERATIONS MANAGEMENT PROCESS**

9

Process selection with PLC phases- Process simulation tools- Work Study – Significance – Methods, evolution of normal/ standard time – Job design and rating - Value Analysis - Plant Layout: meaning – characters –- Plant location techniques - Types- MRP and Layout Design - Optimisation and Theory of Constraints (TOC)– Critical Chain Project Management (CCPM)- REL (Relationship) Chart – Assembly line balancing- – Plant design optimisation -Forecasting methods.

# **UNIT V CONTROLING PRODUCTION & OPERATIONS MANAGEMENT**

9

Material requirement planning (MRP)- Concept- Process and control - Inventory control systems and techniques – JIT and Lean manufacturing - Network techniques - Quality Management: Preventive Vs Breakdown maintenance for Quality – Techniques for measuring quality - Control Chart (X , R , p , np and C chart ) - Cost of Quality, Continuous improvement (Kaizen) - Quality awards - Supply Chain Management - Total Quality Management - 6 Sigma approach and Zero Defect Manufacturing.

# **TOTAL 45: PERIODS**

#### **COURSE OUTCOMES:**

Upon completion of this course the learners will be able :

CO 1 To understand the basics and functions of Production and Operation Management for business owners.

CO 2 To learn about the Production & Operation Systems.

CO 3 To acquaint on the Production & Operations Planning Techniques followed by entrepreneurs in Industries.

CO 4 To known about the Production & Operations Management Processes in organisations.

CO 5 To comprehend the techniques of controlling, Production and Operations in industries.

#### REFERENCES

- 1. Mikell P. Groover, Automation, Production Systems, and Computer-Integrated Manufacturing, Pearson, 2007.
- 2. Amitabh Raturi, Production and Inventory Management, , 2008.
- 3. Adam Jr. Ebert, Production and Operations Management, PHI Publication, 1992.
- 4. Muhlemann, Okland and Lockyer, Production and Operation Management, Macmillan India, 1992.
- 6. Chary S.N. Production and Operations Management, TMH Publications, 2010.
- 7. Terry Hill ,Operation Management. Pal Grave McMillan (Case Study).2005.

#### **OMG355**

# **MULTIVARIATE DATA ANALYSIS**

L T P C 3 0 0 3

### **COURSE OBJECTIVE:**

• To know various multivariate data analysis techniques for business research.

# UNIT I INTRODUCTION

9

Uni-variate, Bi-variate and Multi-variate techniques – Classification of multivariate techniques – Guidelines for multivariate analysis and interpretation.

# UNIT II PREPARING FOR MULTIVARIATE ANALYSIS

9

Conceptualization of research model with variables, collection of data —Approaches for dealing with missing data — Testing the assumptions of multivariate analysis.

# UNIT III MULTIPLE LINEAR REGRESSION ANALYSIS, FACTOR ANALYSIS

Multiple Linear Regression Analysis – Inferences from the estimated regression function – Validation of the model. -Approaches to factor analysis – interpretation of results.

#### UNIT IV LATENT VARIABLE TECHNIQUES

9

9

Confirmatory Factor Analysis, Structural equation modelling, Mediation models, Moderation models, Longitudinal studies.

# UNIT V ADVANCED MULTIVARIATE TECHNIQUES

9

Multiple Discriminant Analysis, Logistic Regression, Cluster Analysis, Conjoint Analysis, multidimensional scaling.

# **COURSE OUTCOMES:**

**TOTAL: 45 PERIODS** 

**CO1:** Demonstrate a sophisticated understanding of the concepts and methods; know the exact scopes and possible limitations of each method; and show capability of using multivariate techniques to provide constructive guidance in decision making.

CO2: Use advanced techniques to conduct thorough and insightful analysis, and interpret the results correctly with detailed and useful information.

**CO3**: Show substantial understanding of the real problems; conduct deep analysis using correct methods; and draw reasonable conclusions with sufficient explanation and elaboration.

**CO4**: Write an insightful and well-organized report for a real-world case study, including thoughtful and convincing details.

CO5: Make better business decisions by using advanced techniques in data analytics. '

# **REFERENCES:**

- 1. Joseph F Hair, Rolph E Anderson, Ronald L. Tatham & William C. Black, Multivariate Data Analysis, Pearson Education, New Delhi, 2005.
- 2. Barbara G. Tabachnick, Linda S.Fidell, Using Multivariate Statistics, 6th Edition, Pearson, 2012.
- 3. Richard A Johnson and Dean W.Wichern, Applied Multivariate Statistical Analysis, Prentice Hall, New Delhi, 2005.
- 4. David R Anderson, Dennis J Seveency, and Thomas A Williams, Statistics for Business and Economics, Thompson, Singapore, 2002

**OME352** 

# **ADDITIVE MANUFACTURING**

L T P C 3 0 0 3

#### **COURSE OBJECTIVES:**

- To introduce the development, capabilities, applications, of Additive Manufacturing (AM), and its business opportunities.
- To be acquainted with vat polymerization and material extrusion processes
- To be familiar with powder bed fusion and binder jetting processes.
- To gain knowledge on applications of direct energy deposition, and material jetting processes.
- To impart knowledge on sheet lamination and direct write technologies.

#### UNIT I INTRODUCTION

9

Overview - Need - Development of Additive Manufacturing (AM) Technology: Rapid Prototyping-Rapid Tooling - Rapid Manufacturing - Additive Manufacturing. AM Process Chain - ASTM/ISO 52900 Classification - Benefits - AM Unique Capabilities - AM File formats: STL, AMF Applications: Building Printing, Bio Printing, Food Printing, Electronics Printing, Automobile, Aerospace, Healthcare. Business Opportunities in AM.

#### UNIT II VAT POLYMERIZATION AND MATERIAL EXTRUSION

9

Photo polymerization: Stereolithography Apparatus (SLA)- Materials -Process - top down and bottom up approach - Advantages - Limitations - Applications. Digital Light Processing (DLP) - Process - Advantages - Applications.

Material Extrusion: Fused Deposition Modeling (FDM) - Process-Materials -Applications and Limitations.

#### UNIT III POWDER BED FUSION AND BINDER JETTING

9

Powder Bed Fusion: Selective Laser Sintering (SLS): Process - Powder Fusion Mechanism - Materials and Application. Selective Laser Melting (SLM), Electron Beam Melting (EBM): Materials - Process - Advantages and Applications.

Binder Jetting: Three-Dimensional Printing - Materials - Process - Benefits - Limitations - Applications.

#### UNIT IV MATERIAL JETTING AND DIRECTED ENERGY DEPOSITION

9

Material Jetting: Multijet Modeling- Materials - Process - Benefits - Applications.

Directed Energy Deposition: Laser Engineered Net Shaping (LENS) - Process - Material Delivery - Materials -Benefits -Applications.

#### UNIT V SHEET LAMINATION AND DIRECT WRITE TECHNOLOGY

9

Sheet Lamination: Laminated Object Manufacturing (LOM)- Basic Principle- Mechanism: Gluing or Adhesive Bonding - Thermal Bonding - Materials - Application and Limitation.

Ink-Based Direct Writing (DW): Nozzle Dispensing Processes, Inkjet Printing Processes, Aerosol DW - Applications of DW.

**TOTAL: 45 PERIODS** 

#### **COURSE OUTCOMES:**

At the end of this course students shall be able to:

CO1: Recognize the development of AM technology and how AM technology propagated into various businesses and developing opportunities.

CO2: Acquire knowledge on process vat polymerization and material extrusion processes and its applications.

CO3: Elaborate the process and applications of powder bed fusion and binder jetting.

CO4: Evaluate the advantages, limitations, applications of material jetting and directed energy deposition processes.

CO5: Acquire knowledge on sheet lamination and direct write technology.

#### **TEXT BOOKS:**

- 1. Ian Gibson, David Rosen, Brent Stucker, Mahyar Khorasani "Additive manufacturing technologies". 3<sup>rd</sup> edition Springer Cham, Switzerland. (2021). ISBN: 978-3-030-56126-0
- 2. Andreas Gebhardt and Jan-Steffen Hötter "Additive Manufacturing: 3D Printing for Prototyping and Manufacturing", Hanser publications, United States, 2015, ISBN: 978-1-56990-582-1.

# **REFERENCES:**

- Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Manufacturing", Hanser Gardner Publication, Cincinnati., Ohio, 2011, ISBN :9783446425521.
- 2. Milan Brandt, "Laser Additive Manufacturing: Materials, Design, Technologies, and Applications", Woodhead Publishing., United Kingdom, 2016, ISBN: 9780081004333.
- 3. Amit Bandyopadhyay and Susmita Bose, "Additive Manufacturing", 1st Edition, CRC Press., United States, 2015, ISBN-13: 978-1482223590.
- 4. Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Springer., United States ,2006, ISBN: 978-1-4614-9842-1.
- 5. Liou, L.W. and Liou, F.W., "Rapid Prototyping and Engineering applications: A tool box for prototype development", CRC Press., United States, 2011, ISBN: 9780849334092.

#### **NEW PRODUCT DEVELOPMENT**

L T P C 3 0 0 3

# **COURSE OBJECTIVES**

- To introduce the fundamental concepts of the new product development
- To develop material specifications, analysis and process.
- To Learn the Feasibility Studies & reporting of new product development.
- To study the New product qualification and Market Survey on similar products of new product development
- To learn Reverse Engineering. Cloud points generation, converting cloud data to 3D model

#### UNIT – I FUNDAMENTALS OF NPD

9

Introduction – Reading of Drawing – Grid reading, Revisions, ECN (Engg. Change Note), Component material grade, Specifications, customer specific requirements – Basics of monitoring of NPD applying Gantt chart, Critical path analysis – Fundamentals of BOM (Bill of Materials), Engg. BOM & Manufacturing BOM. Basics of MIS software and their application in industries like SAP, MS Dynamics, Oracle ERP Cloud – QFD.

# UNIT – II MATERIAL SPECIFICATIONS, ANALYSIS & PROCESS

9

Material specification standards – ISO, DIN, JIS, ASTM, EN, etc. – Awareness on various manufacturing process like Metal castings & Forming, Machining (Conventional, 3 Axis, 4 Axis, 5 Axis, ), Fabrications, Welding process. Qualifications of parts mechanical, physical & Chemical properties and their test report preparation and submission. Fundamentals of DFMEA & PFMEA, Fundamentals of FEA, Bend Analysis, Hot Distortion, Metal and Material Flow, Fill and Solidification analysis.

# UNIT – III ESSENTIALS OF NPD

9

RFQ (Request of Quotation) Processing – Feasibility Studies & reporting – CFT (Cross Function Team) discussion on new product and reporting – Concept design, Machine selection for tool making, Machining – Manufacturing Process selection, Machining Planning, cutting tool selection – Various Inspection methods – Manual measuring, CMM – GOM (Geometric Optical Measuring), Lay out marking and Cut section analysis. Tool Design and Detail drawings preparation, release of details to machine shop and CAM programing. Tool assembly and shop floor trials. Initial sample submission with PPAP documents.

# UNIT – IV CRITERIONS OF NPD

9

New product qualification for Dimensions, Mechanical & Physical Properties, Internal Soundness proving through X-Ray, Radiography, Ultrasonic Testing, MPT, etc. Agreement with customer for testing frequencies. Market Survey on similar products, Risk analysis, validating samples with simulation results, Lesson Learned & Horizontal deployment in NPD.

# UNIT – V REPORTING & FORWARD-THINKING OF NPD

9

Detailed study on PPAP with 18 elements reporting, APQP and its 5 Sections, APQP vs PPAP, Importance of SOP (Standard Operating Procedure) – Purpose & documents, deployment in shop floor. Prototyping & RPT - Concepts, Application and its advantages, 3D Printing – resin models, Sand cores for foundries; Reverse Engineering. Cloud points generation, converting cloud data to 3D model – Advantages & Limitation of RE, CE (Concurrent Engineering) – Basics, Application and its advantages in NPD (to reduce development lead time, time to Market, Improve productivity and product cost.)

**TOTAL:45 PERIODS** 

# **COURSE OUTCOMES:**

At the end of the course the students would be able to

- **CO1:** Discuss fundamental concepts and customer specific requirements of the New Product development
- CO2: Discuss the Material specification standards, analysis and fabrication, manufacturing process.
- CO3: Develop Feasibility Studies & reporting of New Product development
- **CO4:** Analyzing the New product qualification and Market Survey on similar products of new product development
- **CO5:** Develop Reverse Engineering. Cloud points generation, converting cloud data to 3D model

#### **TEXT BOOKS:**

- 1. Product Development Sten Jonsson
- 2. Product Design & Development Karl T. Ulrich, Maria C. Young, Steven D. Eppinger

# **REFERENCES:**

- 1. Revolutionizing Product Development Steven C Wheelwright & Kim B. Clark
- 2. Change by Design
- 3. Toyota Product Development System James Morgan & Jeffrey K. Liker
- 4. Winning at New Products Robert Brands 3rd Edition
- 5. Product Design & Value Engineering Dr. M.A. Bulsara &Dr. H.R. Thakkar

#### CO's-PO's & PSO's MAPPING

|    |   |   |   |     |       | РО  |       |        |   |        |    |    |   | PSO |   |
|----|---|---|---|-----|-------|-----|-------|--------|---|--------|----|----|---|-----|---|
| СО | 1 | 2 | 3 | 4   | 5     | 6   | 7     | 8      | 9 | 10     | 11 | 12 | 1 | 2   | 3 |
| 1  | 1 | 1 | 3 | 1   |       |     |       | 1      | 1 |        |    | 1  | 1 | 3   | 2 |
| 2  | 1 | 1 | 3 | 1   |       |     |       | 1      | 1 |        |    | 1  | 1 | 3   | 2 |
| 3  | 1 | 1 | 3 | 1   |       |     |       | 1      | 1 |        |    | 1  | 1 | 3   | 2 |
| 4  | 1 | 1 | 3 | 1   |       |     |       | 1      | 1 |        |    | 1  | 1 | 3   | 2 |
| 5  | 1 | 1 | 3 | 1   |       |     |       | 1      | 1 |        |    | 1  | 1 | 3   | 2 |
|    |   |   |   | Lov | v (1) | ; M | edium | 1 (2); | Н | igh (3 | 3) |    |   |     |   |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

OME355 INDUSTRIAL DESIGN & RAPID PROTOTYPING TECHNIQUES

LTPC 3 0 0 3

## **COURSE OBJECTIVES:**

The course aims to

- Outline Fundamental concepts in UI & UX
- Introduce the principles of Design and Building an mobile app
- Illustrate the use of CAD in product design
- Outline the choice and use of prototyping tools
- Understanding design of electronic circuits and fabrication of electronic devices

UNIT I UI/UX 9

Fundamental concepts in UI & UX - Tools - Fundamentals of design principles - Psychology and Human Factors for User Interface Design - Layout and composition for Web, Mobile and Devices - Typography - Information architecture - Color theory - Design process flow, wireframes,

best practices in the industry -User engagement ethics - Design alternatives

#### UNIT II APP DEVELOPMENT

9

SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application.

# UNIT III INDUSTRIAL DESIGN

q

Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basics - Dimensioning & Tolerancing

#### UNIT IV MECHANICAL RAPID PROTOTYPING

9

Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping methods - Tools used in different domains - Mechanical Prototyping; 3D Printing and classification - Laser Cutting and engraving - RD Works - Additive manufacturing

#### UNIT V ELECTRONIC RAPID PROTOTYPING

9

**TOTAL: 45 PERIODS** 

Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with simulation tool - simple PCB design with EDA

#### COURSE OUTCOMES

# At the end of the course, learners will be able to:

**CO1:** Create quick UI/UX prototypes for customer needs

CO2: Develop web application to test product traction / product feature

CO3: Develop 3D models for prototyping various product ideas

CO4: Built prototypes using Tools and Techniques in a quick iterative methodology

#### **TEXT BOOKS**

- 1. Peter Fiell, Charlotte Fiell, Industrial Design A-Z, TASCHEN America Llc(2003)
- Samar Malik, Autodesk Fusion 360 The Master Guide.
- 3. Steve Krug, Don't Make Me Think, Revisited: A Common Sense Approach to Web Usability, Pearson,3rd edition(2014)

#### **REFERENCES**

- 1. <a href="https://www.adobe.com/products/xd/learn/get-star-ted.html">https://www.adobe.com/products/xd/learn/get-star-ted.html</a>
- 2. <a href="https://developer.android.com/quide">https://developer.android.com/quide</a>
- 3. <a href="https://help.autodesk.com/view/fusion360/ENU/courses/">https://help.autodesk.com/view/fusion360/ENU/courses/</a>
- 4. <a href="https://help.prusa3d.com/en/category/prusaslicer-204">https://help.prusa3d.com/en/category/prusaslicer-204</a>

#### MF3010

#### MICRO AND PRECISION ENGINEERING

LT P C 3 0 0 3

#### **COURSE OBJECTIVES:**

At the end of this course the student should be able to

- Learn about the precision machine tools
- Learn about the macro and micro components.
- Understand handling and operating of the precision machine tools.
- Learn to work with miniature models of existing machine tools/robots and other instruments.
- Learn metrology for micro system

# UNIT I INTRODUCTION TO MICROSYSTEMS

9

Design, and material selection, micro-actuators: hydraulic, pneumatic, electrostatic/ magnetic etc. for medical to general purpose applications. Micro-sensors based on Thermal, mechanical, electrical properties; micro-sensors for measurement of pressure, flow, temperature, inertia, force, acceleration, torque, vibration, and monitoring of manufacturing systems.

# UNIT II FABRICATION PROCESSES FOR MICRO-SYSTEMS:

9

Additive, subtractive, forming process, microsystems-Micro-pumps, micro- turbines, micro-engines, micro-robot, and miniature biomedical devices

# UNIT III INTRODUCTION TO PRECISION ENGINEERING

9

Machine tools, holding and handling devices, positioning fixtures for fabrication/ assembly of microsystems. Precision drives: inch worm motors, ultrasonic motors, stick- slip mechanism and other piezo-based devices.

# UNIT IV PRECISION MACHINING PROCESSES

9

Precision machining processes for macro components - Diamond turning, fixed and free abrasive processes, finishing processes.

## UNIT V METROLOGY FOR MICRO SYSTEMS

9

Metrology for micro systems - Surface integrity and its characterization.

**TOTAL: 45 PERIODS** 

# **COURSE OUTCOMES:**

Upon the completion of this course the students will be able to

**CO1:** Select suitable precision machine tools and operate

**CO2:** Apply the macro and micro components for fabrication of micro systems.

CO3: Apply suitable machining process

**CO4:** Able to work with miniature models of existing machine tools/robots and other instruments.

CO5: Apply metrology for micro system

#### **TEXT BOOKS:**

- 1. Davim, J. Paulo, ed. Microfabrication and Precision Engineering: Research and Development. Woodhead Publishing, 2017
- 2. Gupta K, editor. Micro and Precision Manufacturing. Springer; 2017

# **REFERENCES:**

- 1. Dornfeld, D., and Lee, D. E., Precision Manufacturing, 2008, Springer.
- 2. H. Nakazawa, Principles of Precision Engineering, 1994, Oxford University Press.
- 3. Whitehouse, D. J., Handbook of Surface Metrology, Institute of Physics Publishing,

Philadelphia PA, 1994.

4. Murthy.R.L, —Precision Engineering in Manufacturing∥, New Age International, New Delhi, 2005

#### OMF354 COST MANAGEMENT OF ENGINEERING PROJECTS

LTP C 3003

#### **COURSE OBJECTIVES:**

- Summarize the costing concepts and their role in decision making
- Infer the project management concepts and their various aspects in selection
- Interpret costing concepts with project execution
- Develop knowledge of costing techniques in service sector and various budgetary control techniques
- Illustrate with quantitative techniques in cost management

# UNIT – I INTRODUCTION TO COSTING CONCEPTS

9

Objectives of a Costing System; Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost; Creation of a Database for operational control.'

#### UNIT – II INTRODUCTION TO PROJECT MANAGEMENT

9

Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities, Detailed Engineering activities, Pre project execution main clearances and documents, Project team: Role of each member, Importance Project site: Data required with significance, Project contracts

# UNIT – III PROJECT EXECUTION AND COSTING CONCEPTS

9

Project execution Project cost control, Bar charts and Network diagram, Project commissioning: mechanical and process, Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis, Various decision-making problems, Pricing strategies: Pareto Analysis, Target costing, Life Cycle Costing

#### UNIT – IV COSTING OF SERVICE SECTOR AND BUDGETERY CONTROL

9

Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Activity Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis, Budgetary Control: Flexible Budgets; Performance budgets; Zero-based budgets.

# UNIT – V QUANTITATIVE TECHNIQUES FOR COST MANAGEMENT

9

**TOTAL: 45 PERIODS** 

Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Learning Curve Theory.

#### IDOE OUTCOMES

**COURSE OUTCOMES** 

Upon successful completion of the course, students should be able to:

CO1: Understand the costing concepts and their role in decision making.

CO2: Understand the project management concepts and their various aspects in selection.

CO3: Interpret costing concepts with project execution.

CO4: Gain knowledge of costing techniques in service sector and various budgetary control

techniques.

CO5: Become familiar with quantitative techniques in cost management.

#### **TEXT BOOKS:**

- 1. John M. Nicholas, Herman Steyn Project Management for Engineering, Business and Technology, Taylor & Francis, 2 August 2020, ISBN: 9781000092561.
- 2. Albert Lester ,Project Management, Planning and Control, Elsevier/Butterworth-Heinemann, 2007, ISBN: 9780750669566, 075066956X.

#### **REFERENCES:**

- 1. Ashish K. Bhattacharya, Principles & Practices of Cost Accounting A. H. Wheeler publisher, 1991.
- 2. Charles T. Horngren and George Foster, Advanced Management Accounting, 1988.
- 3. Charles T. Horngren et al Cost Accounting a Managerial Emphasis, Prentice Hall of India, New Delhi, 2011.
- 4. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting, 2003.
- 5. Vohra N.D., Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd, 2007.

#### AU3002

#### **BATTERIES AND MANAGEMENT SYSTEM**

LTPC

3 0 0 3

# **COURSE OBJECTIVES:**

 The objective of this course is to make the students to understand the working and characteristics of different types of batteries and their management.

# UNIT I ADVANCED BATTERIES

S

Li-ion Batteries-different formats, chemistry, safe operating area, efficiency, aging. Characteristics-SOC,DOD, SOH. Balancing-Passive Balancing Vs Active Balancing. Other Batteries-NCM and NCA Batteries. *NCR18650B* specifications.

# UNIT II BATTERY PACK

9

Battery Pack- design, sizing, calculations, flow chart, real and simulation Model.Peak power – definition, testing methods-relationships with Power, Temperature and ohmic Internal Resistance. Cloud based and Local Smart charging.

## UNITIII BATTERY MODELLING

9

Battery Modelling Methods-Equivalent Circuit Models, Electrochemical Model, Neural Network Model. ECM Comparisons- Rint model, Thevenin model, PNGV model. State space Models-Introduction. Battery Modelling software/simulation frameworks

#### UNIT IV BATTERY STATE ESTIMATION

9

SOC Estimation- Definition, importance, single cell Vs series batteries SOC. Estimation Methods-Load voltage, Electromotive force, AC impedance, Ah counting, Neural networks, Neuro-fuzzy forecast method, Kalman filter. Estimation Algorithms.

#### UNIT V BMS ARCHITECTURE AND REAL TIME COMPONENTS

9

Battery Management System- need, operation, classification. BMS ASIC-bq76PL536A-Q1 Battery Monitor IC- CC2662R-Q1 Wireless BMS MCU. Communication Modules- CAN Open-Flex Ray-

CANedge1 package.ARBIN Battery Tester. BMS Development with Modeling software and Model-Based Design.

**TOTAL =45 PERIODS** 

#### **COURSE OUTCOMES:**

At the end of this course, students will be able to

**CO1:** Acquire knowledge of different Li-ion Batteries performance.

CO2: Design a Battery Pack and make related calculations.

CO3: Demonstrate a BatteryModel or Simulation.

CO4: Estimate State-of-Charges in a Battery Pack.

**CO5:** Approach different BMS architectures during real world usage.

# **TEXT BOOKS**

- 1. Jiuchun Jiang and Caiping Zhang, "Fundamentals and applications of Lithium-Ion batteriesin Electric Drive Vehicles", Wiley, 2015.
- 2. Davide Andrea, "Battery Management Systems for Large Lithium-Ion Battery Packs" ARTECH House, 2010.

# **REFERENCE BOOKS**

- 1. Developing Battery Management Systems with Simulink and Model-Based Design-whitepaper
- 2. Panasonic NCR18650B- DataSheet
- 3. bq76PL536A-Q1- IC DataSheet
- 4. CC2662R-Q1- IC DataSheet

#### **AU3008**

# **SENSORS AND ACTUATORS**

L T P C 3 0 0 3

#### **COURSE OBJECTIVES:**

 The objective of this course is to make the students to list common types of sensor and actuators used in automotive vehicles.

# UNIT I INTRODUCTION TO MEASUREMENTS AND SENSORS

9

Sensors: Functions- Classifications- Main technical requirement and trends Units and standards-Calibration methods- Classification of errors- Error analysis- Limiting error- Probable error-Propagation of error- Odds and uncertainty- principle of transduction-Classification. Static characteristics- mathematical model of transducers- Zero, First and Second order transducers- Dynamic characteristics of first and second order transducers for standard test inputs.

# UNIT II VARIABLE RESISTANCE AND INDUTANCE SENSORS

9

Principle of operation- Construction details- Characteristics and applications of resistive potentiometer- Strain gauges- Resistive thermometers- Thermistors- Piezoresistive sensors Inductive potentiometer- Variable reluctance transducers:- El pick up and LVDT

# UNIT III VARIABLE AND OTHER SPECIAL SENSORS

9

Variable air gap type, variable area type and variable permittivity type- capacitor microphone Piezoelectric, Magnetostrictive, Hall Effect, semiconductor sensor- digital transducers-Humidity Sensor. Rain sensor, climatic condition sensor, solar, light sensor, antiglare sensor.

# UNIT IV AUTOMOTIVE ACTUATORS

9

Electromechanical actuators- Fluid-mechanical actuators- Electrical machines- Direct-current machines- Three-phase machines- Single-phase alternating-current Machines - Duty-type ratings for electrical machines. Working principles, construction and location of actuators viz. Solenoid,

# UNIT V AUTOMATIC TEMPERATURE CONTROL ACTUATORS

9

Different types of actuators used in automatic temperature control- Fixed and variable displacement temperature control- Semi Automatic- Controller design for Fixed and variable displacement type air conditioning system.

**TOTAL =45 PERIODS** 

#### **COURSE OUTCOMES:**

At the end of the course, the student will be able to

**CO1:** List common types of sensor and actuators used in vehicles.

CO2: Design measuring equipment's for the measurement of pressure force, temperature and flow.

CO3: Generate new ideas in designing the sensors and actuators for automotive application

**CO4:** Understand the operation of thesensors, actuators and electronic control.

CO5: Design temperature control actuators for vehicles.

#### **TEXT BOOKS:**

- 1. Doebelin's Measurement Systems: 7th Edition (SIE), Ernest O. Doebelin Dhanesh N. Manik McGraw Hill Publishers, 2019.
- 2. Robert Brandy, "Automotive Electronics and Computer System", Prentice Hall, 2001
- 3. William Kimberley," Bosch Automotive Handbook", 6th Edition, Robert Bosch GmbH, 2004.
- 4. Bosch Automotive Electrics and Automotive Electronics Systems and Components, Networking and Hybrid Drive, 5th Edition, 2007, ISBN No: 978-3-658-01783-5.

#### REFERENCES:

- 1. James D Halderman, "Automotive Electrical and Electronics", Prentice Hall, USA, 2013
- 2. Tom Denton, "Automotive Electrical and Electronics Systems," Third Edition, 2004, SAE International.
- 3. Patranabis.D, "Sensors and Transducers", 2nd Edition, Prentice Hall India Ltd,2003
- 4. William Ribbens, "Understanding Automotive Electronics -An Engineering Perspective," 7th Edition, Elsevier Butterworth-Heinemann Publishers, 2012.

OAS353 SPACE VEHICLES

3 0 0 3

#### COURSE OBJECTIVES:

- To interpret the missile space stations, space vs earth environment.
- To explain the life support systems, mission logistics and planning.
- To deploy the skills effectively in the understanding of space vehicle configuration design.
- To explain Engine system and support of space vehicle
- To interpret nose cone configuration of space vehicle

# UNIT I FUNDAMENTAL ASPECTS

9

Energy and Efficiencies of power plants for space vehicles – Typical Performance Values – Mission design – Structural design aspects during launch - role of launch environment on launch vehicle integrity.

# UNIT II SELECTION OF ROCKET PROPULSION SYSTEMS

9

Ascent flight mechanics - Launch vehicle selection process - Criteria for Selection for different

missions – selection of subsystems – types of staging – Interfaces – selection and criteria for stages and their role in launch vehicle configuration design.

#### UNIT III ENGINE SYSTEMS, CONTROLS, AND INTEGRATION

q

Propellant Budget – Performance of Complete or Multiple Rocket Propulsion Systems – Engine Design – Engine Controls – Engine System Calibration – System Integration and Engine Optimization.

#### UNIT IV THRUST VECTOR CONTROL

9

TVC Mechanisms with a Single Nozzle – TVC with Multiple Thrust Chambers or Nozzles – Testing – Integration with Vehicle – SITVC method – other jet control methods - exhaust plume problems in space environment

#### UNIT V NOSE CONE CONFIGURATION

9

Aerodynamic aspects on the selection of nose shape of a launch vehicle - design factors in the finalization of nose configuration with respect to payload - nose cone thermal protection system - separation of fairings - payload injection mechanism

#### **COURSE OUTCOMES:**

On successful completion of this course, the student will be able to

CO1: Explain exotic space propulsion concepts, such as nuclear, solar sail, and antimatter.

**CO2:** Apply knowledge in selecting the appropriate rocket propulsion systems.

CO3: interpret the air-breathing propulsion suitable for initial stages and fly-back boosters.

**CO4:** Analyze aerodynamics aspect, including boost-phase lift and drag, hypersonic, and re-entry.

**CO5:** Adapt from aircraft engineers moving into launch vehicle, spacecraft, and hypersonic vehicle design.

**OIM352** 

# **MANAGEMENT SCIENCE**

LTPC 3003

**TOTAL: 45 PERIODS** 

#### **COURSE OBJECTIVES:**

Of this course are

- To introduce fundamental concepts of management and organization to students.
- Toi mpart knowledge to students on various aspects of marketing, quality control and marketing strategies.
- To make students familiarize with the concepts of human resources management.
- To acquaint students with the concepts of project management and cost analysis.
- To make students familiarize with the concepts of planning process and business strategies.

#### UNITI INTRODUCTION TO MANAGEMENT AND ORGANISATION

9

Concepts of Management and organization- nature, importance and Functions of Management, Systems Approach to Management - Taylor's Scientific Management Theory- Fayal's Principles of Management- Maslow's theory of Hierarchy of Human Needs- Douglas McGregor's TheoryXandTheoryY-HertzbergTwoFactorTheoryofMotivation-

LeadershipStyles, Social responsibilities of Management, Designing Organisational Structures: Basic concepts related to Organisation - Departmentation and Decentralisation.

#### UNITII OPERATIONS AND MARKETING MANAGEMENT

Principles and Types of Plant Layout-Methods of Production(Job, batch and Mass Production), Work Study - Basic procedure involved in Method Study and Work Measurement - BusinessProcessReengineering(BPR)-

StatisticalQualityControl:controlchartsforVariablesandAttributes (simple Problems) and Acceptance Sampling, Objectives of Inventory control, EOQ,ABC Analysis, Purchase Procedure, Stores Management and Store Records - JIT System,Supply Chain Management, Functions of Marketing, Marketing Mix, and Marketing Strategies based on ProductLifeCycle.

#### UNITIII HUMAN RESOURCES MANAGEMENT

9

9

Concepts of HRM, HRD and Personnel Management and Industrial Relations (PMIR), HRM vs PMIR, Basic functions of HR Manager:Manpower planning, Recruitment, Selection, TrainingandDevelopment,WageandSalaryAdministration,Promotion,Transfer,PerformanceAppraisa I, Grievance Handling and Welfare Administration, Job Evaluation and Merit Rating —Capability Maturity Model (CMM)Levels.

#### UNITIV PROJECT MANAGEMENT

9

Network Analysis, Programme Evaluation and Review Technique (PERT), Critical Path Method(CPM), identifying critical path, Probability of Completing the project within given time, Project Cost Analysis, Project Crashing (simple problems).

#### UNITY STRATEGIC MANAGEMENT AND CONTEMPORARY STRATEGIC ISSUES 9

Mission, Goals, Objectives, Policy, Strategy, Programmes, Elements of Corporate Planning Process, Environmental Scanning, Value Chain Analysis, SWOT Analysis, Steps in Strategy Formulation and Implementation, Generic Strategy alternatives. Bench Marking and Balanced Score Cardas Contemporary Business Strategies.

#### **TOTAL: 45 PERIODS**

### **OURSEOUTCOMES:**

Upon completion of the course, Students will be able to

- CO1:Plananorganizationalstructureforagivencontextintheorganisationtocarryoutproductionoperation sthroughWork-study.
- CO2:Surveythemarkets, customers and competition better and price the given products appropriately
- CO3:Ensurequalityforagivenproduct or service.
- CO4:Plan, schedule and control projects through PERTandCPM.
- CO5:Evaluate strategyforabusiness orserviceorganisation.

#### CO's-PO's & PSO's MAPPING

| CO's |   |   | PO's | ;   |     |     |   |     |     |     |    |    | PS | O's |     |
|------|---|---|------|-----|-----|-----|---|-----|-----|-----|----|----|----|-----|-----|
| 003  | 1 | 2 | 3    | 4   | 5   | 6   | 7 | 8   | 9   | 10  | 11 | 12 | 1  | 2   | 3   |
| 1    | 3 |   |      | 3   | 3   | 3   |   | 3   | 3   | 2   |    |    | 2  | 3   |     |
| 2    | 3 |   |      | 2   | 3   | 3   |   | 2   | 3   | 2   |    |    |    | 2   |     |
| 3    | 3 |   |      | 3   | 2   | 2   |   | 3   | 2   | 2   |    |    |    |     | 2   |
| 4    | 3 |   |      | 3   | 3   | 2   |   | 3   | 2   | 3   |    |    |    |     | 3   |
| 5    | 3 |   |      | 2   | 3   | 3   |   | 2   | 3   | 3   |    |    | 2  | 1   |     |
| AVg. | 3 |   |      | 2.6 | 2.8 | 2.6 |   | 2.6 | 2.6 | 2.4 |    |    | 2  | 2   | 2.5 |

1 - low, 2 - medium, 3 - high, '-' - no correlation

#### **TEXTBOOKS:**

- 1. KanishkaBedi, Production and Operations Management, OxfordUniversityPress, 2007.
- 2. Stoner, Freeman, Gilbert, Management, 6th Ed, Pearson Education, New Delhi, 2004.
- 3. ThomasN.Duening & John M.Ivancevich Management Principles and Guidelines, Biztantra, 2007.
- 4. P.VijayKumar, N.Appa Rao and Ashnab, Chnalill, CengageLearning India, 2012.

#### **REFERECES:**

- 1. KotlerPhilip and KellerKevinLane: Marketing Management, Pearson, 2012.
- 2. KoontzandWeihrich: Essentials of Management, McGrawHill, 2012.
- 3. Lawrence RJauch, R. Guptaand William F. Glueck: Business Policy and Strategic Management Science, McGrawHill, 2012.
- 4. SamuelC.Certo:Modern Management,2012.

LTP C 3 0 0 3

# OIM353 PRODUCTION PLANNING AND CONTROL

### **COURSE OBJECTIVES:**

- To understand the concept of production planning and control act work study,
- To apply the concept of product planning,
- To analyze the production scheduling,
- To apply the Inventory Control concepts.
- To prepare the manufacturing requirement Planning (MRP II) and Enterprise Resource Planning (ERP).

# UNIT I INTRODUCTION

9

Objectives and benefits of planning and control-Functions of production control-Types of production- job- batch and continuous-Product development and design-Marketing aspect - Functional aspects- Operational aspect-Durability and dependability aspect aesthetic aspect. Profit consideration- Standardization, Simplification & specialization- Break even analysis-Economics of a new design.

# UNITII WORK STUDY

9

Method study, basic procedure-Selection-Recording of process - Critical analysis, Development - Implementation - Micro motion and memo motion study – work measurement - Techniques of work measurement - Time study - Production study - Work sampling - Synthesis from standard data - Predetermined motion time standards.

#### UNITIII PRODUCT PLANNING AND PROCESS PLANNING

9

Product planning-Extending the original product information-Value analysis-Problems in lack of product planning-Process planning and routing-Pre requisite information needed for process planning- Steps in process planning-Quantity determination in batch production-Machine capacity, balancing- Analysis of process capabilities in a multi product system.

# UNITIV PRODUCTION SCHEDULING

9

Production Control Systems-Loading and scheduling-Master Scheduling-Scheduling rules-Gantt charts-Perpetual loading-Basic scheduling problems - Line of balance - Flow production scheduling- Batch production scheduling-Product sequencing - Production Control systems-

Periodic batch control-Material requirement planning kanban – Dispatching-Progress reporting and expediting- Manufacturing lead time-Techniques for aligning completion times and due dates.

#### UNIT V INVENTORY CONTROL AND RECENT TRENDS IN PPC

9

Inventory control-Purpose of holding stock-Effect of demand on inventories-Ordering procedures. Two bin system - Ordering cycle system-Determination of Economic order quantity and economic lot size- ABC analysis - Recorder procedure-Introduction to computer integrated production planning systems- elements of JUST IN TIME SYSTEMS-Fundamentals of MRP II and ERP.

**TOTAL: 45 PERIODS** 

#### **COURSE OUTCOMES:**

Upon completion of this course,

CO1:The students can able to prepare production planning and control act work study,

CO2: The students can able to prepare product planning,

CO3:The students can able to prepare production scheduling,

CO4:The students can able to prepare Inventory Control.

CO5:They can plan manufacturing requirements manufacturing requirement Planning (MRP II) and Enterprise Resource Planning (ERP).

#### **TEXT BOOKS:**

- 1. James. B. Dilworth, "Operations management Design, Planning and Control for manufacturing and services" Mcgraw Hill International edition 1992.
- 2. Martand Telsang, "Industrial Engineering and Production Management", First edition, S. Chand and Company, 2000.

#### **REFERENCES**

- 1. Chary. S.N., "Theory and Problems in Production & Operations Management", Tata McGraw Hill, 1995.
- 2. Elwood S.Buffa, and Rakesh K.Sarin, "Modern Production / Operations Management", 8th Edition John Wiley and Sons, 2000
- 3. Jain. K.C. & Aggarwal. L.N., "Production Planning Control and Industrial Management", Khanna Publishers, 1990
- 4. Kanishka Bedi, "Production and Operations management", 2nd Edition, Oxford university press, 2007.
- 5. Melynk, Denzler, "Operations management A value driven approach" Irwin Mcgraw hill.
- 6. Norman Gaither, G. Frazier, "Operations Management" 9th Edition, Thomson learning IE, 2007
- 7. Samson Eilon, "Elements of Production Planning and Control", Universal Book Corpn. 1984
- 8. Upendra Kachru, "Production and Operations Management Text and cases" 1st Edition, Excel books 2007

#### CO's-PO's & PSO's MAPPING

| CO's |   |     | PO' | S |   |   |   |   |   |    |    |    | PS | O's |   |
|------|---|-----|-----|---|---|---|---|---|---|----|----|----|----|-----|---|
| 003  | 1 | 2   | 3   | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1  | 2   | 3 |
| 1    | 3 | 3   |     |   | 3 |   | 1 |   |   |    | 1  |    | 3  |     |   |
| 2    | 3 | 2   |     |   | 3 |   |   |   |   |    |    |    |    | 2   |   |
| 3    |   | 2   |     |   | 3 |   |   |   |   |    |    |    |    | 2   |   |
| 4    |   | 2   | 2   |   |   |   |   |   |   |    |    |    |    |     |   |
| 5    | 3 | 3   | 2   |   |   |   |   |   |   |    |    |    |    | 1   |   |
| AVg. | 3 | 2.6 | 2   |   | 3 |   | 1 |   |   |    | 1  |    | 3  | 1.8 |   |

1 - low, 2 - medium, 3 - high, '-' - no correlation

#### **COURSE OBJECTIVE:**

- Recognize and appreciate the concept of Production and Operations Management in creating and enhancing a firm's competitive advantages.
- Describe the concept and contribution of various constituents of Production and Operations Management (both manufacturing and service).
- Relate the interdependence of the operations function with the other key functional areas of a firm.
- Teach analytical skills and problem-solving tools to the analysis of the operations problems.
- Apply scheduling and Lean Concepts for improving System Performance.

#### UNIT I INTRODUCTION TO OPERATIONS MANAGEMENT

9

Operations Management – Nature, Importance, historical development, transformation processes, differences between services and goods, a system perspective, functions, challenges, current priorities, recent trends; Operations Strategy - Strategic fit , framework; Supply Chain Management

# UNIT II FORECASTING, CAPACITY AND FACILITY DESIGN

9

Demand Forecasting - Need, Types, COURSE OBJECTIVES and Steps. Overview of Qualitative and Quantitative methods. Capacity Planning - Long range, Types, Developing capacity alternatives. Overview of sales and operations planning. Overview of MRP, MRP II and ERP. Facility Location - Theories, Steps in Selection, Location Models. Facility Layout - Principles, Types, Planning tools and techniques.

# UNIT III DESIGN OF PRODUCT, PROCESS AND WORK SYSTEMS

9

Product Design – Influencing factors, Approaches, Legal, Ethical and Environmental issues. Process – Planning, Selection, Strategy, Major Decisions. Work Study – COURSE OBJECTIVES, Procedure. Method Study and Motion Study. Work Measurement and Productivity – Measuring Productivityand Methods to improve productivity.

# UNIT IV MATERIALS MANAGEMENT

9

Materials Management – COURSE OBJECTIVES, Planning, Budgeting and Control. Purchasing – COURSE OBJECTIVES, Functions, Policies, Vendor rating and Value Analysis. Stores Management – Nature, Layout, Classification and Coding. Inventory – COURSE OBJECTIVES, Costs and control techniques. Overview of JIT.

#### UNIT V SCHEDULING AND PROJECT MANAGEMENT

9

Project Management – Scheduling Techniques, PERT, CPM; Scheduling - work centers – nature, importance; Priority rules and techniques, shopfloor control; Flow shop scheduling – Johnson"sAlgorithm – Gantt charts; personnel scheduling in services.

**TOTAL: 45 PERIODS** 

#### **COURSE OUTCOMES:**

**CO1:** The students will appreciate the role of Production and Operations management in enabling and enhancing a firm's competitive advantages in the dynamic business environment.

**CO2:** The students will obtain sufficient knowledge and skills to forecast demand for Production and Service Systems.

CO3: The students will able to Formulate and Assess Aggregate Planning strategies and

Material Requirement Plan.

**CO4:** The students will be able to develop analytical skills to calculate capacity requirements and developing capacity alternatives.

**CO5:** The students will be able to apply scheduling and Lean Concepts for improving System Performance.

#### CO's-PO's & PSO's MAPPING

| CO's |                           |     | PO's | 3   |   |  |  |  |  |  |  |    | PS | O's |   |
|------|---------------------------|-----|------|-----|---|--|--|--|--|--|--|----|----|-----|---|
| 00 3 | 1 2 3 4 5 6 7 8 9 10 11 1 |     |      |     |   |  |  |  |  |  |  | 12 | 1  | 2   | 3 |
| 1    | 3                         |     |      |     |   |  |  |  |  |  |  | 2  |    |     |   |
| 2    |                           | 3   | 3    |     |   |  |  |  |  |  |  |    |    | 3   | 3 |
| 3    |                           | 2   | 3    | 3   |   |  |  |  |  |  |  |    | 2  | 3   |   |
| 4    |                           | 3   | 3    | 3   |   |  |  |  |  |  |  |    | 2  | 3   |   |
| 5    |                           |     | 3    | 2   |   |  |  |  |  |  |  |    |    |     |   |
| AVg. | 3                         | 2.6 | 3    | 2.6 | 1 |  |  |  |  |  |  | 2  | 2  | 3   | 3 |

1 - low, 2 - medium, 3 - high, '-' - no correlation

#### **TEXT BOOKS**

- 1. Richard B. Chase, Ravi Shankar, F. Robert Jacobs, Nicholas J. Aquilano, Operations and Supply Management, Tata McGraw Hill, 12<sup>th</sup> Edition, 2010.
- 2. Norman Gaither and Gregory Frazier, Operations Management, South Western CengageLearning, 2002.

#### **REFERENCES**

- 1. William J Stevenson, Operations Management, Tata McGraw Hill, 9th Edition, 2009.
- 2. Russel and Taylor, Operations Management, Wiley, Fifth Edition, 2006.
- 3. Kanishka Bedi, Production and Operations Management, Oxford University Press, 2004.
- 4. Chary S. N. Production and Operations Management, Tata McGraw Hill, Third Edition, 2008.
- 5. Aswathappa K and Shridhara Bhat K, Production and Operations Management, HimalayaPublishing House, Revised Second Edition, 2008.
- 6. Mahadevan B, Operations Management Theory and practice, Pearson Education, 2007.
- 7. Pannerselvam R, Production and Operations Management, Prentice Hall India, Second Edition, 2008.

PROGRESS THROUGH KNOWLEDGE

**OSF352** 

#### INDUSTRIAL HYGIENE

L T PC 3 0 0 3

#### **COURSE OBJECTIVES:**

- Demonstrate an understanding of how occupational hygiene standards are set and used in work health and safety.
- Compare and contrast the roles of environmental and biological monitoring in work health and safety
- Outline strategies for identifying, assessing and controlling risks associated with airborne gases, vapours and particulates
- Discuss how personal protective equipment can be used to reduce risks associated with workplace exposures

Provide high-level advice on managing and controlling noise and noise-related hazards

#### UNIT I: INTRODUCTION AND SCOPE

9

Occupational Health and Environmental Safety Management - Principles practices. Comm on Occupational diseases: Occupational Health Management Services at the work place. Preemployment, periodic medical examination of workers, medical surveillance for control of occupational diseases and health records.

# UNIT II: MONITORING FOR SAFETY, HEALTH & ENVIRONMENT

Q

Occupational Health and Environment Safety Management System, ILO and EPA Standards Industrial Hygiene: Definition of Industrial Hygiene, Industrial Hygiene: Control Methods, Substitution, Changing the process, Local Exhaust Ventilation, Isolation, Wet method, Personal hygiene, housekeeping and maintenance, waste disposal, special control measures.

# UNIT III: OCCUPATIONAL HEALTH AND ENVIRONMENTAL SAFETY EDUCATION 9

Element of training cycle, Assessment of needs. Techniques of training, design and development of training programs. Training methods and strategies types of training. Evaluation and review of training programs. Occupational Health Hazards, Promoting Safety, Safety and Health training, Stress and Safety, Exposure Limit.

# UNIT IV: OCCUPATIONAL SAFETY, HEALTH AND ENVIRONMENT MANAGEMENT

Bureau of Indian standards on safety and health 14489 - 1998 and 15001 – 2000, OSHA, Process Safety Management (PSM) as per OSHA, PSM principles, OHSAS – 18001, EPA Standards, Performance measurements to determine effectiveness of PSM. Importance of Industrial safety, role of safety department,

#### UNIT-V INDUSTRIAL HAZARDS

9

i. Radiation: Types and effects of radiation on human body, Measurement and detection of radiation intensity. Effects of radiation on human body, Measurement – disposal of radioactive waste, Control of radiation ii. Noise and Vibration: Sources, and its control, Effects of noise on the auditory system and health, Measurement of noise, Different air pollutants in industries, Effect of different gases and particulate matter, acid fumes, smoke, fog on human health, Vibration: effects.

**TOTAL: 45 PERIODS** 

#### **COURSE OUTCOMES:**

Students able to

CO1: Explain and apply human factors engineering concepts in both evaluation of existing systems and design of new systems

CO2: Specify designs that avoid occupation related injuries

CO3: Define and apply the principles of work design, motion economy, and work environment design.

CO4: Identify the basic human sensory, cognitive, and physical capabilities and limitations with respect to human-machine system performance.

CO5: Acknowledge the impact of workplace design and environment on productivity

#### **TEXT BOOKS:**

- 1. R. K. Jain and Sunil S. Rao , Industrial Safety , Health and Environment Management Systems, Khanna publishers, New Delhi (2006)
- 2. Slote. L, Handbook of Occupational Safety and Health, John Willey and Sons, New York.

#### **REFERENCES:**

- 1. Jeanne MagerStellman, Encyclopedia of Occupational Health and Safety (ILO) Ms. Irma Jourdan publication
- 2. Frank P Lees Loss of prevention in Process Industries, Vol. 1 and 2,
- 3. ButterworthHeinemann Ltd., London (1991). 2. Industrial Safety National Safety Council of India
- 4. Frank P Lees Loss of prevention in Process Industries , Vol. 1 and 2, Butterworth- Heinemann Ltd., London
- 5. R. K. Jain and Sunil S. Rao, Industrial Safety, Health and Environment Management Systems, Khanna publishers, New Delhi (2006).

#### CO's-PO's & PSO's MAPPING

|      |   |                         |     |    |     | PC | )'s |    |          |      |       |   |   | PSO's | • |
|------|---|-------------------------|-----|----|-----|----|-----|----|----------|------|-------|---|---|-------|---|
| CO's | 1 | 1 2 3 4 5 6 7 8 9 10 11 |     |    |     |    |     |    |          |      |       |   |   | 2     | 3 |
| 1    | 2 |                         | 2   |    | 2   | -  | -   | -  | -        | -    | 2     | - | - | -     | - |
| 2    | - |                         | 2   |    |     | -  | 1   | -  | <b>.</b> | - /  | 1     | - | - | -     | - |
| 3    | - |                         | -   |    | 2   | -  | 7-  | VI | 77.      | -/   | 2     | - | - | -     | - |
| 4    | - |                         | -   | 1  | 16. | ľ  | -   | -  | 2        | 9    | 3     | - | - | -     | - |
| 5    | - |                         | L-1 |    | 1.5 |    | -   | 1  | -        | 6    | N. P. | - | - | -     | - |
| AVg. | 2 | -                       | 2   | 15 | 7.7 | -  | 1   | 1  | 2        | Α.Α. | 2     |   | - | -     | - |

1 - low, 2 - medium, 3 - high, '-' - no correlation

**OSF353** 

#### **CHEMICAL PROCESS SAFETY**

L T P C 3 0 0 3

#### **COURSE OBJECTIVES**

- Teach the principles of safety applicable to the design, and operation of chemical process plants.
- Ensure that potential hazards are identified and mitigation measures are in place to prevent unwanted release of energy.
- Learn about the hazardous chemicals into locations that could expose employees and others to serious harm.
- Focuses on preventing incidents and accidents during large scale manufacturing of chemicals and pharmaceuticals.
- Ensure that the general design of the plant is capable of complying with the dose limits in force and with the radioactive releases.

#### UNIT I SAFETY IN THE STORAGE AND HANDLING OF CHEMICALS AND GASES 9

Types of storage-general considerations for storage layouts- atmospheric venting, pressure and temperature relief - relief valve sizing calculations - storage and handling of hazardous chemicals and industrial gases, safe disposal methods, reaction with other chemicals, hazards during transportation - pipe line transport - safety in chemical laboratories.

# UNIT II CHEMICAL REACTION HAZARDS

9

Hazardous inorganic and organic reactions and processes, Reactivity as a process hazard, Detonations, Deflagrations, and Runaways, Assessment and Testing strategies, Self - heating hazards of solids, Explosive potential of chemicals, Structural groups and instability of chemicals, Thermochemical screening,

# UNIT III SAFETY IN THE DESIGN OF CHEMICAL PROCESS PLANTS

Design principles -Process design development -types of designs, feasibility survey, preliminary design, Flow diagrams, piping and instrumentation diagram, batch versus continuous operation, factors in equipment scale up and design, equipment specifications - reliability and safety in designing - inherent safety - engineered safety - safety during startup and shutdown - non destructive testing methods - pressure and leak testing - emergency safety devices - scrubbers and flares- new concepts in safety design and operation- Pressure vessel testing standards-Inspection techniques for boilers and reaction vessels.

#### UNIT IV SAFETY IN THE OPERATION OF CHEMICAL PROCESS PLANTS

9

9

Properties of chemicals - Material Safety Data Sheets - the various properties and formats used - methods available for property determination. Operational activities and hazards -standards operating procedures - safe operation of pumps, compressors, heaters, column, reactors, pressure vessels, storage vessels, piping systems - effects of pressure, temperature, Flow rate and humidity on operations - corrosion and control measures- condition monitoring - control valves - safety valves - pressure reducing valves, drains, bypass valves, inert gases. Chemical splashes, eye irrigation and automatic showers.

# **UNIT V SAFETY AND ANALYSIS**

9

Safety vs reliability- quantification of basic events, system safety quantification, Human error analysis, Accident investigation and analysis, OSHAS 18001 and OSHMS.

**TOTAL: 45 PERIODS** 

#### COURSE OUTCOMES:

#### Students able to

**CO1** Differentiate between inherent safety and engineered safety and recognize the importance of safety in the design of chemical process plants.

CO2 Develop thorough knowledge about safety in the operation of chemical plants.

CO3Apply the principles of safety in the storage and handling of gases.

**CO4**Identify the conditions that lead to reaction hazards and adopt measures to prevent them.

CO5Develop thorough knowledge about

#### **TEXT BOOK**

- David A Crowl& Joseph F Louvar,"Chemical Process safety", Pearson publication, 3<sup>rd</sup> Edition,2014
- 2 Maurice Jones .A,"Fire Protection Systems,2<sup>nd</sup> edition, Jones & Bartlett Publishers,2015 **REFERENCES:**
- 1. Ralph King and Ron Hirst, "King's safety in the process industries", Arnold, London, 1998.
- 2. Industrial Environment and its Evolution and Control, NIOSH Publication, 1973.
- 3. National Safety Council," Accident prevention manual for industrial operations". Chicago, 1982.
- 4. Lewis, Richard. J., Sr, "Sax's dangerous properties of materials". (Ninth edition). Van Nostrand Reinhold, New York, 1996.
- 5. Roy E Sanders, "Chemical Process Safety", 3rd Edition, Gulf professional publishing, 2006

#### CO's-PO's & PSO's MAPPING

|      |   |   | PO's | ; |   |   |   |   |   |    |    |    | PS | O's |   |
|------|---|---|------|---|---|---|---|---|---|----|----|----|----|-----|---|
| CO's | 1 | 2 | 3    | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1  | 2   | 3 |
| 1    | 2 | 3 | -    | - | - | 1 | - | - | 1 | -  | -  | -  | 2  | -   | - |
| 2    | - |   |      | 2 | - | - | - | - | 1 | -  |    | -  | -  | 2   | - |

| 3    | - | 3   |   | 1   | - | - | - | 2   | - | - | 1 | - | - | - | - |
|------|---|-----|---|-----|---|---|---|-----|---|---|---|---|---|---|---|
| 4    | - | 2   | - |     | - | 1 | - | -   | 1 | - |   | - | - | - | 2 |
| 5    | - | 2   | 3 |     | - | - | - | 1   | - | - | 1 | - | - | - | - |
| AVg. | 2 | 2.5 | 3 | 1.5 | - | 1 | - | 1.5 | 1 | - | 1 |   | 2 | 2 | 2 |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

#### OML352 ELECTRICAL, ELECTRONIC AND MAGNETIC MATERIALS

LTPC 3003

#### **COURSE OBJECTIVES:**

The main learning objective of this course is to prepare the students for:

- Understanding the importance of various materials used in electrical, electronics and
- magnetic applications
- Acquiring knowledge on the properties of electrical, electronics and magnetic materials.
- Gaining knowledge on the selection of suitable materials for the given application
- Knowing the fundamental concepts in Semiconducting materials
- Getting equipped with the materials used in optical and optoelectronic applications.

#### **UNIT- I DIELECTRIC MATERIALS**

9

Dielectric as Electric Field Medium, leakage currents, dielectric loss, dielectric strength, breakdown voltage, breakdown in solid dielectrics, flashover, liquid dielectrics, electric conductivity in solid, liquid and gaseous dielectrics, Ferromagnetic materials, properties of ferromagnetic materials in static fields, spontaneous, polarization, curie point, anti-ferromagnetic materials, piezoelectric materials, pyroelectric materials.

# **UNIT - II MAGNETIC MATERIALS**

9

Classification of magnetic materials, spontaneous magnetization in ferromagnetic materials, magnetic Anisotropy, Magnetostriction, diamagnetism, magnetically soft and hard materials, special purpose materials, feebly magnetic materials, Ferrites, cast and cermet permanent magnets, ageing of magnets. Factors effecting permeability and Hysteresis

# **UNIT - III SEMICONDUCTOR MATERIALS**

9

Properties of semiconductors, Silicon wafers, integration techniques, Large and very large scale Integration techniques. Concept of superconductivity; theories and examples for high temperature superconductivity; discussion on specific superconducting materials; comments on fabrication and engineering applications.

#### **UNIT - IV MATERIALS FOR ELECTRICAL APPLICATIONS**

9

Materials used for Resistors, rheostats, heaters, transmission line structures, stranded conductors, bimetals fuses, soft and hard solders, electric contact materials, electric carbon materials, thermocouple materials. Solid, Liquid and Gaseous insulating materials, Effect of moisture on insulation.

#### **UNIT - V OPTICAL AND OPTOELECTRONIC MATERIALS**

9

Principles of photoconductivity - effect of impurities - principles of luminescence-laser principles - He-Ne, injection lasers, LED materials - binary, ternary photoelectronic materials - LCD materials - photo detectors - applications of optoelectronic materials - optical fibres and materials - electro optic modulators - Kerr effect - Pockels effect.

**TOTAL: 45 PERIODS** 

#### **COURSE OUTCOMES:**

After completion of this course, the students will be able to

**CO1:** Understand various types of dielectric materials, their properties in various conditions.

CO2: Evaluate magnetic materials and their behavior.

CO3: Evaluate semiconductor materials and technologies.

CO4: Select suitable materials for electrical engineering applications.

CO5: Identify right material for optical and optoelectronic applications

#### **TEXT BOOKS:**

- 1. Pradeep Fulay, "Electronic, Magnetic and Optical materials", CRC Press, taylor and Francis, 2 nd illustrated edition, 2017.
- 2. "R K Rajput", "A course in Electrical Engineering Materials", Laxmi Publications, 2009.

#### **REFERENCE BOOKS:**

- 1. T K Basak, "A course in Electrical Engineering Materials", New Age Science Publications, 2009
- 2. TTTI Madras, "Electrical Engineering Materials", McGraw Hill Education, 2004.
- 3. Adrianus J. Dekker, "Electrical Engineering Materials", PHI Publication, 2006.
- 4. S. P. Seth, P. V. Gupta "A course in Electrical Engineering Materials", Dhanpat Rai & amp; Sons, 2011.
- 5. C. Kittel, "Introduction to Solid State Physics", 7th Edition, John Wiley & Sons, Singapore, (2006).

## CO's-PO's & PSO's MAPPING

|     | <b>P</b> ∩1 | <b>P</b> ∩2 | DU3  | P∩⁄  | PO5  | PO6  | <b>P</b> ∩7 | P∩8 | P∩a  | PO1 | <b>P</b> ∩11 | PO12   | PSO | PSO | PSO |
|-----|-------------|-------------|------|------|------|------|-------------|-----|------|-----|--------------|--------|-----|-----|-----|
|     | 101         | 1 02        | 1 03 | 1 04 | 1 03 | 1 00 | 101         | 00  | 1 03 | 0   | 1 011        | 1 0 12 | 1   | 2   | 3   |
| C01 | 3           | 2           | 2    | 3    |      |      |             |     |      |     |              | 2      | 2   | 2   | 1   |
| C02 | 3           | 1           | 2    | 2    |      |      |             |     |      |     |              | 2      | 2   | 2   | 1   |
| C03 | 3           | 2           | 1    | 2    |      | 5    | Ī           | 7   |      | 7   |              | 2      | 2   | 2   | 1   |
| CO4 | 3           | 2           | 1    | 2    |      | 15   |             | - 5 |      |     | 1            | 2      | 2   | 2   | 2   |
| CO5 | 3           | 2           | 2    | 2    |      |      |             | 1   | 1    |     |              | 2      | 2   | 2   | 1   |
| Avg | 3           | 1.8         | 1.6  | 2.2  |      |      |             |     |      | 1   |              | 2      | 2   | 2   | 1.2 |

1 - low, 2 - medium, 3 - high, '-' - no correlation

**OML353** 

# NANOMATERIALS AND APPLICATIONS

L T P C 3 0 0 3

#### **COURSE OBJECTIVES:**

The main learning objective of this course is to prepare the students for:

- Understanding the evolution of nanomaterials in the scientific era and make them to understand different types of nanomaterials for the future engineering applications
- Gaining knowledge on dimensionality effects on different properties of nanomaterials
- Getting acquainted with the different processing techniques employed for fabricating nanomaterials
- Having knowledge on the different characterisation techniques employed to characterise the nanomaterials
- · Acquiring knowledge on different applications of nanomaterials in different disciplines of

# UNIT I NANOMATERIALS

9

Introduction, Classification: 0D, 1D, 2D, 3D nanomaterials and nano-composites, their mechanical, electrical, optical, magnetic properties; Nanomaterials versus bulk materials.

#### UNIT II THERMODYNAMICS & KINETICS OF NANOSTRUCTURED MATERIALS

Size and interface/interphase effects, interfacial thermodynamics, phase diagrams, diffusivity, grain growth, and thermal stability of nanomaterials.

UNIT III PROCESSING 9

Bottom-up and top-down approaches for the synthesis of nanomaterials, mechanical alloying, chemical routes, severe plastic deformation, and electrical wire explosion technique.

# **UNIT IV STRUCTURAL CHARACTERISTICS**

9

Principles of emerging nanoscale X-ray techniques such as small angle X-ray scattering and X-ray absorption fine structure (XAFS), electron and neutron diffraction techniques and their application to nanomaterials; SPM, Nanoindentation, Grain size, phase formation, texture, stress analysis

#### UNIT V APPLICATIONS

9

Applications of nanoparticles, quantum dots, nanotubes, nanowires, nanocoatings; applications in electronic, electrical and medical industries

# **TOTAL: 45 PERIODS**

#### **COURSE OUTCOMES:**

After completion of this course, the students will be able to

CO1: Evaluate nanomaterials and understand the different types of nanomaterials

CO2: Recognise the effects of dimensionality of materials on the properties

CO3: Process different nanomaterials and use them in engineering applications

**CO4:** Use appropriate techniques for characterising nanomaterials

CO5: Identify and use different nanomaterials for applications in different engineering fields.

#### **TEXT BOOKS:**

- 1. Bhusan, Bharat (Ed), "Springer Handbook of Nanotechnology", 2nd edition, 2007.
- 2. Carl C. Koch (ed.), NANOSTRUCTURED MATERIALS, Processing, Properties and Potential Applications, NOYES PUBLICATIONS, Norwich, New York, U.S.A.

#### REFERENCES:

- 1. Poole C.P, and Owens F.J., Introduction to Nanotechnology, John Wiley 2003
- 2. Nalwa H.S., Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishers 2004
- 3. Zehetbauer M.J. and Zhu Y.T., Bulk Nanostructured Materials, Wiley 2008
- 4. Wang Z.L., Characterization of Nanophase Materials, Wiley 2000
- 5. Gutkin Y., Ovid'ko I.A. and Gutkin M., Plastic Deformation in Nanocrystalline Materials, Springer 2004

#### CO's-PO's & PSO's MAPPING

|     | PO1 | DO2   | DO3  | DO4  | PO5   | DO6 | DO7 | DO0  | DO0   | РО | РО | РО | PSO | PSO | PSO |
|-----|-----|-------|------|------|-------|-----|-----|------|-------|----|----|----|-----|-----|-----|
|     | FOI | F 0 2 | F 03 | F 04 | F 0 3 | 100 | FOI | F 08 | F 0 9 | 10 | 11 | 12 | 1   | 2   | 3   |
| C01 | 2   | 2     | 2    | 3    |       |     |     |      |       |    |    | 2  | 1   | 2   |     |
| C02 | 3   | 1     | 2    | 2    |       |     |     |      |       |    |    | 2  | 2   | 2   | 1   |
| C03 | 3   | 2     | 1    | 2    |       |     |     |      |       |    |    | 2  | 2   | 2   |     |
| CO4 | 3   | 1     |      | 2    |       |     |     |      |       |    |    | 2  | 2   | 2   | 2   |
| CO5 | 3   | 2     | 2    | 2    |       |     |     |      |       |    |    | 2  | 2   | 2   | 1   |
| Avg | 2.8 | 1.6   | 1.7  | 2.2  | ·     |     |     |      |       | ·  |    | 2  | 1.8 | 2   | 1.3 |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

**HYDRAULICS AND PNEUMATICS** C **OMR352** 3 0 3

#### **COURSE OBJECTIVES:**

- 1. To knowledge on fluid power principles and working of hydraulic pumps
- 2. To obtain the knowledge in hydraulic actuators and control components
- 3. To understand the basics in hydraulic circuits and systems
- 4. To obtain the knowledge in pneumatic and electro pneumatic systems
- 5. To apply the concepts to solve the trouble shooting

#### UNIT - I FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS

9 Introduction to Fluid power - Advantages and Applications - Fluid power systems - Types of fluids - Properties of fluids and selection - Basics of Hydraulics - Pascal's Law - Principles of flow -Friction loss – Work, Power and Torque Problems, Sources of Hydraulic power: Pumping Theory Pump Classification - Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of Linear and Rotary – Fixed and Variable displacement pumps – Problems.

### HYDRAULIC ACTUATORS AND CONTROL COMPONENTS

Hydraulic Actuators: Cylinders - Types and construction, Application, Hydraulic cushioning -Hydraulic motors - Control Components : Direction Control, Flow control and pressure control valves - Types, Construction and Operation - Servo and Proportional valves - Applications -Accessories: Reservoirs, Pressure Switches - Applications - Fluid Power ANSI Symbols -Problems.

#### UNIT - III HYDRAULIC CIRCUITS AND SYSTEMS

9

Accumulators, Intensifiers, Industrial hydraulic circuits - Regenerative, Pump Unloading, Double Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail-Safe, Speed Control, Hydrostatic transmission, Electro hydraulic circuits, Mechanical hydraulic servo systems.

#### **UNIT - IV** PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS

9

Properties of air - Perfect Gas Laws - Compressor - Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit -Cascade method - Electro Pneumatic System - Elements - Ladder diagram - Problems, Introduction to fluidics and pneumatic logic circuits

#### UNIT – V TROUBLE SHOOTING AND APPLICATIONS

9

Installation, Selection, Maintenance, Trouble Shooting and Remedies in Hydraulic and Pneumatic systems, Design of hydraulic circuits for Drilling, Planning, Shaping, Surface grinding, Press and Forklift applications. Design of Pneumatic circuits for Pick and Place applications and tool handling in CNC Machine tools – Low cost Automation – Hydraulic and Pneumatic power packs.

**TOTAL: 45 PERIODS** 

#### **COURSE OUTCOMES**

Upon successful completion of the course, students should be able to:

- CO 1: Analyze the methods in fluid power principles and working of hydraulic pumps
  - CO 2: Recognize the concepts in hydraulic actuators and control components
  - CO 3: Obtain the knowledge in basics of hydraulic circuits and systems
  - CO 4: Know about the basics concept in pneumatic and electro pneumatic systems
  - CO 5: Apply the concepts to solve the trouble shooting hydraulic and pneumatics

| CO's-PO's & PS     | O's N | /API   | PING  |        |       |       |      |   |        | 7   | 7   |    |    |     |   |
|--------------------|-------|--------|-------|--------|-------|-------|------|---|--------|-----|-----|----|----|-----|---|
| COs/POs &          |       |        |       |        | 7.1   | ĸ     | POs  | 7 | $\sim$ |     | /   |    | PS | SOs |   |
| <b>PSOs</b>        | 1     | 2      | 3     | 4      | 5     | 6     | 7    | 8 | 9      | 10  | 11  | 12 | 1  | 2   | 3 |
| CO1                | 3     | 2      | 1     |        | 2     | 2     |      |   |        | 474 |     | 1  | 2  | 2   | 1 |
| CO2                | 3     | 2      | 1     |        | 2     | 2     |      |   |        |     | 7 3 | 1  | 2  | 2   | 1 |
| CO3                | 3     | 2      | 1     |        | 2     | 2     |      |   |        |     | N.  | 1  | 2  | 2   | 1 |
| CO4                | 3     | 2      | 1     |        | 2     | 2     |      |   |        |     | W   | 1  | 2  | 2   | 1 |
| CO5                | 3     | 2      | 1     |        | 2     | 2     | 1    |   |        |     | 4   | 1  | 2  | 2   | 1 |
| CO/PO & PSO        | 3     | 2      | 1     |        | 2     | 2     |      |   |        |     |     | 1  | 2  | 2   | 1 |
| Average            |       |        |       |        |       |       |      |   |        |     |     |    |    |     |   |
| 1 - low, 2 - mediu | ım, 3 | 3 - hi | gh, ' | -' - n | o coi | rrela | tion |   | •      |     | •   |    | •  |     |   |

#### **TEXT BOOKS**

- 1. Anthony Esposito, "Fluid Power with Applications", Prentice Hall, 2009.
- 2. James A. Sullivan, "Fluid Power Theory and Applications", Fourth Edition, Prentice Hall, 1997.

#### **REFERENCES**

- 1. Shanmugasundaram.K, "Hydraulic and Pneumatic Controls". Chand & Co, 2006.
- 2. Majumdar, S.R., "Oil Hydraulics Systems Principles and Maintenance", Tata McG Raw Hill, 2001.
- 3. Majumdar, S.R., "Pneumatic Systems Principles and Maintenance", Tata McGRaw Hill, 2007.
- 4. Dudley, A. Pease and John J Pippenger, "Basic Fluid Power", Prentice Hall, 1987
- 5. Srinivasan. R, "Hydraulic and Pneumatic Controls", Vijay Nicole Imprints, 2008
- 6. Joshi.P, Pneumatic Control", Wiley India, 2008.
- 7. Jagadeesha T, "Pneumatics Concepts, Design and Applications", Universities Press, 2015.

OMR353 SENSORS LTPC 3003

# **COURSE OBJECTIVES:**

1. To learn the various types of sensors, transducers, sensor output signal types, calibration techniques, formulation of system equation and its characteristics.

- To understand basic working principle, construction, Application and characteristics of displacement, speed and ranging sensors.
- 3. To understand and analyze the working principle, construction, application and characteristics of force, magnetic and heading sensors.
- 4. To learn and analyze the working principle, construction, application and characteristics of optical, pressure, temperature and other sensors.
- 5. To familiarize students with different signal conditioning circuits design and data acquisition system.

# UNIT – I SENSOR CLASSIFICATION, CHARACTERISTICS AND SIGNAL TYPES 9

Basics of Measurement – Classification of Errors – Error Analysis – Static and Dynamic Characteristics of Transducers – Performance Measures of Sensors – Classification of Sensors – Sensor Calibration Techniques – Sensor Outputs - Signal Types - Analog and Digital Signals, PWM and PPM.

# UNIT – II DISPLACEMENT, PROXIMITY AND RANGING SENSORS

۵

Displacement Sensors – Brush Encoders - Potentiometers, Resolver, Encoders – Optical, Magnetic, Inductive, Capacitive, LVDT – RVDT – Synchro – Microsyn, Accelerometer – Range Sensors - Ultrasonic Ranging - Reflective Beacons - Laser Range Sensor (LIDAR) – GPS - RF Beacons.

#### UNIT – III FORCE, MAGNETIC AND HEADING SENSORS

9

Strain Gage – Types, Working, Advantage, Limitation, and Applications: Load Measurement – Force and Torque Measurement - Magnetic Sensors – Types, Principle, Advantage, Limitation, and Applications - Magneto Resistive – Hall Effect, Eddy Current Sensor - Heading Sensors – Compass, Gyroscope and Inclinometers.

#### UNIT – IV OPTICAL, PRESSURE, TEMPERATURE AND OTHER SENSORS 9

Photo Conductive Cell, Photo Voltaic, Photo Resistive, LDR – Fiber Optic Sensors – Pressure – Diaphragm – Bellows - Piezoelectric - Piezo-resistive - Acoustic, Temperature – IC, Thermistor, RTD, Thermocouple – Non Contact Sensor - Chemical Sensors - MEMS Sensors - Smart Sensors.

#### UNIT – V SIGNAL CONDITIONING

9

**TOTAL: 45 PERIODS** 

Need for Signal Conditioning – Resistive, Inductive and Capacitive Bridges for Measurement - DC and AC Signal Conditioning - Voltage, Current, Power and Instrumentation Amplifiers – Filter and Isolation Circuits – Fundamentals of Data Acquisition System

#### **COURSE OUTCOMES**

Upon successful completion of the course, students should be able to:

CO1: Understand various sensor effects, sensor characteristics, signal types, calibration methods and obtain transfer function and empirical relation of sensors. They can also analyze the densor response.

CO2: Analyze and select suitable sensor for displacement, proximity and range measurement.

CO3: Analyze and select suitable sensor for force, magnetic field, speed, position and direction measurement.

CO4: Analyze and Select suitable sensor for light detection, pressure and temperature measurement and also familiar with other miniaturized smart sensors.

CO5: Select and design suitable signal conditioning circuit with proper compensation and linearizing element based on sensor output signal.

| CO's-PO's & PSC    | )'s l | MAP   | PING       |      |      |        |    |   |   |    |     |    |    |    |   |
|--------------------|-------|-------|------------|------|------|--------|----|---|---|----|-----|----|----|----|---|
| COs/POs &          |       |       |            |      |      | Р      | Os |   |   |    |     |    | PS | Os |   |
| PSOs               | 1     | 2     | 3          | 4    | 5    | 6      | 7  | 8 | 9 | 10 | 11  | 12 | 1  | 2  | 3 |
| CO1                | 3     | 3     | 2          |      |      |        |    |   |   |    | 1   | 2  | 3  | 2  | 1 |
| CO2                | 3     | 3     | 2          | 1    | 1    | 1      |    |   |   |    | 1   | 2  | 3  | 2  | 1 |
| CO3                | 3     | 3     | 2          | 1    | 1    | 1      |    |   |   |    | 1   | 2  | 3  | 2  | 1 |
| CO4                | 3     | 3     | 2          | 1    | 1    | 1      |    |   |   |    | 1   | 2  | 3  | 2  | 1 |
| CO5                | 3     | 3     | 2          | 1    | 1    | 1      |    |   |   |    | 1   | 2  | 3  | 2  | 1 |
| CO/PO & PSO        | 3     | 3     | 2          | 0.   | 0.   | 0.8    |    |   |   |    | 8.0 | 2  | 3  | 2  | 1 |
| Average            |       |       |            | 8    | 8    |        |    |   |   |    |     |    |    |    |   |
| 1 - low, 2 - mediu | m. :  | 3 - h | iah. '-' - | no c | orre | lation |    |   |   |    |     |    |    |    |   |

#### **TEXT BOOKS**

- 1. Bolton W., "Mechatronics", Pearson Education, 6th Edition, 2015.
- 2. Ramesh S Gaonkar, "Microprocessor Architecture, Programming, and Applications with the 8085", Penram International Publishing Private Limited, 6th Edition, 2013.

#### **REFERENCES**

- 1. Bradley D.A., Dawson D., Buru N.C. and Loader A.J., "Mechatronics", Chapman and Hall, 1993
- 2. Davis G. Alciatore and Michael B. Histand, "Introduction to Mechatronics and Measurement systems", McGraw Hill Education, 2011.
- 3. Devadas Shetty and Richard A. Kolk, "Mechatronics Systems Design", Cengage Learning, 2010.
- 4. Nitaigour Premchand Mahalik, "Mechatronics Principles, Concepts and Applications", McGraw Hill Education, 2015.
- 5. Smaili. A and Mrad. F, "Mechatronics Integrated Technologies for Intelligent Machines", Oxford University Press, 2007.

**ORA352** 

**CONCEPTS IN MOBILE ROBOTS** 

L T P C 3 0 0 3

#### COURSE OBJECTIVES

- 1. To introduce mobile robotic technology and its types in detail.
- 2. To learn the kinematics of wheeled and legged robot.
- 3. To familiarize the intelligence into the mobile robots using various sensors.
- 4. To acquaint the localization strategies and mapping technique for mobile robot.
- 5. To aware the collaborative mobile robotics in task planning, navigation and intelligence.

#### UNIT – I INTRODUCTION TO MOBILE ROBOTICS

9

Introduction – Locomotion of the Robots – Key Issues on Locomotion – Legged Mobile Roots – Configurations and Stability – Wheeled Mobile Robots – Design Space and Mobility Issues – Unmanned Aerial and Underwater Vehicles

#### UNIT - II KINEMATICS

g

Kinematic Models - Representation of Robot - Forward Kinematics - Wheel and Robot

Constraints – Degree of Mobility and Steerability – **Manoeuvrability** – Workspace – Degrees of Freedom – Path and Trajectory Considerations – Motion Controls - Holonomic Robots

#### UNIT - III PERCEPTION

9

Sensor for Mobile Robots – Classification and Performance Characterization – Wheel/Motor Sensors – Heading Sensors - Ground-Based Beacons - Active Ranging - Motion/Speed Sensors – Camera - Visual Appearance based Feature Extraction.

#### UNIT - IV LOCALIZATION

9

Localization Based Navigation Versus Programmed Solutions - Map Representation - Continuous Representations - Decomposition Strategies - Probabilistic Map-Based Localization - Landmark-Based Navigation - Globally Unique Localization - Positioning Beacon Systems - Route-Based Localization - Autonomous Map Building - Simultaneous Localization and Mapping (SLAM).

# UNIT – V PLANNING, NAVIGATION AND COLLABORATIVE ROBOTS

9

Introduction - Competences for Navigation: Planning and Reacting - Path Planning - Obstacle Avoidance - Navigation Architectures - Control Localization - Techniques for Decomposition - Case Studies - Collaborative Robots - Swarm Robots.

**TOTAL: 45 PERIODS** 

# COURSE OUTCOMES:

Upon completion of this course, the students will be able to:

CO1: Evaluate the appropriate mobile robots for the desired application.

CO2: Create the kinematics for given wheeled and legged robot.

**CO3:** Analyse the sensors for the intelligence of mobile robotics.

**CO4:** Create the localization strategies and mapping technique for mobile robot.

**CO5:** Create the collaborative mobile robotics for planning, navigation and intelligence for desired applications.

#### **TEXTBOOK**

1. Roland Siegwart and IllahR.Nourbakish, "Introduction to Autonomous Mobile Robots" MIT Press, Cambridge, 2004.

# **REFERENCES:**

- 1. Dragomir N. Nenchev, Atsushi Konno, TeppeiTsujita, "Humanoid Robots: Modelling and Control", Butterworth-Heinemann, 2018
- 2. MohantaJagadish Chandra, "Introduction to Mobile Robots Navigation", LAP Lambert Academic Publishing, 2015.
- 3. Peter Corke, "Robotics, Vision and Control", Springer, 2017.
- 4. Ulrich Nehmzow, "Mobile Robotics: A Practical Introduction", Springer, 2003.
- 5. Xiao Qi Chen, Y.Q. Chen and J.G. Chase, "Mobile Robots State of the Art in Land, Sea, Air, and Collaborative Missions", Intec Press, 2009.
- 6. Alonzo Kelly, Mobile Robotics: Mathematics, Models, and Methods, Cambridge University Press, 2013, ISBN: 978-1107031159.

#### **COOURSE OBJECTIVES:**

- 1. To impart knowledge on basics of propulsion system and ship dynamic movements
- 2. To educate them on basic layout and propulsion equipment's
- 3. To impart basic knowledge on performance of the ship
- 4. To impart basic knowledge on Ship propeller and its types
- 5. To impart knowledge on ship rudder and its types

#### UNIT I BASICS SHIP PROPULSION SYSTEM AND EQUIPMENTS

9

law of floatation - Basics principle of propulsion- Earlier methods of propulsion- ship propulsion machinery- boiler, Marine steam engine, diesel engine, ship power transmission system, ship dynamic structure, Marine propulsion equipment - shaft tunnel, Intermediate shaft and bearing, stern tube, stern tube sealing etc. degree of freedom, Modern propelling methods- water jet propulsion, screw propulsion.

#### UNIT II SHIPS MOVEMENTS AND SHIP STABILIZATION

9

Thrust augmented devices, Ship hull, modern ship propulsion design, bow thruster – Advantages, various methods to stabilize the ship- passive and active stabilizer, fin stabilizer, bilge keel - stabilizing and securing ship in port- effect of tides on ship – effect of river water and sea water sailing vessel, Load line and load line of marking- draught markings.

#### UNIT III SHIPS SPEED AND ITS PERFORMANCE

9

Ship propulsion factors, factors affecting ships speed, various velocities of ship, hull drag, effects of fouling on ships hull, ship wake, relation between powers, Fuel consumption of ship, cavitations - effects of cavitation's, ship turning radius.

# UNIT IV BASICS OF PROPELLER

9

Propeller dimension, Propeller and its types – fixed propeller, control pitch propeller, kort nozzle, ducted propeller, voith schneider, Parts of propeller, 3 blade - 5 blade - 6 blade propellers and its advantages, propeller boss hub, crown nut, propeller skew, pitch of propeller - Thrust creation by propeller. Propeller Material – Propeller balancing- static and dynamic.

#### UNIT V BASICS OF RUDDER

9

Rudder dimension, Area of rudder and its design, Rudder arrangements, Rudder fittings- Rudder pintle - Rudder types- Balanced rudder, semi balanced rudder, Spade rudder, merits and demerits of various types of rudders, Propeller and rudder interaction, Rudder stopper, movement of rudders, Basic construction of Rudder

**TOTAL: 45 PERIODS** 

# **COURSE OUTCOMES:**

Upon successful completion of the course, students should be able to:

CO1: Explain the basics of propulsion system and ship dynamic movements

CO2: Familiarize with various components assisting ship stabilization.

CO3: Demonstrate the performance of the ship.

CO4: Classify the Propeller and its types, Materials etc.

CO5: Categories the Rudder and its types, design criteria of rudder.

#### **TEXT BOOKS:**

- 1. GP. Ghose, "Basic Ship propulsion",2015
- 2. E.A. Stokoe "Reeds Ship construction for marine engineers", Vol. 5,2010
- 3. E.A. Stokoe, "Reeds Naval architecture for the marine engineers", 4th Edition, 2009

#### **REFERENCES BOOKS:**

- 1. DJ Eyers and GJ Bruse, "Ship Construction", 7<sup>th</sup> Edition, 2006.
- 2. KJ Rawson and EC Tupper, "Basic Ship theory I" Vol. 1,5th Edition,2001.

#### CO's-PO's & PSO's MAPPING

| С  |     |     |     |     |     |      | PO |     |     |     |     |     |     | PS  | SO |     |
|----|-----|-----|-----|-----|-----|------|----|-----|-----|-----|-----|-----|-----|-----|----|-----|
| 0  | РО  | Р   | Р   | Р   | Р   | Р    | Р  | Р   | Р   | РО  | РО  | РО  | PS  | PS  | PS | PS  |
|    | 1   | O2  | О3  | O4  | O5  | O6   | 07 | O8  | O9  | 10  | 11  | 12  | O1  | O2  | О3 | O4  |
| 1  | 1   | 1   | 1   | 1   | 1   |      |    |     |     |     | 1   | 1   |     | 1   |    | 1   |
| 2  | 1   | 1   | 1   |     |     |      |    |     |     |     |     |     |     | 1   |    | 1   |
| 3  | 1   |     |     | 1   | 1   |      |    |     | 1   | 1   | 1   |     | 1   | 1   |    | 1   |
| 4  | 1   |     | 1   | 1   |     |      |    | i N | П   | IF  |     |     |     | 1   |    | 1   |
| 5  | 1   |     | 1   | 1   |     | P 76 | 1  |     |     |     | R); |     |     | 1   |    | 1   |
| Av | 5/5 | 2/2 | 4/4 | 4/4 | 2/2 | N. F |    |     | 1/1 | 1/1 | 2/2 | 1/1 | 1/1 | 5/5 |    | 5/5 |
| g  | =1  | =1  | =1  | =1  | =1  | 7    |    |     | =1  | =1  | =1  | =1  | =1  | =1  |    | =1  |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

**OMV351** 

### MARINE MERCHANT VESSELS

LT P C 3 0 0 3

# **COURSE OBJECTIVES:**

# At the end of the course, students are expected to acquire

- 1. Knowledge on basics of Hydrostatics
- 2. Familiarization on types of merchant ships
- 3. Knowledge on Shipbuilding Materials
- 4. Knowledge on marine propeller and rudder
- 5. Awareness on governing bodies in shipping industry

#### UNIT I INTRODUCTION TO HYDROSTATICS

c

Archimedes Principle- Laws of floatation—Meta centre – stability of floating and submerged bodies-Density, relative density - Displacement –Pressure –centre of pressure.

# UNIT II TYPES OF SHIP

10

General cargo ship - Refrigerated cargo ships - Container ships - Roll-on Roll-off ships - Oil tankers- Bulk carriers - Liquefied Natural Gas carriers - Liquefied Petroleum Gascarriers - Chemical tankers - Passenger ships

### UNIT III SHIPBUILDING MATERIALS

9

Types of Steels used in Shipbuilding - High tensile steels, Corrosion resistant steels, Steel sandwich panels, Steel castings, Steel forgings - Other shipbuilding materials, Aluminium alloys, Aluminium alloy sandwich panels, Fire protection especially for Aluminium Alloys, Fiber Reinforced Composites

#### UNIT IV MARINE PROPELLER AND RUDDER

Types of rudder, construction of Rudder-Types of Propeller, Propeller material-Cavitations and its effects on propeller

#### UNIT V GOVERNING BODIES FOR SHIPPING INDUSTRY

9

Role of **IMO** (International Maritime Organization), **SOLAS** (International Convention for the Safety of Life at Sea), **MARPOL** (International Convention for the Prevention of Pollution from Ships), **MLC** (Maritime Labour Convention), **STCW 2010** (International Convention on Standards of Training, Certification and Watch keeping for Seafarers), Classification societies Administration authorities

**TOTAL: 45 PERIODS** 

#### **COURSE OUTCOMES:**

Upon completion of this course, students would

CO1: Acquire Knowledge on floatation of ships

CO2: Acquire Knowledge on features of various ships

CO3: Acquire Knowledge of Shipbuilding Materials

**CO4:** Acquire Knowledge to identify the different types of marine propeller

and rudder

CO5: Understand the Roles and responsibilities of governing bodies

#### **TEXT BOOKS:**

- D.J.Eyres, "Ship Constructions", Seventh Edition, Butter Worth Heinemann Publishing, USA,2015
- 2. Dr.DA Taylor, "Merchant Ship Naval Architecture" I. Mar EST publications, 2006
- 3. EA Stokoe, E.A, "Naval Architecture for Marine Engineers", Vol.4, Reeds Publications, 2000

#### **REFERENCES:**

- 1. Kemp & Young "Ship Construction Sketches & Notes", Butter Worth Heinemann Publishing, USA, 2011
- 2. MARPOL Consolidated Edition, Bhandakar Publications, 2018
- 3. SOLAS Consolidated Edition, Bhandakar Publications, 2016

**OMV352** 

**ELEMENTS OF MARINE ENGINEERING** 

LTPC 3003

#### COURSE OBJECTIVES:

#### At the end of the course, students are expected to

- 1. Understand the role of Marine machinery systems
- 2. Be familiar with Marine propulsion machinery system
- 3. Acquaint with Marine Auxiliary machinery system
- 4. Have acquired basics of Marine Auxiliary boiler system
- 5. Be aware of ship propellers and steering system

# UNIT I ELEMENTARY KNOWLEDGE ON MARINE MACHINERY SYSTEMS

9

Marine Engineering Terminologies, Parts of Ship, Introduction to Machinery systems on board ships – Propulsion Machinery system, Electricity Generator system, Steering gear system, Air

compressors & Air reservoirs, Fuel oil and Lubricating Oil Purifiers, Marine Boiler systems

# UNIT II MARINE PROPULSION MACHINERY SYSTEM

9

Two stroke Large Marine slow speed Diesel Engine – General Construction, Basic knowledge of Air starting and reversing mechanism, Cylinder lubrication oil system, Main lubricating oil system and cooling water system

#### UNIT III MARINE AUXILIARY MACHINERY SYSTEM

9

Four stroke medium speed Diesel engine – General Construction, Inline, V-type arrangement of engine, Difference between slow speed and medium speed engines – advantages, limitations and applications

#### UNIT IV MARINE BOILER SYSTEM

9

Types of Boiler – Difference between Water tube boiler and Fire tube boiler, Need for boiler on board ships, Uses of steam, Advantages of using steam as working medium, Boiler mountings and accessories – importance of mountings, need for accessories

# UNIT V SHIP PROPELLERS AND STEERING MECHANISM

9

Importance of Propellor and Steering gear, Types of propellers - Fixed pitch propellers, Controllable pitch propellers, Water jet propellers, Steering gear systems - 2-Ram and 4 Ram steering gear, Electric steering gear

**TOTAL: 45 PERIODS** 

#### **COURSE OUTCOMES:**

At the end of the course, students should able to,

**CO1:** Distinguish the role of various marine machinery systems

**CO2:** Relate the components of marine propulsion machinery system

**CO3:** Explain the importance of marine auxiliary machinery system

CO4: Acquire knowledge of marine boiler system

CO5: Understand the importance of ship propellors and steering system

# **TEXT BOOKS:**

- 1. Taylor, "Introduction to Marine engineering", Revised Second Edition, Butterworth Heinemann, London, 2011
- 2. J.K.Dhar, "Basic Marine Engineering", Tenth Edition, G-Maritime Publications, Mumbai, 2011
- 3. K.Ramaraj, "Text book on Marine Engineering", Eswar Press, Chennai, 2018

# **REFERENCES:**

- 1. Alan L.Rowen, "Introduction to Practical Marine Engineering, Volume 1&2, The Institute of Marine Engineers (India), Mumbai, 2006
- 2. A.S.Tambwekar, "Naval Architecture and Ship Construction", The Institute of Marine Engineers (India), Mumbai, 2015

**CRA332** 

#### **DRONE TECHNOLOGIES**

L T P C 3 0 0 3

#### **COURSE OBJECTIVES:**

- 1. To understand the basics of drone concepts
- 2. To learn and understand the fundaments of design, fabrication and programming of drone
- 3. To impart the knowledge of an flying and operation of drone
- 4. To know about the various applications of drone
- 5. To understand the safety risks and guidelines of fly safely

#### UNIT – I INTRODUCTION TO DRONE TECHNOLOGY

9

Drone Concept - Vocabulary Terminology- History of drone - Types of current generation of drones based on their method of propulsion- Drone technology impact on the businesses- Drone business through entrepreneurship- Opportunities/applications for entrepreneurship and employability

### UNIT - II DRONE DESIGN, FABRICATION AND PROGRAMMING

a

Classifications of the UAV -Overview of the main drone parts- Technical characteristics of the parts -Function of the component parts -Assembling a drone- The energy sources- Level of autonomy- Drones configurations -The methods of programming drone- Download program - Install program on computer- Running Programs- Multi rotor stabilization- Flight modes -Wi-Fi connection.

### UNIT – III DRONE FLYING AND OPERATION

9

Concept of operation for drone -Flight modes- Operate a small drone in a controlled environment- Drone controls Flight operations –management tool –Sensors-Onboard storage capacity -Removable storage devices- Linked mobile devices and applications

#### UNIT – IV DRONE COMMERCIAL APPLICATIONS

9

Choosing a drone based on the application -Drones in the insurance sector- Drones in delivering mail, parcels and other cargo- Drones in agriculture- Drones in inspection of transmission lines and power distribution -Drones in filming and panoramic picturing

#### UNIT - V FUTURE DRONES AND SAFETY

9

The safety risks- Guidelines to fly safely -Specific aviation regulation and standardization-Drone license- Miniaturization of drones- Increasing autonomy of drones -The use of drones in swarms

**TOTAL: 45 PERIODS** 

# **COURSE OUTCOMES**

Upon successful completion of the course, students should be able to:

CO1: Know about a various type of drone technology, drone fabrication and programming.

CO2: Execute the suitable operating procedures for functioning a drone

CO3: Select appropriate sensors and actuators for Drones

CO4: Develop a drone mechanism for specific applications

CO5: Createthe programs for various drones

#### CO's-PO's & PSO's MAPPING

| COs/Pos&P |   |   |       |       |        |       | POs   | <b>;</b> |      |        |     |    | PS | Os |   |
|-----------|---|---|-------|-------|--------|-------|-------|----------|------|--------|-----|----|----|----|---|
| SOs       | 1 | 2 | 3     | 4     | 5      | 6     | 7     | 8        | 9    | 10     | 11  | 12 | 1  | 2  | 3 |
| CO1       | 1 | 2 | 3     | 1     | 3      | 2     |       |          |      |        |     | 1  | 2  | 1  | 3 |
| CO2       | 1 | 2 | 3     | 1     | 3      | 2     |       |          |      |        |     | 1  | 2  | 1  | 3 |
| CO3       | 1 | 2 | 3     | 1     | 3      | 2     |       |          |      |        |     | 1  | 2  | 1  | 3 |
| CO4       | 1 | 2 | 3     | 1     | 3      | 2     |       |          |      |        |     | 1  | 2  | 1  | 3 |
| CO5       | 1 | 2 | 3     | 1     | 3      | 2     |       |          |      |        |     | 1  | 2  | 1  | 3 |
| CO/PO &   | 1 | 2 | 3     | 1     | 3      | 2     |       |          |      |        |     | 1  | 2  | 1  | 3 |
| PSO       |   |   |       |       |        |       |       |          |      |        |     |    |    |    |   |
| Average   |   |   |       |       |        |       |       |          |      |        |     |    |    |    |   |
|           | • | • | 1 – 3 | Sligh | t, 2 - | - Mod | derat | e, 3     | – Su | bstant | ial | •  | •  | •  |   |

# **TEXT BOOKS**

- 1. Daniel Tal and John Altschuld, "Drone Technology in Architecture, Engineering and Construction: A Strategic Guide to Unmanned Aerial Vehicle Operation and Implementation", 2021 John Wiley & Sons, Inc.
- 2. Terry Kilby and Belinda Kilby, "Make:Getting Started with Drones ",Maker Media, Inc, 2016

#### **REFERENCES**

- 1. John Baichtal, "Building Your Own Drones: A Beginners' Guide to Drones, UAVs, and ROVs", Que Publishing, 2016
- 2. Zavrsnik, "Drones and Unmanned Aerial Systems: Legal and Social Implications for Security and Surveillance", Springer, 2018.

**OGI352** 

### **GEOGRAPHICAL INFORMATION SYSTEM**

LTPC 3003

# **COURSE OBJECTIVES:**

 To impart the knowledge on basic components, data preparation and implementation of Geographical Information System.

# UNIT I FUNDAMENTALS OF GIS

9

Introduction to GIS - Basic spatial concepts - Coordinate Systems - GIS and Information Systems - Definitions - History of GIS - Components of a GIS - Hardware, Software, Data, People, Methods - Proprietary and open source Software - Types of data - Spatial, Attribute data- types of attributes - scales/ levels of measurements.

# UNIT II SPATIAL DATA MODELS

9

Database Structures – Relational, Object Oriented – Entities – ER diagram - data models - conceptual, logical and physical models - spatial data models – Raster Data Structures – Raster Data Compression - Vector Data Structures - Raster vs Vector Models- TIN and GRID data models.

#### UNIT III DATA INPUT AND TOPOLOGY

9

Scanner - Raster Data Input - Raster Data File Formats - Georeferencing - Vector Data Input -

Digitizer – Datum Projection and reprojection -Coordinate Transformation – Topology - Adjacency, connectivity and containment – Topological Consistency – Non topological file formats - Attribute Data linking – Linking External Databases – GPS Data Integration

#### UNIT IV DATA QUALITY AND STANDARDS

9

Data quality - Basic aspects - completeness, logical consistency, positional accuracy, temporal accuracy, thematic accuracy and lineage - Metadata - GIS Standards - Interoperability - OGC - Spatial Data Infrastructure

#### UNIT V DATA MANAGEMENT AND OUTPUT

9

Import/Export – Data Management functions- Raster to Vector and Vector to Raster Conversion - Data Output - Map Compilation – Chart/Graphs – Multimedia – Enterprise Vs. Desktop GIS-distributed GIS.

**TOTAL:45 PERIODS** 

#### **COURSE OUTCOMES:**

On completion of the course, the student is expected to

CO1 Have basic idea about the fundamentals of GIS.

CO2 Understand the types of data models.

CO3 Get knowledge about data input and topology

CO4 Gain knowledge on data quality and standards

CO5 Understand data management functions and data output

#### **TEXTBOOKS:**

- 1. Kang Tsung Chang, Introduction to Geographic Information Systems, McGraw Hill Publishing, 2nd Edition, 2011.
- 2. Ian Heywood, Sarah Cornelius, Steve Carver, Srinivasa Raju, "An Introduction Geographical Information Systems, Pearson Education, 2nd Edition, 2007.

#### **REFERENCES:**

1. Lo. C. P., Albert K.W. Yeung, Concepts and Techniques of Geographic Information Systems, Prentice-Hall India Publishers, 2006

# CO's-PO's & PSO's MAPPING: GEOGRAPHICAL INFORMATION SYSTEM

|       |                                            | Course Outcome |     |     |     |     |         |  |  |
|-------|--------------------------------------------|----------------|-----|-----|-----|-----|---------|--|--|
| РО    | Graduate Attribute                         | CO1            | CO2 | CO3 | CO4 | CO5 | Average |  |  |
| PO1   | Engineering Knowledge                      | 3              | 3   | 3   | 3   | 3   | 3       |  |  |
| PO2   | Problem Analysis                           |                |     |     | 3   | 3   | 3       |  |  |
| PO3   | Design/Development of Solutions            |                |     | 3   | 3   | 3   | 3       |  |  |
| PO4   | Conduct Investigations of Complex Problems |                |     | 3   | 3   | 3   | 3       |  |  |
| PO5   | Modern Tool Usage                          |                | 3   |     | 3   | 3   | 3       |  |  |
| PO6   | The Engineer and Society                   |                |     |     |     |     |         |  |  |
| PO 7  | Environment and Sustainability             |                |     |     |     |     |         |  |  |
| PO 8  | Ethics                                     |                |     |     |     |     |         |  |  |
| PO 9  | Individual and Team Work                   |                |     |     |     |     |         |  |  |
| PO 10 | Communication                              |                |     |     |     |     |         |  |  |
| PO 11 | Project Management and Finance             |                |     |     |     |     |         |  |  |
| PO 12 | Life-long Learning                         |                |     |     |     |     |         |  |  |

| PSO 1 | Knowledge of Geoinformatics discipline                                   | 3 | 3 | 3 | 3 | 3 | 3 |
|-------|--------------------------------------------------------------------------|---|---|---|---|---|---|
| PSO 2 | Critical analysis of Geoinformatics Engineering problems and innovations | 3 | 3 | 3 | 3 | 3 | 3 |
| PSO 3 | Conceptualization and evaluation of Design solutions                     | 3 | 3 | 3 | 3 | 3 | 3 |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

#### OAI352 AGRICULTURE ENTREPRENEURSHIP DEVELOPMENT

LTPC 3 0 0 3

#### **COURSE OBJECTIVES**

- To introduce the importance of Agri-business management, its characteristics and principles
- To impart knowledge on the functional areas of Agri-business like Marketing management, Product pricing methods and Market potential assessment.

#### UNIT I ENTREPRENEURIAL ENVIRONMENT IN INDIAN CONTEXT

Entrepreneur Development(ED): Concept of entrepreneur and entrepreneurship assessing overall business environment in Indian economy- Entrepreneurial and managerial characteristics-Entrepreneurship development programmers (EDP)-Generation incubation and commercialization of ideas and innovations- Motivation and entrepreneurship development- Globalization and the emerging business entrepreneurial environment.

# UNIT II AGRIPRNEURSHIP IN GLOBAL ARENA: LEGAL PERSPECTIVE 9

Importance of agribusiness in Indian economy - International trade-WTO agreements- Provisions related to agreements in agricultural and food commodities - Agreements on Agriculture (AOA)-Domestic supply, market access, export subsidies agreements on sanitary and phyto-sanitary (SPS) measures, Trade related intellectual property rights (TRIPS).

#### UNIT III ENTREPRENEURSHIP MANAGEMENT: FINANCIAL PERSPECTIVE 9

Entrepreneurship - Essence of managerial Knowledge -Management functions- Planning-organizing-Directing-Motivation-ordering-leading-supervision- communication and control-Understanding Financial Aspects of Business - Importance of financial statements-liquidity ratios-leverage ratios, coverage ratios-turnover ratios-Profitability ratios. Agro-based industries-Project-Project cycle-Project appraisal and evaluation techniques-undiscounted measures-Payback period-proceeds per rupee of outlay, Discounted measures-Net Present Value (NPV)-Benefit-Cost Ratio(BCR)-Internal Rate of Return(IRR)-Net benefit investment ratio(N/K ratio)-sensitivity analysis.

# UNIT IV ENTREPRENEURIAL OPPORTUNITIES: ECONOMIC GROWTH PERSPECTIVE

q

Managing an enterprise: Importance of planning, budgeting, monitoring evaluation and follow-up managing competition. Role of ED in economic development of a country- Overview of Indian social, political system and their implications for decision making by individual entrepreneurs- Economic system and its implication for decision making by individual entrepreneurs.

# UNITY ENTREPRENEURIAL PROMOTION MEASURES AND GOVERNMENT SUPPORT

9

**TOTAL: 45 PERIODS** 

Social responsibility of business. Morals and ethics in enterprise management- SWOT analysis-Government schemes and incentives for promotions of entrepreneurship. Government policy on small and medium enterprises (SMEs)/SSIs/MSME sectors- Venture capital (VC), contract framing (CF) and Joint Venture (JV), public-private

partnerships (PPP) - overview of agricultural engineering industry, characteristics of Indian farm machinery industry.

#### **COURSE OUTCOMES**

**CO1:** Judge about agricultural finance, banking and cooperation

CO2: Evaluate basic concepts, principles and functions of financial management

CO3: Improve the skills on basic banking and insurance schemes available to customers

CO4: Analyze various financial data for efficient farm management

CO5: Identify the financial institutions

#### **TEXT BOOKS**

- 1. Joseph L. Massie, 1995, "Essentials of Management", prentice Hall of India Pvt limited, New Delhi
- 2. Khanka S, 1999, Entrepreneurial Development, S, Chand and Co, New Delhi
- 3. Mohanty S K, 2007, Fundamentals of Entrepreneurship, Prentice Hall India, New Delhi.

#### **REFERENCES**

- 1. Harih S B, Conner U J and Schwab G D, 1981, Management of the Farm Business, Prentice Hall Inc. New Jersey
- 2. Omri Ralins, N.1980, Introduction to Agricultural: Prentice Hall Inc, New Jersey
- 3. Gittenger Price, 1989, Economic Analysis of Agricultural project, John Hopkins University, Press, London.
- 4. Thomas W Zimmer and Norman M Scarborough, 1996, Entrepreneurship, Prentice Hall, New Jersey.
- 5. Mar J Dollinger, 1999, Entrepreneurship strategies and resources, Prentice –Hall, Upper Saddal Rover, New Jersey.

#### CO's-PO's & PSO's MAPPING

| PO/PS | PROGRESS THRO                              | CO1 | CO2 | CO3 | CO4 | CO5 | Overall correlation of COs with POs |
|-------|--------------------------------------------|-----|-----|-----|-----|-----|-------------------------------------|
| PO1   | Engineering Knowledge                      | 1   | 2   | 1   | 1   | 1   | 2                                   |
| PO2   | Problem Analysis                           | 2   | 1   | 1   | 1   | 2   | 1                                   |
| PO3   | Design/ Development of Solutions           | 1   | 1   | 1   | 2   | 1   | 2                                   |
| PO4   | Conduct Investigations of Complex Problems | 1   | 1   | 2   | 1   | 1   | 1                                   |
| PO5   | Modern Tool Usage                          | 2   | 1   | 1   | 1   | 1   | 2                                   |
| PO6   | The Engineer and Society                   | 1   | 2   | 1   | 2   | 1   | 1                                   |
| PO7   | Environment and sustainability             | 1   | 1   | 2   | 1   | 1   | 1                                   |
| PO8   | Ethics                                     | 1   | 2   | 1   | 1   | 1   | 1                                   |
| PO9   | Individual and team work:                  | 1   | 1   | 1   | 2   | 1   | 1                                   |
| PO10  | Communication                              | 1   | 1   | 1   | 1   | 2   | 1                                   |

| PO11 | Project management and finance                                                                                                                         | 1 | 1 | 2 | 1 | 1 | 1 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|
| PO12 | Life-long learning:                                                                                                                                    | 1 | 2 | 1 | 1 | 1 | 2 |
| PSO1 | To make expertise in design and engineering problem solving approach in agriculture with proper knowledge and skill                                    | 1 | 2 | 1 | 1 | 1 | 1 |
| PSO2 | To enhance students ability to formulate solutions to real-world problems pertaining to sustained agricultural productivity using modern technologies. | 1 | 1 | 2 | 1 | 1 | 1 |
| PSO3 | To inculcate entrepreneurial skills through strong Industry-Institution linkage.                                                                       | 1 | 2 | 1 | 1 | 2 | 1 |

1 - low, 2 - medium, 3 - high, '-' - no correlation

# OEN352 BIODIVERSITY CONSERVATION

LTPC 3 0 0 3

#### COURSE OBJECTIVE:

The identification of different aspects of biological diversity and conservation techniques.

#### UNIT I INTRODUCTION

9

Concept of Species, Variation; Introduction to Major Plant Groups; Evolutionary relationships between Plant Groups; Nomenclature and History of plant taxonomy; Systems of Classification and their Application; Study of Plant Groups; Study of Identification Characters; Study of important families of Angiosperms; Plant Diversity Application.

# UNIT II INTRODUCTION TO ANIMAL DIVERSITY AND TAXONOMY

9

Principles and Rules of Taxonomy; ICZN Rules, Animal Study Techniques; Concepts of Taxon, Categories, Holotype, Paratype, Topotype etc; Classification of Animal kingdom, Invertebrates, Vertebrates, Evolutionary relationships between Animal Groups.

# UNIT III MICROBIAL DIVERSITY

9

Microbes and Earth History, Magnitude, Occurrence and Distribution. Concept of Species, Criteria for Classification, Outline Classification of Microorganisms (Bacteria, Viruses and Protozoa); Criteria for Classification and Identification of Fungi; Chemical and Biochemical Methods of Microbial Diversity Analysis

#### UNIT IV MEGA DIVERSITY

9

Biodiversity Hot-spots, Floristic and Faunal Regions in India and World; IUCN Red List; Factors affecting Diversity, Impact of Exotic Species and Human Disturbance on Diversity, Dispersal, Diversity-Stability Relationship; Socio- economic Issues of Biodiversity; Sustainable Utilization of Bioresources; National Movements and International Convention/Treaties on Biodiversity.

#### UNIT V CONSERVATIONS OF BIODIVERSITY

g

In-Situ Conservation- National parks, Wildlife sanctuaries, Biosphere reserves; Ex-situ

conservation- Gene bank, Cryopreservation, Tissue culture bank; Long term captive breeding, Botanical gardens, Animal Translocation, Zoological Gardens; Concept of Keystone Species, Endangered Species, Threatened Species, Rare Species, Extinct Species

**TOTAL: 45 PERIODS** 

#### **TEXT BOOKS:**

- 1. A textbook of Botany: Angiosperms- Taxonomy, Anatomy, Economic Botany & Embryology. S. Chand, Limited, Pandey, B. P. January 2001
- 2. Principles of Systematic Zoology, Mcgraw-Hill College, Ashlock, P.D., Latest Edition.
- 3. Microbiology, MacGraw Hill Companies Inc, Prescott, L.M., Harley, J.P., and Klein D.A. (2022).
- 4. Microbiology, Pearson Publisher, Gerard J. Tortora, Berdell R. Funke, Christine L.Case, 13<sup>th</sup> Edition 2019

#### **REFERENCES:**

- 1. Ecological Census Technique: A Handbook, Cambridge University Press, Sutherland, W.
- 2. Encyclopedia of Biodiversity, Academic Press, Simonson Asher Levin.

#### **COURSE OUTCOMES**

Upon successful completion of this course, students will:

CO1: An insight into the structure and function of diversity for ecosystem stability.

CO2: Understand the concept of animal diversity and taxonomy

CO3: Understand socio-economic issues pertaining to biodiversity

CO4: An understanding of biodiversity in community resource management.

CO5: Student can apply fundamental knowledge of biodiversity conservation to solve problems associated with infrastructure development.

# CO's-PO's & PSO's MAPPING

|      | PO's |   |    |   |   |   |   |   |   |    |    |    |   | PSO's |   |  |  |
|------|------|---|----|---|---|---|---|---|---|----|----|----|---|-------|---|--|--|
| CO's | 1    | 2 | 3  | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2     | 3 |  |  |
| 1    |      | 2 | 1  |   | 7 |   |   | 2 |   | 2  |    |    | 2 | 2     |   |  |  |
| 2    |      | 2 | Œ. | 2 | 2 | 2 |   | 4 |   |    |    | A  | 3 | 2     |   |  |  |
| 3    |      |   |    | 2 |   | 2 |   |   |   |    |    |    | 3 | 2     | 3 |  |  |
| 4    | 3    | 2 |    |   | 2 |   |   | 2 | 2 | 2  | 2  |    | 3 | 2     | 3 |  |  |
| 5    |      | 2 | 3  | 2 |   |   | 1 |   |   |    |    | 1  |   | 2     |   |  |  |
| Avg. | 3    | 2 | 3  | 2 | 2 | 2 | 1 | 2 | 2 | 2  | 2  | 1  | 3 | 2     | 3 |  |  |

1.low, 2-medium, 3-high, '-"- no correlation

Note: The average value of this course to be used for program articulation matrix.

**OEE353** 

# INTRODUCTION TO CONTROL SYSTEMS

LTPC 3003

## **COURSE OBJECTIVES**

- To impart knowledge on various representations of systems.
- To familiarize time response analysis of LTI systems and steady state error.
- To analyze the frequency responses and stability of the systems
- To analyze the stability of linear systems in frequency domain and time domain
- To develop linear models mainly state variable model and transfer function model

#### UNIT I MATHEMATICAL MODELS OF PHYSICAL SYSTEMS

Definition & classification of system – terminology & structure of feedback control theory – Analogous systems - Physical system representation by Differential equations – Block diagram reduction–Signal flow graphs.

#### UNIT II TIME RESPONSE ANALYSIS & ROOTLOCUSTECHNIQUE

9

9

Standard test signals – Steady state error & error constants – Time Response of I and II order system—Root locus—Rules for sketching root loci.

#### UNIT III FREQUENCY RESPONSE ANALYSIS

9

Correlation between Time & Frequency response – Polar plots – Bode Plots – Determination of Transfer Function from Bode plot.

#### UNIT IV STABILITY CONCEPTS & ANALYSIS

9

Concept of stability – Necessary condition – RH criterion – Relative stability – Nyquist stability criterion — Stability from Bode plot — Relative stability from Nyquist & Bode — Closed loop frequency response.

# UNITY STATE VARIABLE ANALYSIS

9

Concept of state – State Variable & State Model – State models for linear & continuous time systems–Solution of state & output equation–controllability & observability.

**TOTAL: 45 PERIODS** 

# **COURSE OUTCOMES:**

Ability to

CO1: Design the basic mathematical model of physical System.

CO2: Analyze the time response analysis and techniques.

CO3: Analyze the transfer function from different plots.

CO4: Apply the stability concept in various criterion.

CO5: Assess the state models for linear and continuous Systems.

# **TEXTBOOKS**

- 1. <u>Farid Golnarghi</u>, <u>Benjamin C. Kuo</u>, Automatic Control Systems Paper back McGraw Hill Education, 2018.
- 2. Katsuhiko Ogata, 'Modern Control Engineering', Pearson, 5<sup>th</sup> Edition2015.
- 3. J. Nagrath and M. Gopal, Control Systems Engineering (Multi Colour Edition), New Age International, 2018.

# **REFERENCES**

- 1. Richard C. Dorf and Robert H. Bishop, Modern Control Systems, Pearson Education, 2010.
- 2. Control System Dynamics" by Robert Clark, Cambridge University Press, 1996 USA.
- 3. John J. D'Azzo, Constantine H. Houpis and Stuart N. Sheldon, Linear Control System AnalysisandDesign, 5<sup>th</sup> Edition, CRC PRESS, 2003.
- 4. S. Palani, Control System Engineering, McGraw-Hill Education Private Limited, 2009.
- 5. Yaduvir Singh and S.Janardhanan, Modern Control, Cengage Learning, First Impression2010.

#### CO's-PO's & PSO's MAPPING

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | 3   | 3   | 3   | 2   | 2   |     |     |     |     |      |      | 2    | 3    | 3    | 3    |
| CO2 | 3   | 3   | 2   | 3   | 1   |     |     |     |     |      |      |      | 3    | 3    | 3    |
| CO3 | 3   | 3   | 3   | 2   | 2   |     |     |     |     |      |      |      | 3    | 3    | 3    |
| CO4 | 3   | 3   | 3   | 2   | 2   |     |     |     |     |      |      | 2    | 3    | 3    | 3    |
| CO5 | 3   | 3   | 3   | 1   | 1   |     | •   | ·   |     |      |      | 1    | 3    | 3    | 3    |
|     |     |     |     |     |     |     |     |     |     |      |      |      | 3    | 3    | 3    |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

#### OEI354 INTRODUCTION TO INDUSTRIAL AUTOMATION SYSTEMS

LT P C 3 0 03

#### **COURSE OBJECTIVES:**

- 1. To educate on design of signal conditioning circuits for various applications.
- 2. To Introduce signal transmission techniques and their design.
- 3. Study of components used in data acquisition systems interface techniques
- 4. To educate on the components used in distributed control systems
- 5. To introduce the communication buses used in automation industries.

#### UNIT I INTRODUCTION

9

Automation overview, Requirement of automation systems, Architecture of Industrial Automation system, Introduction of PLC and supervisory control and data acquisition (SCADA). Industrial bus systems: Modbus & Profibus

#### UNIT II AUTOMATION COMPONENTS

9

Sensors for temperature, pressure, force, displacement, speed, flow, level, humidity and pH measurement. Actuators, process control valves, power electronics devices DIAC, TRIAC, power MOSFET and IGBT. Introduction of DC and AC servo drives for motion control.

#### UNIT III COMPUTER AIDED MEASUREMENT AND CONTROL SYSTEMS

9

Role of computers in measurement and control, Elements of computer aided measurement and control, man-machine interface, computer aided process control hardware, process related interfaces, Communication and networking, Industrial communication systems, Data transfer techniques, Computer aided process control software, Computer based data acquisition system, Internet of things (IoT) for plant automation.

#### UNIT IV PROGRAMMABLE LOGIC CONTROLLERS

9

Programmable controllers, Programmable logic controllers, Analog digital input and output modules, PLC programming, Ladder diagram, Sequential flow chart, PLC Communication and networking, PLC selection, PLC Installation, Advantage of using PLC for Industrial automation, Application of PLC to process control industries.

# UNIT V DISTRIBUTED CONTROL SYSTEM

9

Overview of DCS, DCS software configuration, DCS communication, DCS Supervisory Computer Tasks, DCS integration with PLC and Computers, Features of DCS, Advantages of DCS.

**TOTAL:45 PERIODS** 

# SKILL DEVELOPMENT ACTIVITIES (Group Seminar/Mini Project/Assignment/Content Preparation / Quiz/ Surprise Test / Solving GATE questions/ etc)

5

- 1. Market survey of the recent PLCs and comparison of their features.
- 2. Summarize the PLC standards
- 3. Familiarization of any one programming language (Ladder diagram/ Sequential Function Chart/ Function Block Diagram/ Equivalent open source software)
- 4. Market survey of Industrial Data Networks.

#### **COURSE OUTCOMES:**

#### Students able to

- CO1 Design a signal conditioning circuits for various application (L3).
- CO2 Acquire a detail knowledge on data acquisition system interface and DCS system (L2).
- CO3 Understand the basics and Importance of communication buses in applied automation Engineering (L2).
- **CO4** Ability to design PLC Programmes by Applying Timer/Counter and Arithmetic and Logic Instructions Studied for Ladder Logic and Function Block.(L3)
- **CO5** Able to develop a PLC logic for a specific application on real world problem. (L5)

#### **TEXT BOOKS:**

- 1. S.K.Singh, "Industrial Instrumentation", Tata Mcgraw Hill, 2nd edition companies, 2003.
- 2. C D Johnson, "Process Control Instrumentation Technology", Prentice Hall India,8th Edition, 2006.
- 3. E.A.Parr, Newnes ,NewDelhi, "Industrial Control Handbook",3rd Edition, 2000.

#### REFERENCES:

- 1. John W. Webb and Ronald A. Reis, "Programmable Logic Controllers: Principles and Applications", 5th Edition, Prentice Hall Inc., New Jersey, 2003.
- 2. Frank D. Petruzella, "Programmable Logic Controllers", 5th Edition, McGraw- Hill, New York, 2016.
- 3. Krishna Kant, "Computer Based Industrial Control", 2nd Edition, Prentice Hall, New Delhi, 2011.
- 4. Gary Dunning, Thomson Delmar, "Programmable Logic Controller", CeneageLearning, 3 rd Edition, 2005.

# List of Open Source Software/ Learning website:

- 1. <a href="https://archive.nptel.ac.in/courses/108/105/108105062/">https://archive.nptel.ac.in/courses/108/105/108105062/</a>
- 2. https://nptel.ac.in/courses/108105063
- 3. https://www.electrical4u.com/industrial-automation/
- 4. <a href="https://realpars.com/what-is-industrial-automation/">https://realpars.com/what-is-industrial-automation/</a>
- 5. https://automationforum.co/what-is-industrial-automation-2/

# CO's-PO's & PSO's MAPPING

|      |   | PO's |   |   |   |   |   |   |   |    |    |    |   | PSO's |   |  |  |
|------|---|------|---|---|---|---|---|---|---|----|----|----|---|-------|---|--|--|
| CO's | 1 | 2    | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2     | 3 |  |  |
| CO1  | 3 | 2    | 2 | 2 | 1 | 1 | - | 1 | - | 1  | -  | 1  | 1 | -     | 1 |  |  |
| CO2  | 3 | `1   | 1 | - | 1 | - | - | 1 | - | 1  | -  | -  | 1 | -     | 1 |  |  |
| CO3  | 3 | -    | 1 | - | 1 | - | - | 1 | - | 1  | -  | -  | 1 | -     | 1 |  |  |
| CO4  | 3 | 3    | 3 | 3 | 1 |   |   | 1 |   | 1  |    |    | 1 |       | 1 |  |  |
| CO5  | 3 | 3    | 3 | 3 | 1 | 1 |   | 1 |   | 1  |    |    | 1 |       | 1 |  |  |

| AVg. 3 2.25 2 2.6 1 1 - 1 - 1 - 1 - | 1 |  |
|-------------------------------------|---|--|
|-------------------------------------|---|--|

1 - low, 2 - medium, 3 - high, '-' - no correlation

**OCH353** 

#### **ENERGY TECHNOLOGY**

LTPC 3003

#### UNIT I INTRODUCTION

Я

Units of energy, conversion factors, general classification of energy, world energy resources and energy consumption, Indian energy resources and energy consumption, energy crisis, energy alternatives, Renewable and non-renewable energy sources and their availability. Prospects of Renewable energy sources

#### UNIT II CONVENTIONAL ENERGY

8

Conventional energy resources, Thermal, hydel and nuclear reactors, thermal, hydel and nuclear power plants, efficiency, merits and demerits of the above power plants, combustion processes, fluidized bed combustion.

#### UNIT III NON-CONVENTIONAL ENERGY

10

Solar energy, solar thermal systems, flat plate collectors, focusing collectors, solar water heating, solar cooling, solar distillation, solar refrigeration, solar dryers, solar pond, solar thermal power generation, solar energy application in India, energy plantations. Wind energy, types of windmills, types of wind rotors, Darrieus rotor and Gravian rotor, wind electric power generation, wind power in India, economics of wind farm, ocean wave energy conversion, ocean thermal energy conversion, tidal energy conversion, geothermal energy.

#### UNIT IV BIOMASS ENERGY

10

Biomass energy resources, thermo-chemical and biochemical methods of biomass conversion, combustion, gasification, pyrolysis, biogas production, ethanol, fuel cells, alkaline fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, solid polymer electrolyte fuel cell, magneto hydrodynamic power generation, energy storage routes like thermal energy storage, chemical, mechanical storage and electrical storage.

#### UNIT V ENERGY CONSERVATION

9

**TOTAL: 45 PERIODS** 

Energy conservation in chemical process plants, energy audit, energy saving in heat exchangers, distillation columns, dryers, ovens and furnaces and boilers, steam economy in chemical plants, energy conservation.

#### **COURSE OUTCOMES:**

On completion of the course, the students will be able to

CO1: Students will be able to describe the fundamentals and main characteristics of renewable energy sources and their differences compared to fossil fuels.

CO2: Students will excel as professionals in the various fields of energy engineering

CO3: Compare different renewable energy technologies and choose the most appropriate based on local conditions.

CO4: Explain the technological basis for harnessing renewable energy sources.

CO5: Identify and critically evaluate current developments and emerging trends within the field of renewable energy technologies and to develop in-depth technical understanding of energy problems at an advanced level.

# **TEXT BOOKS**

- 1. Rao, S. and Parulekar, B.B., Energy Technology, Khanna Publishers, 2005.
- 2. Rai, G.D., Non-conventional Energy Sources, Khanna Publishers, New Delhi, 1984.
- 3. Bansal, N.K., Kleeman, M. and Meliss, M., Renewable Energy Sources and Conversion Technology, Tata McGraw Hill, 1990.
- 4. Nagpal, G.R., Power Plant Engineering, Khanna Publishers, 2008.

#### **REFERENCES**

- 1. Nejat Vezirog, Alternate Energy Sources, IT, McGraw Hill, New York.
- 2. El. Wakil, Power Plant Technology, Tata McGraw Hill, New York, 2002.
- 3. Sukhatme. S.P., Solar Enery Thermal Collection and Storage, Tata McGraw hill, New Delhi, 1981.

# CO's-PO's & PSO's MAPPING

| e         Statements         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P | 0   | 0  | P<br>O | P<br>O | P<br>S | PS | PS |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|--------|--------|--------|----|----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | 0  | 1      | 1 2    | 0      | 02 | О3 |
| CO1 Students will be able to describe the fundamentals and main characteristics of renewable energy sources and their differences compared to fossil fuels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   | 1  |        | 3      | 1      | 1  | 3  |
| CO2 Students will excel as professionals in the various fields of energy engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1   | 1  | Ī      | 3      | 2      | 1  | 3  |
| CO3 Compare different 2 2 2 3 3 1 1 - 1 renewable energy technologies and choose the most appropriate based on local conditions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1   | 1  |        | 3      | 2      | 1  | 3  |
| CO4 Explain the technological 2 2 1 3 3 1 1 1 1 basis for harnessing renewable energy sources.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ED( | D( | ŝΈ     | 3      | 1      | 1  | 3  |
| Identify and critically evaluate current developments and emerging trends within the field of renewable energy technologies and to develop in-depth technical understanding of energy problems at an advanced level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -   | -  | 1      | 3      | 2      | 1  | 3  |
| OVERALL CO 2 2 1 3 3 2 2 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1   | 1  | 1      | 3      | 2      | 1  | 3  |

# 1 - low, 2 - medium, 3 - high, '-' - no correlation

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively

**OCH354** 

#### SURFACE SCIENCE

LT P C 3 0 0 3

#### **COURSE OBJECTIVE:**

• To enable the students to analyze properties of a surfaces and correlate them to structure, chemistry, and physics and surface modification technique.

#### UNIT I SURFACE STRUCTURE AND EXPERIMENTAL PROBES

9

Relevance of surface science to Chemical and Electrochemical Engineering, Heterogeneous Catalysis and Nanoscience; Surface structure and reconstructions, absorbate structure, Band and Vibrational structure, Importance of UHV techniques, Electronic probes and molecular beams, Scanning probes and diffraction, Qualitative introduction to electronic and vibrational spectroscopy

# UNIT II ADSORPTION, DYNAMICS, THERMODYNAMICS AND KINETICS AT SURFACES

9

Interactions at the surface, Physisorption, Chemisorption, Diffusion, dynamics and reactions of atoms/molecules on surfaces, Generic reaction mechanism on surfaces, Adsorption isotherms, Kinetics of adsorption, Use of temperature desorption methods

#### UNIT III LIQUID INTERFACES

9

Structure and Thermodynamics of liquid-solid interface, Self-assembled monolayers, Electrified interfaces, Charge transfer at the liquid-solid interfaces, Photoelectrochemical processes, Gratzel cells

#### UNIT IV HETEROGENEOUS CATALYSIS

9

Characterization of heterogeneous catalytic processes, Microscopic kinetics to catalysis, Overview of important heterogeneous catalytic processes: Haber-Bosch, Fishcher-Tropsch and Automotive catalysis, Role of promoters and poisons, Bimetallic surfaces, surface functionalization and clusters in catalysis, Role of Sabatier principle in catalyst design, Rate oscillations and spatiotemporal pattern formation

#### UNIT V EPITAXIAL GROWTH AND NANO SURFACE-STRUCTURES

9

Origin of surface forces, Role of stress and strain in epitaxial growth, Energetic and growth modes, Nucleation theory, Nonequilibrium growth modes, MBE, CVD and ablation techniques, Catalytic growth of nanotubes, Etching of surfaces, Formation of nanopillars and nanorods and its application in photoelectrochemical processes, Polymer surfaces and biointerfaces.

**TOTAL: 45 PERIODS** 

#### **COURSE OUTCOME:**

 Upon completion of this course, the students can understand, predict and design surface properties based on surface structure. Students would understand the physics and chemistry behind surface phenomena

#### **TEXT BOOK:**

1. K. W. Kolasinski, "Surface Science: Foundations of catalysis and nanoscience" II Edition, John Wiley & Sons, New York, 2008.

#### REFERENCE:

1. Gabor A. Somorjai and Yimin Li "Introduction to Surface Chemistry and catalysis", II Edition John Wiley & Sons, New York, 2010.

#### **OFD354**

#### **FUNDAMENTALS OF FOOD ENGINEERING**

LTPC 3 0 0 3

#### **COURSE OBJECTIVES**

The course aims to

- acquaint and equip the students with different techniques of measurement of engineering properties.
- make the students understand the nature of food constituents in the design of processing equipment

UNIT I 9

Engineering properties of food materials: physical, thermal, aerodynamic, mechanical, optical and electromagnetic properties.

UNIT II 9

Drying and dehydration: Basic drying theory, heat and mass transfer in drying, drying rate curves, calculation of drying times, dryer efficiencies; classification and selection of dryers; tray, vacuum, osmotic, fluidized bed, pneumatic, rotary, tunnel, trough, bin, belt, microwave, IR, heat pump and freeze dryers; dryers for liquid: Drum or roller dryer, spray dryer and foammat dryers

UNIT III 9

Size reduction: Benefits, classification, determination and designation of the fineness of ground material, sieve/screen analysis, principle and mechanisms of comminution of food, Rittinger's, Kick's and Bond's equations, work index, energy utilization; Size reduction equipment: Principal types, crushers (jaw crushers, gyratory, smooth roll), hammer mills and impactors, attrition mills, buhr mill, tumbling mills, tumbling mills, ultra fine grinders, fluid jet pulverizer, colloid mill, cutting machines (slicing, dicing, shredding, pulping)

UNIT IV 9

Mixing: theory of solids mixing, criteria of mixer effectiveness and mixing indices, rate of mixing, theory of liquid mixing, power requirement for liquids mixing; Mixing equipment: Mixers for lo.w- or medium-viscosity liquids (paddle agitators, impeller agitators, powder-liquid contacting devices, other mixers), mixers for high viscosity liquids and pastes, mixers for dry powders and particulate solids.

UNIT V 9

Mechanical Separations: Theory, centrifugation, liquid-liquid centrifugation, liquid-solid centrifugation, clarifiers, desludging and decanting machine, Filtration: Theory of filtration, rate of filtration, pressure drop during filtration, applications, constant-rate filtration and constant-pressure filtration, derivation of equation; Filtration equipment; plate and frame filter press, rotary filters, centrifugal filters and air filters, filter aids, Membrane separation: General considerations, materials for membrane construction, ultra-filtration, microfiltration, concentration, polarization, processing variables, membrane fouling, applications of ultra-filtration in food processing, reverse osmosis, mode of operation, and applications; Membrane separation methods, demineralization by electro-

dialysis, gel filtration, ion exchange, per-evaporation and osmotic dehydration.

**TOTAL: 45 PERIODS** 

#### **COURSE OUTCOMES:**

At the end of the course the students will be able to

CO1 understand the importance of food polymers

CO2 understand the effect of various methods of processing on the structure and texture of food materials

CO3 understand the interaction of food constituents with respect to thermal, electrical properties to develop new technologies for processing and preservation.

#### **TEXTBOOKS:**

- 1. R.L. Earle. 2004. Unit Operations in Food Processing. The New Zealand Intitute of Food Science & Technology, Nz. Warren L. McCabe, Julian Smith, Peter Harriott. 2004.
- 2. Unit Operations of Chemical Engineering, 7th Ed. McGraw-Hill, Inc., NY, USA. Christie John Geankoplis. 2003.
- 3. Transport Processes and Separation Process Principles (Includes Unit Operations), 4th Ed. Prentice-Hall, NY, USA.
- 4. George D. Saravacos and Athanasios E. Kostaropoulos. 2002. Handbook of Food Processing Equipment. Springer Science+Business Media, New York, USA.
- 5. J. F. Richardson, J. H. Harker and J. R. Backhurst. 2002. Coulson & Richardson's Chemical Engineering, Vol. 2, Particle Technology and Separation Processes, 5th Ed.

#### **OFD355**

### **FOOD SAFETY AND QUALITY REGULATION**

LTPC 3003

#### **COURSE OBJECTIVES:**

- To characterize different type of food hazards, physical, chemical and biological in the industry and food service establishments
- To help become skilled in systems for food safety surveillance
- To be aware of the regulatory and statutory bodies in India and the world
- · To ensure processed food meets global standards

UNIT I 10

Introduction to food safety and security: Hygienic design of food plants and equipments, Food Contaminants (Microbial, Chemical, Physical), Food Adulteration (Common adulterants), Food Additives (functional role, safety issues), Food Packaging & labeling. Sanitation in warehousing, storage, shipping, receiving, containers and packaging materials. Control of rats, rodents, mice, birds, insects and microbes. Cleaning and Disinfection, ISO 22000 – Importance and Implementation

UNIT II 8

Food quality: Various Quality attributes of food, Instrumental, chemical and microbial Quality control. Sensory evaluation of food and statistical analysis. Water quality and other utilities.

UNIT III 9

Critical Quality control point in different stages of production including raw materials and processing materials. Food Quality and Quality control including the HACCP system. Food inspection and Food Law, Risk assessment – microbial risk assessment, dose response and exposure response modelling, risk management, implementation of food surveillance system to

UNIT IV 9

Indian and global regulations: FAO in India, Technical Cooperation programmes, Bio-security in Food and Agriculture, World Health Organization (WHO), World Animal Health Organization (OIE), International Plant Protection Convention (IPPC)

UNIT V 9

Codex Alimentarius Commission - Codex India - Role of Codex Contact point, National Codex contact point (NCCP), National Codex Committee of India - ToR, Functions, Shadow Committees etc.

**TOTAL: 45 PERIODS** 

#### **COURSE OUTCOMES:**

CO1 Thorough Knowledge of food hazards, physical, chemical and biological in the industry and food service establishments

CO2 Awareness on regulatory and statutory bodies in India and the world

#### **REFERENCES:**

- 1. Handbook of food toxicology by S. S. Deshpande, 2002
- 2. The food safety information handbook by Cynthia A. Robert, 2009
- 3. Nutritional and safety aspects of food processing by Tannenbaum SR, Marcel Dekker Inc., New York 1979
- 4. Microbiological safety of Food by Hobbs BC, 1973
- Food Safety Handbook by Ronald H. Schmidt, Gary E. Rodrick, A John Wiley & Sons Publication, 2003

OPY353 NUTRACEUTICALS L T P C 3 0 0 3

# **COURSE OBJECTIVES:**

- To understand the basic concepts of Nutraceuticals and functional food, their chemical nature and methods of extraction.
- To understand the role of Nutraceuticals and functional food in health and disease.

# UNIT I INTRODUCTION AND SIGNIFICANCE

6

Introduction to Nutraceuticals and functional foods; importance, history, definition, classification, list of functional foods and their benefits, Phytochemicals, zoochemicals and microbes in food, plants, animals and microbes.

# UNIT II PHYTOCHEMICALS AS NUTRACEUTICALS

11

Phytoestrogens in plants; isoflavones; flavonols, polyphenols, tannins, saponins, lignans, lycopene, chitin, caratenoids. Manufacturing practice of selected nutraceuticals such as lycopene, isoflavonoids, glucosamine, phytosterols. Formulation of functional foods containing nutraceuticals - stability, analytical and labelling issues.

# UNIT III ASSESSMENT OF ANTIOXIDANT ACTIVITY

11

In vitro and in vivo methods for the assessment of antioxidant activity, Comparison of different *in vitro* methods to evaluate the antioxidant, antioxidant mechanism, Prediction of the antioxidant activity of natural phenolics from electrotopological state indices, Optimising phytochemical release

by process technology; Variation of Antioxidant Activity during technological treatments, new food grade peptidases from plant sources.

#### UNIT IV ROLE IN HEALTH AND DISEASE

11

The health benefit of - Soy protein, Spirulina, Tea, Olive oil, plant sterols, Broccoli, omega3 fatty acid and eicosanoids. Nutraceuticals and Functional foods in Gastrointestinal disorder, Cancer, CVD, Diabetic Mellitus, HIV and Dental disease; Importance and function of probiotic, prebiotic and synbiotic and their applications, Functional foods and immune competence; role and use in obesity and nervous system disorders.

# UNIT V SAFETY ISSUES

6

Health Claims, Adverse effects and toxicity of nutraceuticals, regulations and safety issues International and national.

**TOTAL: 45 PERIODS** 

#### **TEXT BOOKS:**

- 1. Bisset, Normal Grainger and Max Wich H "Herbal Drugs and Phytopharmaceuticals", 2nd Edition, CRC, 2001.
- 2. Handbook of Nutraceuticals and Functional Foods: Robert Wildman, CRC, Publications. 2006
- 3. WEBB, PP, Dietary Supplements and Functional Foods Blackwell Publishing Ltd (United Kingdom), 2006
- 4. Ikan, Raphael "Natural Products: A Laboratory Guide", 2nd Edition, Academic Press / Elsevier, 2005.

#### REFERENCES:

- 1. Asian Functional Foods (Nutraceutical Science and Technology) by John Shi (Editor), Fereidoon Shahidi (Editor), Chi-Tang Ho (Editor), CRC Publications, Taylor & Francis, 2007
- Functional Foods and Nutraceuticals in Cancer Prevention by Ronald Ross Watson (Author), Blackwell Publishing, 2007
- 3. Marketing Nutrition: Soy, Functional Foods, Biotechnology, and Obesity by Brian Wansink.
- 4. Functional foods: Concept to Product: Edited by G R Gibson and C M Williams, Wood head Publ., 2000
- 5. Hanson, James R. "Natural Products: The Secondary Metabolites", Royal Society of Chemistry, 2003.

# COURSE OUTCOME - NUTRACEUTICALS

| CO 1 | acquire knowledge about the Nutraceuticals and functional foods, their classification and |
|------|-------------------------------------------------------------------------------------------|
|      | benefits.                                                                                 |
| CO 2 | acquire knowledge of phytochemicals, zoochemicals and microbes in food, plants,           |
|      | animals and microbes                                                                      |
| CO 3 | attain the knowledge of the manufacturing practices of selected nutraceutical             |
|      | components and formulation considerations of functional foods.                            |
| CO 4 | distinguish the various In vitro and In vivo assessment of Antioxidant activity of        |
|      | compounds from plant sources.                                                             |
| CO 5 | gain information about the health benefits of various functional foods and nutraceuticals |
|      | in the prevention and treatment of various lifestyle diseases.                            |
| CO 6 | Attain the knowledge of the regulatory and safety issues of nutraceuticals at national    |

and international level.

| CO's-PO's | CO's-PO's & PSO's MAPPING |     |    |    |    |     |    |     |    |      |      |      |
|-----------|---------------------------|-----|----|----|----|-----|----|-----|----|------|------|------|
|           | NUTRACEUTICALS            |     |    |    |    |     |    |     |    |      |      |      |
| Course    | PO1                       | PO2 | РО | РО | РО | PO6 | РО | PO8 | РО | PO10 | PO11 | PO12 |
| outcome   |                           |     | 3  | 4  | 5  |     | 7  |     | 9  |      |      |      |
| CO 1      | 3                         |     |    |    |    |     |    |     |    |      |      | 1    |
| CO 2      | 3                         |     |    |    |    |     |    |     |    |      |      | 1    |
| CO 3      | 3                         |     |    |    |    | 2   |    |     |    |      |      |      |
| CO 4      | 3                         |     |    |    |    |     |    |     |    |      |      |      |
| CO 5      | 3                         |     |    |    |    | 2   |    |     |    |      |      | 1    |
| CO 6      | 3                         |     |    |    |    |     |    | 2   |    |      |      | 1    |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

#### **OTT354**

# BASICS OF DYEING AND PRINTING

LTPC 3003

#### COURSE OBJECTIVE:

 To enable the students to learn about the basics of Pretreatment, dyeing, printing and machinery in textile processing.

#### UNIT I INTRODUCTION

9

Impurities present in different fibres, Inspection of grey goods and lot preparation. Shearing,

# UNIT II PRE TREATMENT

9

Desizing-Objective of Desizing- types of Desizing- Objective of Scouring- Mechanism of Scouring- Degumming of Silk, Scouring of wool - Bio Scouring. Bleaching -Objective of Bleaching: Bleaching mechanism of Hydrogen Peroxide, Hypo chlorites. Objective of Mercerizing - Physical and Chemical changes of Mercerizing.

# UNIT III DYEING

9

Dye - Affinity, Substantively, Reactivity, Exhaustion and Fixation. Classification of dyes. Direct dyes: General properties, principles and method of application on cellulosic materials. Reactive dyes – principles and method of application on cellulosic materials hot brand, cold brand.

# UNIT IV PRINTING

9

Definition of printing – Difference between printing and dying- Classification thickeners – Requirements to be good thickener, printing paste Preparation - different styles of printing.

# UNIT V MACHINERIES

9

**TOTAL: 45 PERIODS** 

Fabric Processing - winch, jigger and soft flow machines. Beam dyeing machines: Printing -flat bed screen - Rotary screen. Thermo transfer printing machinery. Garment dyeing machines.

# **COURSE OUTCOMES:**

Upon completion of the course, the students will be able to Understand the

CO1: Basics of grey fabric CO2: Basics of pre treatment

CO3: Concept of Dyeing CO4: Concept of Printing

CO5: Machinery in processing industry

#### **TEXT BOOKS:**

- 1. Trotman, E.R., Textile Scouring and Bleaching, Charless Griffins, Com. Ltd., London 1990.
- 2. Shenai V.A. "Technology of Textile Processing Vol. IV" 1998, Sevak Publications, Mumbai.

#### **REFERENCES:**

- 1. Trotman E. R., "Dyeing and Chemical Technology of Textile Fibres", Charles Griffin & Co. Ltd., U.K., 1984, ISBN: 0 85264 165 6.
- 2. Dr. N N Mahapatra., "Textile dyeing", Wood head publishing India, 2018
- 3. Mathews Kolanjikombil., "Dyeing of Textile substrates III –Fibres, Yarns and Knitted fabrics", Wood head publishing India , 2021
- 4. Bleaching & Mercerizing BTRA Silver Jubilee Monograph series
- 5. Chakraborty, J.N, "Fundamentals and Practices in colouration of Textiles", Wood head Publishing India, 2009, ISBN-13:978-81-908001-4-3.

# CO's-PO's & PSO's MAPPING

1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively

| Course         | Program Outcome                                                        |    |    |    |     |    |    |                                       |    |    |     |     |     |    |    |    |
|----------------|------------------------------------------------------------------------|----|----|----|-----|----|----|---------------------------------------|----|----|-----|-----|-----|----|----|----|
| Outco          | Statemen                                                               | РО | РО | PO | РО  | РО | РО | РО                                    | РО | PO | РО  | РО  | РО  | PS | PS | PS |
| mes            | t                                                                      | 1  | 2  | 3  | 4   | 5  | 6  | 7                                     | 8  | 9  | 10  | 11  | 12  | 01 | O2 | O3 |
| CO1            | Classifica<br>tion of<br>fibres<br>and<br>productio<br>n of<br>natural |    |    |    |     |    |    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2  | 1  | 7   | 1   | 1   |    | 1  | 1  |
|                | fibres                                                                 | ζ. | À  |    |     |    |    |                                       |    |    | /   |     |     | /  |    |    |
| CO2            | Regener ated and                                                       | -  | -  |    |     | -  | -  | -                                     | 2  | 1  | -   | 1   | 1   | -  | 1  | -  |
| CO2            | synthetic fibres                                                       | PR | 06 | RE | :53 | T  | HR | OU                                    | GH | K  | NOV | VLE | DGE |    |    |    |
| СОЗ            | Yarn<br>spinning                                                       | -  | -  | -  | -   | -  | -  | -                                     | 2  | 1  | -   | 1   | 1   | -  | 1  | -  |
| CO4            | Weaving                                                                |    |    | 1  | 1   | -  | -  | 1                                     | 2  | 1  | -   | 1   | 1   | -  | 1  | -  |
| CO5            | Knitting<br>and<br>nonwove<br>n                                        | 1  | -  | 1  | 1   | 1  | 1  | 1                                     | 2  | 1  | -   | 1   | 1   | -  | 1  | -  |
| Overa<br>II CO |                                                                        | -  | -  | 1  | -   | -  | -  | -                                     | 2  | 1  | -   | 1   | 1   | -  | 1  | -  |

1 - low, 2 - medium, 3 - high, '-' - no correlation

# **COURSE OBJECTIVES**

• To enable the students to learn about the types of fibre and its properties

# UNIT I INTRODUCTION TO TEXTILE FIBRES

9

Definition of various forms of textile fibres - staple fibre, filament, bicomponent fibres. Classification of Natural and Man-made fibres, essential and desirable properties of Fibres. Production and cultivation of Natural Fibers: Cotton, Silk, Wool -Physical and chemical structure of the above fibres.

# UNIT II REGENERATED FIBRES

q

Production Sequence of Regenerated Cellulosic fibres: Viscose Rayon, Acetate rayon – High wet modulus fibres: Modal and Lyocel ,Tencel

# UNIT III SYNTHEITC FIBRES

9

Production Sequence of Synthetic Fibers: polymer-Polyester, Nylon, Acrylic and polypropylene. Mineral fibres: fibre glass ,carbon .Introduction to spin finishes and texturization

#### UNIT IV SPECIALITY FIBRES

9

Properties and end uses of high tenacity and high modulus fibres, high temperature and flame retardant fibres, Chemical resistant fibres

# UNIT V FUNCTIONAL SPECIALITY FIBRES

a

**TOTAL: 45 PERIODS** 

**Properties and end uses:** Fibres for medical application – Biodegradable fibres based on PLA ,Super absorbent fibres elastomeric fibres, ultra-fine fibres, electrospun nano fibres, metallic fibres – Gold and Silver coated.

#### **COURSE OUTCOMES**

Upon completion of this course, the student would be able to

CO1: Understand the process sequence of various fibres

CO2: Understand the properties of various fibres

#### **TEXT BOOKS:**

- 1. Morton W. E., and Hearle J. W. S., "Physical Properties of Textile Fibres", The Textile Institute, Washington D.C., 2008, ISBN 978-1-84569-220-95
- 2. Meredith R., and Hearle J. W. S., "Physical Methods of Investigation of Textiles", Wiley Publication, New York, 1989, ISBN: B00JCV6ZWU | ISBN-13:
- 3. Mukhopadhyay S. K., "Advances in Fibre Science", The Textile Institute,1992, ISBN: 1870812379

# **REFERENCES:**

- 1. Meredith R., "Mechanical Properties of Textile Fibres", North Holland, Amsterdam, 1986, ISBN: 1114790699, ISBN-13: 9781114790698
- 2. Hearle J. W. S., Lomas B., and Cooke W. D., "Atlas of Fibre Fracture and Damage to Textiles", The Textile Institute, 2<sup>nd</sup> Edition, 1998, ISBN: 1855733196.
- 3. Raheel M. (ed.)., "Modern Textile Characterization Methods", Marcel Dekker, 1995, ISBN:0824794737

- 4. Mukhopadhyay. S. K., "The Structure and Properties of Typical Melt Spun Fibres", Textile Progress, Vol. 18, No. 4, Textile Institute, 1989, ISBN: 1870812115
- 5. Hearle J.W.S., "Polymers and Their Properties: Fundamentals of Structures and Mechanics Vol 1", Ellis Horwood, England, 1982, ISBN: 047027302X | ISBN-13: 9780470273029 36

# OTT355 GARMENT MANUFACTURING TECHNOLOGY

LTPC 30 03

# COURSE OBJECTIVE:

- To enable the students to understand the basics of pattern making, cutting and sewing.
- To expose the students to various problems & remedies during garment manufacturing

# UNIT I PATTERN MAKING, MARKER PLANNING, CUTTING

q

Anthropometry, specification sheet, pattern making – principles, basic pattern set drafting, grading, marker planning, spreading & cutting

# UNIT II TYPES OF SEAMS. STITCHES AND FUNCTIONS OF NEEDLES

9

Different types of seams and stitches; single needle lock stitch machine – mechanism and accessories; needle – functions, special needles, needlepoint

# UNIT III COMPONENTS AND TRIMS USED IN GARMENT

9

Sewing thread-construction, material, thread size, packages, accessories – labels, linings, interlinings, wadding, lace, braid, elastic, hook and loop fastening, shoulder pads, eyelets and laces, zip fasteners, buttons

# UNIT IV GARMENT INSPECTION AND DIMENSIONAL CHANGES

9

Raw material, in process and final inspection; needle cutting; sewability of fabrics; strength properties of apparel; dimensional changes in apparel due to laundering, dry-cleaning, steaming and pressing.

# UNIT V GARMENT PRESSING, PACKING AND CARE LABELING

9

Garment pressing – categories and equipment, packing; care 330abelling of apparels

**TOTAL: 45 PERIODS** 

# **COURSE OUTCOMES:**

Upon completion of the course, the students will be able to Understand

CO1: Pattern making, marker planning, cutting

CO2: Types of seams, stitches and functions of needles

CO3: Components and trims used in garment

CO4: Garment inspection and dimensional changes

CO5: Garment pressing, packing and careabelling

#### **TEXT BOOKS:**

- 1. Carr H., and Latham B., "The Technology of Clothing Manufacture", Blackwell Science Ltd., Oxford, 1994.
- 2. Gerry Cooklin, "Introduction to Clothing Manufacture" Blackwell Science Ltd., 1995. 64
- 3. Harrison.P.W Garment Dyeing, The Textile Institute Publication, Textile Progress, Vol .19 No.2,1988.

#### **REFERENCES:**

- 1. Winifred Aldrich., "Metric Pattern Cutting", Blackwell Science Ltd., Oxford, 1994
- 2. Peggal H., "The Complete Dress Maker", Marshall Caverdish, London, 1985
- 3. Jai Prakash and Gaur R.K., "Sewing Thread", NITRA, 1994
- 4. Ruth Glock, Grace I. Kunz, "Apparel Manufacturing", Dorling Kindersley Publishing Inc., New Jersey, 1995.
- 5. Pradip V.Mehta, "An Introduction to Quality Control for the Apparel Industry", J.S.N. Internationals, 1992.

#### CO's-PO's & PSO's MAPPING

|      |     | PO's |   |     |     |     |     |   |     |     |     |    | PSO's |     |   |     |
|------|-----|------|---|-----|-----|-----|-----|---|-----|-----|-----|----|-------|-----|---|-----|
| CO's | 1   | 2    | 3 | 4   | 5   | 6   | 7   | 8 | 9   | 10  | 11  | 12 | 1     | 2   | 3 | 4   |
| 1    | 1   | 1    | 1 | -   | 2   | -   | 1   | 1 | -   | 2   | 3   | 1  | 2     | 3   | 1 | 3   |
| 2    | 2   | 2    | 1 | 1   | 1   | -   | 1   | 1 | -   | 2   | 2   | 1  | 2     | 2   | 1 | 2   |
| 3    | 1   | 1    | 1 | 1   | 1   | 1   | 1   | 1 | -   | 1   | 2   | 1  | 1     | 3   | 1 | 3   |
| 4    | 2   | 1    | 1 | 1   | 2   | 2   | 2   | 1 | 1,  | 2   | 3   | 1  | 2     | 3   | 1 | 3   |
| 5    | 2   | 2    | 1 | 1   | 1   | 1   | 2   | 1 | -   | 2   | 2   | 1  | 2     | 2   | 1 | 2   |
| Avg  | 1.6 | 1.2  | 1 | 0.8 | 1.4 | 8.0 | 1.4 | 1 | 0.2 | 1.8 | 2.4 | 1  | 1.8   | 2.6 | 1 | 2.6 |

1 - low, 2 - medium, 3 - high, '-' - no correlation

**OPE353** 

INDUSTRIAL SAFETY

L T P C 3 0 0 3

# **COURSE OBJECTIVES:**

- To educate about the health hazards and the safety measures to be followed in the industrial environment.
- Describe industrial legislations (Factories Acts, Workmen's Compensation and other laws) enacted for the protection of employees health at work settings
- Describe methods of prevention and control of Occupational Health diseases, accidents / emergencies and other hazards

# UNIT I INTRODUCTION

9

Need for developing Environment, Health and Safety systems in work places - Accident Case Studies - Status and relationship of Acts - Regulations and Codes of Practice - Role of trade union safety representatives. International initiatives - Ergonomics and work place.

#### UNIT II OCCUPATIONAL HEALTH AND HYGIENE

9

Definition of the term occupational health and hygiene - Categories of health hazards - Exposure pathways and human responses to hazardous and toxic substances - Advantages and limitations of environmental monitoring and occupational exposure limits - Hierarchy of control measures for occupational health risks - Role of personal protective equipment and the selection criteria - Effects on humans - control methods and reduction strategies for noise, radiation and excessive stress.

# UNIT III WORKPLACE SAFETY AND SAFETY SYSTEMS

9

Features of Satisfactory and Safe design of work premises – good housekeeping - lighting and colour, Ventilation and Heat Control – Electrical Safety – Fire Safety – Safe Systems of work for manual handling operations – Machine guarding – Working at different levels – Process and System Safety.

# UNIT IV HAZARDS AND RISK MANAGEMENT

9

Safety appraisal - analysis and control techniques – plant safety inspection – Accident investigation - Analysis and Reporting – Hazard and Risk Management Techniques – major accident hazard control – Onsite and Offsite emergency Plans.

#### UNIT V ENVIRONMENTAL HEALTH AND SAFETY MANAGEMENT

9

Concept of Environmental Health and Safety Management – Elements of Environmental Health and Safety Management Policy and methods of its effective implementation and review – Elements of Management Principles – Education and Training – Employee Participation.

**TOTAL: 45 PERIODS** 

# **COURSE OUTCOMES:**

After completion of this course, the student is expected to be able to:

CO1: Describe, with example, the common work-related diseases and accidents in occupational setting

CO2: Name essential members of the Occupational Health team

**CO3:** What roles can a community health practitioners play in an Occupational setting to ensure the protection, promotion and maintenance of the health of the employee

**OPE354** 

#### UNIT OPERATIONS IN PETRO CHEMICAL INDUSTRIES

LTPC

3003

# **COURSE OBJECTIVES:**

 To impart to the student basic knowledge on fluid mechanics, mechanical operations, heat transfer operations and mass transfer operations.

#### **UNIT I FLUID MECHANICS CONCEPTS**

9

Fluid definition and classification of fluids, types of fluids, Rheological behaviour of fluids & Newton's Law of viscosity. Fluid statics-Pascal's law, Hydrostatic equilibrium, Barometric equation and pressure measurement(problems), Basic equations of fluid flow - Continuity equation, Euler's equation and Bernoulli equation; Types of flow - Iaminar and turbulent; Reynolds experiment; Flow through circular and non-circular conduits - Hagen Poiseuille equation (no derivation). Flow through stagnant fluids – theory of Settling and Sedimentation – Equipment (cyclones, thickeners) Conceptual numericals.

#### **UNIT II FLOW MEASUREMENTS & MECHANICAL OPERATIONS**

9

Different types of flow measuring devices (Orifice meter, Venturimeter, Rotameter) with derivations, flow measurements –. Pumps – types of pumps (Centrifugal & Reciprocating pumps), Energy calculations and characteristics of pumps. Size reduction–characteristics of comminute products, sieve analysis, Properties and handling of particulate solids – characterization of solid particles, average particle size, screen analysis- Conceptual numerical of differential and cumulative analysis. Size reduction, crushing laws, working principle of ball mill. Filtration & types, filtration equipments (plate and frame, rotary drum). Conceptual numericals.

# **UNIT III CONDUCTIVE & CONVECTIVE HEAT TRANSFER**

9

Modes of heat transfer; Conduction – steady state heat conduction through unilayer and multilayer walls, cylinders; Insulation, critical thickness of insulation. Convection- Forced and Natural convection, principles of heat transfer co-efficient, log mean temperature difference, individual and overall heat transfer co-efficient, fouling factor; Condensation – film wise and drop wise (no derivation). Heat transfer equipments – double pipe heat exchanger, shell and tube heat exchanger (with working principle and construction with applications).

#### UNIT IV BASICS OF MASS TRANSFER

9

Diffusion-Fick's law of diffusion. Types of diffusion. Steady state molecular diffusion in fluids at rest and laminar flow (stagnant / unidirection and bi direction). Measurement of diffusivity, Mass transfer coefficients and their correlations. Conceptual numerical.

#### **UNIT V MASS TRANSFER OPERATIONS**

9

Basic concepts of Liquid-liquid extraction – equilibrium, stage type extractors (belt extraction and basket extraction). Distillation – Methods of distillation, distillation of binary mixtures using McCabe Thiele method. Drying- drying operations, batch and continuous drying. Conceptual numerical.

**TOTAL: 45 PERIODS** 

#### **COURSE OUTCOMES:**

At the end of the course the student will be able to:

**CO1:** State and describe the nature and properties of the fluids.

**CO2:** Study the different flow measuring instruments, the principles of various size reductions, conveying equipment's, sedimentation and mixing tanks.

CO3: Comprehend the laws governing the heat and mass transfer operations to solve the problems.

**CO4:** Design the heat transfer equipment suitable for specific requirement.

#### TEXTBOOK(S)

- 1. Unit operations in Chemical Engineering Warren L. McCabe, Julian C. Smith & Peter Harriot McGraw-Hill Education (India) Edition 2014
- 2. Fluid Mechanics K L Kumar S Chand & Company Ltd 2008
- 3. Introduction to Chemical Engineering Badger W.I. and Banchero, J.T., Tata McGraw Hill New York 1997

#### REFERENCE BOOKS

- 1. Principles of Unit Operations Alan S Foust, L.A. Wenzel, C.W. Clump, L. Maus, and L.B. Anderson John Wiley & Sons 2nd edition 2008
- 2. Unit Operations of Chemical Engineering, Vol I &II Chattopadhyaya Khanna Publishers, Delhi-6 1996
- 3. Heat Transfer J P Holman McGraw Hill International Ed

#### **OPT352**

# PLASTIC MATERIALS FOR ENGINEERS

LTPC

3003

# **COURSE OBJECTIVES**

• Understand the advantages, disadvantages and general classification of plastic materials

- To know the manufacturing, sources, and applications of engineering thermoplastics
- Understand the basics as well as the advanced applications of various plastic materials in the industry
- To understand the preparation methods of thermosetting materials
- Select suitable specialty plastics for different end applications

# UNIT I INTRODUCTION TO PLASTIC MATERIALS

9

Introduction to Plastics – Brief history of plastics, advantages and disadvantages, thermoplastic and thermosetting behavior, amorphous polymers, crystalline polymers and cross-linked structures. General purpose thermoplastics/ Commodity plastics: manufacture, structure, properties and applications of polyethylene (PE), cross-linked PE, chlorinated PE, polypropylene, polyvinyl chloride-compounding, formulation, polypropylene (PP)

#### UNIT II ENGINEERING THERMOPLASTICS AND APPLICATIONS

9

Engineering thermoplastics – Aliphatic polyamides: structure, properties, manufacture and applications of Nylon 6, Nylon 66. Polyesters: manufacture, structure, properties and uses of PET, PBT. Manufacture, structure, properties and uses of Polycarbonates, acetal resins, polyimides, PMMA, polyphenylene oxide, thermoplastic polyurethane (PU)

#### UNIT III THERMOSETTING PLASTICS

9

Thermosetting Plastics – Manufacture, curing, moulding powder, laminates, properties and uses of phenol formaldehyde resins, urea formaldehyde, melamine formaldehyde, unsaturated polyester resin, epoxy resin, silicone resins, polyurethane resins.

# UNIT IV MISCELLANEOUS PLASTICS FOR END APPLICATIONS

9

Miscellaneous plastics- Manufacture, properties and uses of polystyrene, HIPS, ABS, SAN, poly(tetrafluoroethylene) (PTFE), TFE and copolymers, PVDF, PVA, poly (vinyl acetate), poly (vinyl carbazole), cellulose acetate, PEEK, High energy absorbing polymers, super absorbent polymers-their synthesis, properties and applications

# UNIT V PLASTICS MATERIALS FOR BIOMEDICAL APPLICATIONS

9

**TOTAL: 45 PERIODS** 

Sources, raw materials, methods of manufacturing, properties and applications of bio-based polymers- poly lactic acid (PLA), poly hydroxy alkanoates (PHA), PBAT, bioplastics- bio-PE, bio-PP, bio-PET, polymers for biomedical applications

# COURSE OUTCOMES

CO1: To study the importance, advantages and classification of plastic materials

**CO2:** Summarize the raw materials, sources, production, properties and applications of various engineering thermoplastics

**CO3:** To understand the application of polyamides, polyesters and other engineering thermoplastics, thermosetting resins

**CO4:** Know the manufacture, properties and uses of thermosetting resins based on polyester, epoxy, silicone and PU

**CO5:** To understand the engineering applications of various polymers in miscellaneous areas and applications of different biopolymers

#### **REFERENCES**

1. Marianne Gilbert (Ed.), Brydson's Plastics Materials, 8th Edn., Elsevier (2017).

- 2. J.A.Brydson, Plastics Materials, 7<sup>th</sup> Edn., Butterworth Heinemann (1999).
- 3. Manas Chanda, Salil K. Roy, Plastics Technology Handbook, 4th Edn., CRC press (2006).
- 4. A. Brent Strong, Plastics: Materials and Processing, 3rd Edn., Pearson Prentice Hall (2006).
- 5. Olagoke Olabisi, Kolapo Adewale (Eds.), Handbook of Thermoplastics 2<sup>nd</sup> Edn., CRC press(2016).
- 6. Charles A. Harper, Modern Plastics Handbook, McGraw-Hill, New York, 1999.
- 7. H. Dominighaus, Plastics for Engineers, Hanser Publishers, Munich, 1988.

# OPT353 PROPERTIES AND TESTING OF PLASTICS

LTPC 3003

#### **COURSE OBJECTIVES**

factor.

- To understand the relevance of standards and specifications as well as the specimen preparation for polymer testing.
- To study the mechanical properties and testing of polymer materials and their structural property relationships.
- To understand the thermal properties of polymers and their testing methods.
- To gain knowledge on the electrical and optical properties of polymers and their testing methods.
- To study about the environmental effects and prevent polymer degradation.

# UNIT I INTRODUCTION TO CHARACTERIZATION AND TESTING OF POLYMERS 9 Introduction- Standard organizations: BIS, ASTM, ISO, BS, DIN etc. Standards and specifications. Importance of standards in the quality control of polymers and polymer products. Preparation of test pieces, conditioning and test atmospheres. Tests on elastomers: processability parameters of rubbers – plasticity, Mooney viscosity, scorch time, cure time, cure rate index, Processability tests carried out on thermoplastics and thermosets: MFI, cup flow index, gel time, bulk density, bulk

# UNIT II MECHANICAL PROPERTIES

9

Mechanical properties: Tensile, compression, flexural, shear, tear strength, hardness, impact strength, resilience, abrasion resistance, creep and stress relaxation, compression set, dynamic fatigue, ageing properties, Basic concepts of stress and strain, short term tests: Viscoelastic behavior (simple models: Kelvin model for creep and stress relaxation, Maxwell-Voigt model, strain recovery and dynamic response), Effect of structure and composition on mechanical properties, Behavior of reinforced polymers

# UNIT III THERMAL RHEOLOGICAL PROPERTIES

9

Thermal properties: Transition temperatures, specific heat, thermal conductivity, co-efficient of thermal expansion, heat deflection temperature, Vicat softening point, shrinkage, brittleness temperature, thermal stability and flammability. Product testing: Plastic films, sheeting, pipes, laminates, foams, containers, cables and tubes.

# UNIT IV ELECTRICAL AND OPTICAL PROPERTIES

9

Electrical properties: volume and surface resistivity, dielectric strength, dielectric constant and power factor, arc resistance, tracking resistance, dielectric behavior of polymers (dielectric coefficient, dielectric polarization), dissipation factor and its importance. Optical properties: transparency, refractive index, haze, gloss, clarity, birefringence.

# UNIT V ENVIRONMENTAL AND CHEMICAL RESISTANCE

9

Environmental stress crack resistance (ESCR), water absorption, weathering, aging, ozone resistance, permeability and adhesion. Tests for chemical resistance. Acids, alkalies, Flammability tests- oxygen index test.

**TOTAL: 45 PERIODS** 

# **COURSE OUTCOMES**

- Understand the relevance of standards and specifications.
- Summarize the various test methods for evaluating the mechanical properties of the polymers.
- To know the thermal, electrical & optical properties of polymers.
- Identify various techniques used for characterizing polymers.
- Distinguish the processability tests used for thermoplastics, thermosets and elastomers.

#### **REFERENCES**

- 1. F.Majewska, H.Zowall, Handbook of analysis of synthetic polymers and plastics, Ellis Horwood Limited Publisher 1977.
- 2. J.F.Rabek, Experimental Methods in Polymer Chemistry, John Wiley and Sons 1980.
- 3. R.P.Brown, Plastic test methods, 2<sup>nd</sup> Edn., Harlond, Longman Scientific, 1981.
- 4. A. B. Mathur, I. S. Bharadwaj, Testing and Evaluation of Plastcis, Allied Publishers Pvt. Ltd., New Delhi, 2003.
- 5. Vishu Shah, Handbook of Plastic Testing Technology, 3rd Edn., John Wiley & Sons 2007.
- 6. S. K. Nayak, S. N. Yadav, S. Mohanty, Fundamentals of Plastic Testing, Springer, 2010.

# OCE354 BASICS OF INTEGRATED WATER RESOURCES MANAGEMENT

LTPC

3 0 0 3

#### COURSE OBJECTIVES

- To introduce the interdisciplinary approach of water management.
- To develop knowledge base and capacity building on IWRM.

#### UNIT I OVERVIEW OF IWRM

9

Facts about water - Definition - Key challenges - Paradigm shift - Water management Principles - Social equity - Ecological sustainability - Economic efficiency - SDGs - World Water Forums.

#### UNIT II WATER USE SECTORS: IMPACTS AND SOLUTION

9

Water users: People, Agriculture, ecosystem and others - Impacts of the water use sectors on water resources - Securing water for people, food production, ecosystems and other uses - IWRM relevance in water resources management.

#### UNIT III WATER ECONOMICS

9

Economic characteristics of water good and services – Economic instruments – Private sector involvement in water resources management - PPP experiences through case studies.

# UNIT IV RECENT TREANDS IN WATER MANAGEMENT

9

River basin management - Ecosystem Regeneration – 5 Rs - WASH - Sustainable livelihood - Water management in the context of climate change.

# UNIT V IMPLEMENTATION OF IWRM

9

Barriers to implementing IWRM - Policy and legal framework - Bureaucratic reforms and inclusive development - Institutional Transformation - Capacity building - Case studies on conceptual framework of IWRM.

**TOTAL: 45 PERIODS** 

#### **COURSE OUTCOMES**

On completion of the course, the student will be able to apply appropriate management techniques towards managing the water resources.

- **CO1** Describe the context and principles of IWRM; Compare the conventional and integrated ways of water management.
- CO2 Discuss on the different water uses; how it is impacted and ways to tackle these impacts.
- **CO3** Explain the economic aspects of water and choose the best economic option among the alternatives; illustrate the pros and cons of PPP through case studies.
- **CO4** Illustrate the recent trends in water management.
- CO5 Understand the implementation hitches and the institutional frameworks.

#### **TEXT BOOKS**

- 1. Cech Thomas V., Principles of water resources: history, development, management and policy. John Wiley and Sons Inc., New York. 2003.
- 2. Mollinga P. *et al.* "Integrated Water Resources Management", Water in South Asia Volume I, Sage Publications, 2006.

# **REFERENCES**

- 1. Technical Advisory Committee, Background Papers No: 1, 4 and 7, Stockholm, Sweden. 2002.
- 2. IWRM Guidelines at River Basin Level (UNESCO, 2008).
- Tutorial on Basic Principles of Integrated Water Resources Management ,CAP-NET. http://www.pacificwater.org/userfiles/file/IWRM/Toolboxes/introduction%20to%20iwrm/Tutorial text.pdf
- 4. Pramod R. Bhave, 2011, Water Resources Systems, Narosa Publishers.
- 5. The 17 Goals, United Nations, https://sdgs.un.org/goals.

OEC353 VLSI DESIGN

L T PC 3 0 0 3

#### COURSE OBJECTIVES:

- Understand the fundamentals of IC technology components and their characteristics.
- Understand combinational logic circuits and design principles.
- Understand sequential logic circuits and clocking strategies.
- Understand Interconnects and Memory Architecture.
- Understand the design of arithmetic building blocks

# **UNIT I MOS TRANSISTOR PRINCIPLES**

C

MOS logic families (NMOS and CMOS), Ideal and Non Ideal IV Characteristics, CMOS devices. MOS(FET) Transistor DC transfer Characteristics ,small signal analysis of MOSFET.

#### **UNIT II COMBINATIONAL LOGIC CIRCUITS**

9

Propagation Delays, stick diagram, Layout diagrams, Examples of combinational logic design, Elmore's constant, Static Logic Gates, Dynamic Logic Gates, Pass Transistor Logic, Power Dissipation.

# **UNIT III SEQUENTIAL LOGIC CIRCUITS AND CLOCKING STRATEGIES**

9

Static Latches and Registers, Dynamic Latches and Registers, Pipelines, Timing classification of Digital Systems, Synchronous Design, Self-Timed Circuit Design.

# UNIT IV INTERCONNECT, MEMORY ARCHITECTURE

9

Interconnect Parameters - Capacitance, Resistance, and Inductance, Logic Implementation using Programmable Devices (ROM, PLA, FPGA), Memory Architecture and Building Blocks.

#### UNIT V DESIGN OF ARITHMETIC BUILDING BLOCKS

Arithmetic Building Blocks: Data Paths, Adders-Ripple Carry Adder, Carry-Bypass Adder, Carry Select Adder, Carry-Look Ahead Adder, Multipliers, Barrel Shifter, power and speed tradeoffs.

# **TOTAL: 45 PERIODS**

# **COURSE OUTCOMES:**

Upon successful completion of the course the student will be able to

CO1: Understand the working principle and characteristics of MOSFET

CO2: Design Combinational Logic Circuits

CO3: Design Sequential Logic Circuits and Clocking systems

**CO4**: Understand Memory architecture and interconnects

CO5: Design of arithmetic building blocks.

# **TEXTBOOKS**

- 1. Jan D Rabaey, Anantha Chandrakasan, "Digital Integrated Circuits: A Design Perspective", PHI, 2016.(Units II, III IV and V).
- 2. Neil H E Weste, Kamran Eshranghian, "Principles of CMOS VLSI Design: A System Perspective," Addison Wesley, 2009.(Units - I).

#### **REFERENCES**

- 1. D.A. Hodges and H.G. Jackson, Analysis and Design of Digital Integrated Circuits, International Student Edition, McGraw Hill 1983
- 2. P. Rashinkar, Paterson and L. Singh, "System-on-a-Chip Verification-Methodology and Techniques", Kluwer Academic Publishers, 2001
- 3. Samiha Mourad and Yervant Zorian, "Principles of Testing Electronic Systems", Wiley 2000
- 4. M. Bushnell and V. D. Agarwal, "Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits", Kluwer Academic Publishers, 2000

# CO's-PO's & PSO's MAPPING

| С | РО | P01 | PO1 | PO1 | PSO | PSO | PSO |
|---|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|
| 1 | 3  | 3  | 2  | 2  | 1  | 3  | -  | -  | -  | -   | 2   | 3   | 3   | 3   | 3   |
| 2 | 3  | 3  | 2  | 2  | 1  | -  | -  | -  | -  | -   | -   | 2   | 3   | 3   | 3   |
| 3 | 3  | •  | 3  | 2  | 1  | 2  | -  | -  | •  | -   | 3   | 2   | 3   | 2   | 3   |
| 4 | 3  | 3  | 2  | 2  | 2  | -  | -  | -  | -  | -   | -   | 1   | 3   | 3   | 2   |
| 5 | 2  | •  | 3  | 2  | 2  | 1  | -  | -  | •  | -   | 1   | 1   | 3   | 2   | 2   |
| С | 3  | 3  | 2  | 2  | 1  | 2  | -  | -  | -  | -   | 2   | 2   | 3   | 3   | 3   |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

#### **OBT355**

#### **BIOTECHNOLOGY FOR WASTE MANAGEMENT**

LTPC 3 003

#### UNIT I BIOLOGICAL TREATMENT PROCESS

q

Fundamentals of biological process - Anaerobic process - Pretreatment methods in anaerobic process - Aerobic process, Anoxic process, Aerobic and anaerobic digestion of organic wastes - Factors affecting process efficiency - Solid state fermentation - Submerged fermentation - Batch and continous fermentation

#### UNIT II WASTE BIOMASS AND ITS VALUE ADDITION

9

Types of waste biomass – Solid waste management - Nature of biomass feedstock – Biobased economy/process – Value addition of waste biomass – Biotransformation of biomass – Biotransformation of marine processing wastes – Direct extraction of biochemicals from biomass – Plant biomass for industrial application

# UNIT III BIOCONVERSION OF WASTES TO ENERGY

9

Perspective of biofuels from wastes - Bioethanol production - Biohydrogen Production - dark and photofermentative process - Biobutanol production - Biogas and Biomethane production - Single stage anaerobic digestion, Two stage anaerobic digestion - Biodiesel production - Enzymatic hydrolysis technologies

# UNIT IV CHEMICALS AND ENZYME PRODUCTION FROM WASTES

9

Production of lactic acid, succinic acid, citric acid – Biopolymer synthesis – Production of Amylases - Lignocellulolytic enzymes - Pectinolytic enzymes - Proteases – Lipases

# UNIT V BIOCOMPOSTING OF ORGANIC WASTES

9

**TOTAL: 45 PERIODS** 

Overview of composting process - Benefitis of composting, Role of microorganisms in composting - Factors affecting the composting process - Waste Materials for Composting, Fundamentals of composting process - Composting technologies, Composting systems - Nonreactor Composting, Reactor composting - Compost Quality

#### **COURSE OUTCOMES**

After completion of this course, the students should be able

CO1: To learn the various methods biological treatment

CO2: To know the details of waste biomass and its value addition

CO3: To develop the bioconversion processes to convert wastes to energy

CO4: To synthesize the chemicals and enzyme from wastes

**CO5:** To produce the biocompost from wastes

CO6: To apply the theoretical knowledge for the development of value added products

#### **TEXT BOOKS**

- 1. Antoine P. T., (2017) "Biofuels from Food Waste Applications of Saccharification Using Fungal Solid State Fermentation", CRC press
- 2. Joseph C A., (2019)"Anaerobic Waste-Wastewater Treatment and Biogas Plants-A Practical Handbook", CRC Press,

# REFERENCE BOOKS

1. Palmiro P. and Oscar F.D'Urso, (2016) 'Biotransformation of Agricultural Waste and By-Products', The Food, Feed, Fibre, Fuel (4F) Economy, Elsevier

- 2. Kaur Brar S., Gurpreet Singh D. and Carlos R.S., (Eds), (2014) Biotransformation of Waste Biomass into High Value Biochemicals', Springer.
- 3. Keikhosro K, Editor, (2015) 'Lignocellulose-Based Bioproducts', Springer.
- 4. John P, (2014) 'Waste Management Practices-Municipal, Hazardous, and Industrial', Second Edition, CRC Press, 2014

**OBT356** 

#### LIFESTYLE DISEASES

LTPC 3 003

#### UNIT I INTRODUCTION

9

Lifestyle diseases – Definition; Risk factors – Eating, smoking, drinking, stress, physical activity, illicit drug use; Obesity, diabetes, cardiovascular diseases, respiratory diseases, cancer; Prevention – Diet and exercise.

#### UNIT II CANCER

9

Types - Lung cancer, Mouth cancer, Skin cancer, Cervical cancer, Carcinoma oesophagus; Causes Tobacco usage, Diagnosis – Biomarkers, Treatment

#### UNIT III CARDIOVASCULAR DISEASES

9

Coronoary atherosclerosis – Coronary artery disease; Causes -Fat and lipids, Alcohol abuse – Diagnosis - Electrocardiograph, echocardiograph, Treatment, Exercise and Cardiac rehabilitation

# UNIT IV DIABETES AND OBESITY

9

Types of Diabetes mellitus; Blood glucose regulation; Complications of diabetes – Paediatric and adolescent obesity – Weight control and BMI

# UNIT V RESPIRATORY DISEASES

9

Chronic lung disease, Asthma, COPD; Causes - Breathing pattern (Nasal vs mouth), Smoking - Diagnosis - Pulmonary function testing

**TOTAL: 45 PERIODS** 

# **TEXT BOOKS:**

- 1. R.Kumar&Meenal Kumar, "Guide to Prevention of Lifestyle Diseases", Deep & Deep Publications, 2003
- 2. Gary Eggar et al, "Lifestyle Medicine", 3rd Edition, Academic Press, 2017

#### **REFERENCES:**

- 1. James M.R, "Lifestyle Medicine", 2nd Edition, CRC Press, 2013
- 2. Akira Miyazaki et al, "New Frontiers in Lifestyle-Related Disease", Springer, 2008

# OBT357 BIOTECHNOLOGY IN HEALTH CARE

LTPC 3 0 0 3

# **COURSE OBJECTIVES**

The aim of this course is to

- 1. Create higher standard of knowledge on healthcare system and services
- 2. Prioritize advanced technologies for the diagnosis and treatment of various diseases

# UNIT I PUBLIC HEALTH

9

Definition and Concept of Public Health, Historical aspects of Public Health, Changing Concepts of Public Health, Public Health versus Medical Care, Unique Features of Public Health, Determinants of Health (Social, Economic, Cultural, Environmental, Education, Genetics, Food and Nutrition). Indicators of health, Burden of disease, Role of different disciplines in Public Health.

# UNIT II CLINICAL DISEASES

9

Communicable diseases: Chickenpox / Shingles, COVID-19, Tuberculosis, Hepatitis B, Hepatitis C, HIV / AIDS, Influenza, Swine flu. Non Communicable diseases: Diabetes mellitus, atherosclerosis, fatty liver, Obesity, Cancer

# UNIT III VACCINOLOGY

9

History of Vaccinology, conventional approaches to vaccine development, live attenuated and killed vaccines, adjuvants, quality control, preservation and monitoring of microorganisms in seed lot systems. Instruments related to monitoring of temperature, sterilization, environment.

# UNIT IV OUTPATIENT & IN PATIENT SERVICES

9

Radiotherapy, Nuclear medicine, surgical units, OT Medical units, G & Obs. units Pediatric, neonatal units, Critical care units, Physical medicine & Rehabilitation, Neurology, Gastroenterology, Endoscopy, Pulmonology, Cardiology.

# UNIT V BASICS OF IMAGING MODALITIES

9

Diagnostic X-rays - Computer tomography – MRI – Ultrasonography – Endoscopy – Thermography – Different types of biotelemetry systems.

# **TOTAL: 45 PERIODS**

# **TEXT BOOKS**

- 1. Joseph J.carr and John M. Brown, Introduction to Biomedical Equipment Technology, John Wiley and sons, New York, 4th Edition, 2012.
- 2. Thomas M. Devlin.Textbook of Biochemistry with clinical correlations. Wiley Liss Publishers
- 3. The Vaccine Book (2nd Ed.), Rafi Ahmed, Roy M. Anderson et. al.Editor(s): Barry R. Bloom, PaulHenri Lambert, Academic Press, 2016, Pages xxi-xxiv.

#### REFERENCE BOOKS

- 1. Suh, Sang, Gurupur, Varadraj P., Tanik, Murat M., Health Care Systems, Technology and Techniques, Springer, 1st Edition, 2011
- 2. Burtis & Ashwood W.B. Tietz Textbook of Clinical chemistry. Saunders Company
- 3. Levine, M. M. (2004). New Generation Vaccines. New York: M. Dekker

#### **VERTICAL 1: FINTECH AND BLOCK CHAIN**

# CMG331 FINANCIAL MANAGEMENT

LT P C 3 0 0 3

#### **LEARNING OBJECTIVES**

- 1.To acquire the knowledge of the decision areas in finance.
- 2. To learn the various sources of Finance
- 3. To describe about capital budgeting and cost of capital.
- 4. To discuss on how to construct a robust capital structure and dividend policy
- 5. To develop an understanding of tools on Working Capital Management.

# UNIT I INTRODUCTION TO FINANCIAL MANGEMENT

9

Definition and Scope of Finance Functions - Objectives of Financial Management - Profit Maximization and Wealth Maximization- Time Value of money- Risk and return concepts.

# UNIT II. SOURCES OF FINANCE

9

Long term sources of Finance -Equity Shares - Debentures - Preferred Stock - Features - Merits and Demerits. Short term sources - Bank Sources, Trade Credit, Overdrafts, Commercial Papers, Certificate of Deposits, Money market mutual funds etc

# UNIT III INVESTMENT DECISIONS:

9

Investment Decisions: capital budgeting – Need and Importance – Techniques of Capital Budgeting – Payback -ARR – NPV – IRR –Profitability Index.

Cost of Capital - Cost of Specific Sources of Capital - Equity -Preferred Stock- Debt - Reserves - Concept and measurement of cost of capital - Weighted Average Cost of Capital.

#### UNIT IV FINANCING AND DIVIDEND DECISION

9

Operating Leverage and Financial Leverage- EBIT-EPS analysis. Capital Structure – determinants of Capital structure- Designing an Optimum capital structure.

Dividend policy - Aspects of dividend policy - practical consideration - forms of dividend policy - Determinants of Dividend Policy

# UNIT V WORKING CAPITAL DECISION

9

Working Capital Management: Working Capital Management - concepts - importance - Determinants of Working capital. Cash Management: Motives for holding cash - Objectives and Strategies of Cash Management. Receivables Management: Objectives - Credit policies.

**TOTAL: 45 PERIODS** 

# **TEXT BOOKS**

- 1. M.Y. Khan and P.K.Jain Financial management, Text, Tata McGraw Hill
- 2. M. Pandey Financial Management, Vikas Publishing House Pvt. Ltd

# REFERENCES.

- 1. James C. Vanhorne –Fundamentals of Financial Management– PHI Learning,.
- 2. Prasanna Chandra, Financial Management,
- 3. Srivatsava, Mishra, Financial Management, Oxford University Press, 2011

#### CMG332

#### **FUNDAMENTALS OF INVESTMENT**

LT P C 3 0 0 3

#### **COURSE OBJECTIVES:**

- 1. Describe the investment environment in which investment decisions are taken.
- 2. Explain how to Value bonds and equities
- 3. Explain the various approaches to value securities
- 4. Describe how to create efficient portfolios through diversification
- 5. Discuss the mechanism of investor protection in India.

# **UNIT1: THE INVESTMENT ENVIRONMENT**

9

The investment decision process, Types of Investments – Commodities, Real Estate and FinancialAssets, the Indian securities market, the market participants and trading of securities, securitymarket indices, sources of financial information, Concept of return and risk, Impact of Taxes and Inflation on return.

# **UNIT2: FIXED INCOME SECURITIES**

9

Bond features, types of bonds, estimating bond yields, Bond Valuation types of bond risks, defaultrisk and reditrating.

# **UNIT3: APPROACHES TOEQUITYANALYSIS**

9

Introduction to Fundamental Analysis, Technical Analysis and Efficient Market Hypothesis, dividend capitalisation models, and price-earnings multiple approach to equity valuation.

#### **UNIT4: PORTFOLIO ANALYSIS AND FINANCIAL DERIVATIVES**

9

Portfolio and Diversification, Portfolio Risk and Return; Mutual Funds; Introduction to Financial Derivatives; Financial Derivatives Markets in India

# **UNIT5: INVESTOR PROTECTION**

9

Role of SEBI and stock exchanges in investor protection; Investor grievances and their redressal system, insider trading, investors' awareness andactivism

**TOTAL: 45 PERIODS** 

#### **REFERENCES**

- 1. Charles P. Jones, Gerald R. Jensen. Investments: analysis and management. Wiley, 14<sup>TH</sup> Edition, 2019.
- 2. Chandra, Prasanna. Investment analysis and portfolio management. McGraw-hill education, 5<sup>th</sup>, Edition, 2017.
- 3. Rustagi, R. P. Investment Management Theory and Practice. Sultan Chand & Sons, 2021.
- 4. ZviBodie, Alex Kane, Alan J Marcus, PitabusMohanty, Investments, McGraw Hill Education (India), 11 Edition(SIE), 2019

# CMG333 BANKING, FINANCIAL SERVICES AND INSURANCE

LT P C

3003

#### **COURSE OBJECTIVES**

- Understand the Banking system in India
- Grasp how banks raise their sources and how they deploy it
- Understand the development in banking technology
- Understand the financial services in India

Understand the insurance Industry in India

#### UNIT I INTRODUCTION TO INDIAN BANKING SYSTEM

9

Overview of Banking system – Structure – Functions –Banking system in India - Key Regulations in Indian Banking sector –RBI. Relationship between Banker and Customer - Retail & Wholesale Banking – types of Accounts - Opening and operation of Accounts.

#### **UNIT II MANAGING BANK FUNDS/ PRODUCTS**

9

Liquid Assets - Investment in securities - Advances - Loans.Negotiable Instruments - Cheques, Bills of Exchange & Promissory Notes.Designing deposit schemes - Asset and Liability Management - NPA's - Current issues on NPA's - M&A's of banks into securities market

#### UNIT III DEVELOPMENT IN BANKING TECHNOLOGY

9

Payment system in India – paper based – e payment –electronic banking –plastic money – e-money –forecasting of cash demand at ATM's –The Information Technology Act, 2000 in India – RBI's Financial Sector Technology vision document – security threats in e-banking & RBI's Initiative.

#### **UNIT IV FINANCIAL SERVICES**

9

Introduction – Need for Financial Services – Financial Services Market in India – NBFC — Leasing and Hire Purchase — mutual funds. Venture Capital Financing –Bill discounting –factoring – Merchant Banking

UNIT V INSURANCE

Insurance –Concept - Need - History of Insurance industry in India. Insurance Act, 1938 –IRDA – Regulations – Life Insurance - Annuities and Unit Linked Policies - Lapse of the Policy – revival – settlement of claim

**TOTAL: 45 PERIODS** 

#### **REFERENCES:**

- 1. Padmalatha Suresh and Justin Paul, "Management of Banking and Financial Services, Pearson, Delhi, 2017.
- 2. Meera Sharma, "Management of Financial Institutions with emphasis on Bank and Risk Management", PHI Learning Pvt. Ltd., New Delhi 2010
- 3. Peter S. Rose and Sylvia C. and Hudgins, "Bank Management and Financial Services", Tata McGraw Hill, New Delhi, 2017

CMG334 INTRODUCTION TO BLOCKCHAIN AND ITS APPLICATIONS

LT P C

3003

#### UNIT I INTRODUCTION TO BLOCKCHAIN

9

Blockchain: The growth of blockchain technology - Distributed systems - The history of blockchain and Bitcoin - Features of a blockchain - Types of blockchain, Consensus: Consensus mechanism - Types of consensus mechanisms - Consensus in blockchain. Decentralization: Decentralization using blockchain - Methods of decentralization - Routes to decentralization- Blockchain and full ecosystem decentralization - Smart contracts - Decentralized Organizations- Platforms for decentralization.

#### UNIT II INTRODUCTION TO CRYPTOCURRENCY

9

Bitcoin – Digital Keys and Addresses – Transactions – Mining – Bitcoin Networks and Payments – Wallets – Alternative Coins – Theoretical Limitations – Bitcoin limitations – Name coin – Prime coin – Zcash – Smart Contracts – Ricardian Contracts- Deploying smart contracts on a blockchain

UNIT III Ethereum 9

Introduction - The Ethereum network - Components of the Ethereum ecosystem - Transactions and messages - Ether cryptocurrency / tokens (ETC and ETH) - The Ethereum Virtual Machine (EVM), Ethereum Development Environment: Test networks - Setting up a private net - Starting up the private network

# UNIT IV WEB3 AND HYPERLEDGE

9

Introduction to Web3 – Contract Deployment – POST Requests – Development Frameworks – Hyperledger as a Protocol – The Reference Architecture – Hyperledger Fabric – Distributed Ledger – Corda.

# **UNIT V EMERGING TRENDS**

9

Kadena – Ripple – Rootstock – Quorum – Tendermint – Scalability – Privacy – Other Challenges – Blockchain Research – Notable Projects – Miscellaneous Tools.

# **TOTAL: 45 PERIODS**

#### REFERENCE

- **1.** Imran. Bashir. Mastering block chain: Distributed Ledger Technology, Decentralization, and Smart Contracts Explained. Packt Publishing, 2<sup>nd</sup> Edition, 2018
- 2. Peter Borovykh, Blockchain Application in Finance, Blockchain Driven, 2nd Edition, 2018
- 3. ArshdeepBahga, Vijay Madisetti, "Blockchain Applications: A Hands On Approach", VPT, 2017.

**CMG335** 

FINTECH PERSONAL FINANCE AND PAYMENTS

LT P C 3 0 0 3

# UNIT I CURRENCY EXCHANGE AND PAYMENT

g

Understand the concept of Crypto currency- Bitcoin and Applications -Cryptocurrencies and Digital Crypto Wallets -Types of Cryptocurrencies - Cryptocurrencies and Applications, block chain, Artificial Intelligence, machine learning. Fintech users, Individual Payments, RTGS Systems, Immediate Page 54 of 90 Payment Service (IMPS), Unified Payments Interface (UPI).Legal and Regulatory Implications of Crypto currencies, Payment systems and their regulations.Digital Payments Smart Cards, Stored-Value Cards, EC Micropayments, Payment Gateways, Mobile Payments, Digital and Virtual Currencies, Security, Ethical, Legal, Privacy, and Technology Issues

# UNIT II DIGITAL FINANCE AND ALTERNATIVE FINANCE

9

A Brief History of Financial Innovation, Digitization of Financial Services, Crowd funding, Charity and Equity,. Introduction to the concept of Initial Coin Offering

# UNIT III INSURETECH

InsurTech Introduction , Business model disruption Al/ML in InsurTech ● IoT and InsurTech ,Risk Modeling ,Fraud Detection Processing claims and Underwriting Innovations in Insurance Services

#### **UNIT IV PEER TO PEER LENDING**

9

P2P and Marketplace Lending, New Models and New Products in market place lending P2P Infrastructure and technologies , Concept of Crowdfunding Crowdfunding Architecture and Technology ,P2P and Crowdfunding unicorns and business models , SME/MSME Lending: Unique opportunities and Challenges, Solutions and Innovations

# **UNIT V REGULATORY ISSUES**

9

FinTech Regulations: Global Regulations and Domestic Regulations, Evolution of RegTech, RegTech Ecosystem: Financial Institutions, RegTech Ecosystem: StartupsRegTech, Startups: Challenges, RegTech Ecosystem: Regulators, Use of AI in regulation and Fraud detection

**TOTAL: 45 PERIODS** 

#### REFERENCE

- 1. Swanson Seth, Fintech for Beginners: Understanding and Utilizing the power of technology, Createspace Independent Publishing Platform, 2016.
- 2. Models AuTanda, Fintech Bigtech And Banks Digitalization and Its Impact On Banking Business, Springer, 2019
- 3. Henning Diedrich, Ethereum: Blockchains, Digital Assets, Smart Contracts, Decentralized Autonomous Organizations, Wildfire Publishing, 2016
- 4. Jacob William, FinTech:TheBeginner's Guide to Financial Technology, Createspace Independent Publishing Platform, 2016
- 5. IIBF, Digital Banking, Taxmann Publication, 2016
- 6. Jacob William, Financial Technology, Create space Independent Pub, 2016
- 7. Luke Sutton, Financial Technology: Bitcoin & Blockchain, Createspace Independent Pub, 2016

**CMG336** 

# INTRODUCTION TO FINTECH

LT P C 3 0 0 3

# **COURSE OBJECTIVES:**

- 1. To learn about history, importance and evolution of Fintech
- 2. To acquire the knowledge of Fintech in payment industry
- 3. To acquire the knowledge of Fintech in insurance industry
- 4. To learn the Fintech developments around the world
- 5. To know about the future of Fintech

**UNIT I INTRODUCTION** 

9

Fintech - Definition, History, concept, meaning, architecture, significance, Goals, key areas in Fintech, Importance of Fintech, role of Fintech in economic development, opportunities and challenges in Fintech, Evolution of Fintech in different sectors of the industry - Infrastructure, Banking Industry, Startups and Emerging Markets, recent developments in FinTech, future prospects and potential issues with Fintech.

#### **UNIT II PAYMENT INDUSTRY**

9

FinTech in Payment Industry-Multichannel digital wallets, applications supporting wallets, onboarding and KYC application, FinTech in Lending Industry- Formal lending, Informal lending, P2P lending, POS lending, Online lending, Payday lending, Microfinance, Crowdfunding.

#### **UNIT III INSURANCE INDUSTRY**

9

FinTech in Wealth Management Industry-Financial Advice, Automated investing, Socially responsible investing, Fractional Investing, Social Investing. FinTech in Insurance Industry- P2P insurance, On-Demand Insurance, On-Demand Consultation, Customer engagement through Quote to sell, policy servicing, Claims Management, Investment linked health insurance.

# UNIT IV FINTECH AROUND THE GLOBE

9

FinTech developments - US, Europe and UK, Germany, Sweden, France, China, India, Africa, Australia, New Zealand, Brazil and Middle East, Regulatory and Policy Assessment for Growth of FinTech. FinTech as disruptors, Financial institutions collaborating with FinTech companies, The new financial world.

# **UNIT V FUTURE OF FINTECH**

9

How emerging technologies will change financial services, the future of financial services, banking on innovation through data, why FinTech banks will rule the world, The FinTech Supermarket, Banks partnering with FinTech start-ups, The rise of BankTech, Fintech impact on Retail Banking, A future without money, Ethics in Fintech.

**TOTAL: 45 PERIODS** 

# REFERENCES

- 1. Arner D., Barbers J., Buckley R, The evolution of FinTech: a new post crisis paradigm, University of New South Wales Research Series, 2015
- 2. Susanne Chishti, Janos Barberis, The FINTECH Book: The Financial Technology Handbook for Investors, Entrepreneurs and Visionaries, Wiley Publications, 2016
- 3. Richard Hayen, FinTech: The Impact and Influence of Financial Technology on Banking and the Finance Industry, 2016
- 4. Parag Y Arjunwadkar, FinTech: The Technology Driving Disruption in the financial service industry CRC Press, 2018
- 5. Sanjay Phadke, Fintech Future: The Digital DNA of Finance Paperback .Sage Publications, 2020
- 6. Pranay Gupta, T. Mandy Tham, Fintech: The New DNA of Financial Services Paperback, 2018

VERTICAL 2: ENTREPRENEURSHIP

**CMG337** 

FOUNDATIONS OF ENTREPRENERUSHIP

L TP C 3 0 0 3

# **COURSE OBJECTIVES**

- To develop and strengthen the entrepreneurial quality and motivation of learners.
- To impart the entrepreneurial skills and traits essential to become successful entrepreneurs.
- To apply the principles and theories of entrepreneurship and management in Technology oriented businessess.
- To empower the learners to run a Technology driven business efficiently and effectively

#### UNIT I INTRODUCTION TO ENTREPRENEURSHIP

Entrepreneurship- Definition, Need, Scope - Entrepreneurial Skill & Traits - Entrepreneur vs. Intrapreneur; Classification of entrepreneurs, Types of entrepreneurs -Factors affecting entrepreneurial development - Achievement Motivation - Contributions of Entreprenship to Economic Development.

# **UNIT II BUSINESS OWNERSHIP & ENVRIONMENT**

9

9

Types of Business Ownership – Buiness Envrionemental Factors – Political-Economic-Sociological-Technological-Environmental-Legal aspects – Human Reosurces Mobilisation-Basics of Managing Finance- Esentials of Marketing Management - Production and Operations Planning – Systems Management and Administration

#### UNITIII FUNDAMENTALS OF TECHNOPRENEURSHIP

9

Introduction to Technopreneurship - Definition, Need, Scope- Emerging Concepts- Principles - Characterisitcis of a technopreneur - Impacts of Technopreneurship on Society – Economy- Job Opportuinites in Technopreneurship - Recent trends

# UNIT IV APPLICATIONS OF TECHNOPRENEURSHIP

9

Technology Entrepreneurship - Local, National and Global practices - Intrapreneurship and Technology interactions, Networking of entrepreneurial activities - Launching - Managing Technology based Product / Service entrepreneurship - Success Stories of Technopreneurs - Case Studies

# UNIT V EMERGING TRENDS IN ENTREPRENERUSHIP

a

Effective Business Management Strategies For Franchising - Sub-Contracting- Leasing-Technopreneurs - Agripreneurs - Netpreneurs- Portfolio entrepreneruship - NGO Entrepreneurship - Recent Entrepreneruial Develoments - Local - National - Global perspectives.

**TOTAL45: PERIODS** 

# COURSE OUTCOMES:

Upon completion of this course, the student should be able to:

- CO 1 Learn the basics of Entrepreneurship
- CO 2 Understand the business ownership patterns and evnironment
- CO 3 Understand the Job opportunites in Industries relating to Technopreneurship
- CO 4 Learn about applications of tehnopreneurship and successful technopreneurs
- CO 5 Acquaint with the recent and emerging trends in entrepreneruship

# **TEXT BOOKS:**

- 1) S.S.Khanka, "Entrepreneurial Development" S.Chand & Co. Ltd. Ram Nagar New Delhi, 2021.
- 2) Donal F Kuratko Entrepreneurship (11th Edition) Theory, Process, Practice by Published 2019 by Cengage Learning,

# **REFERENCES:**

- 1) Daniel Mankani. 2003. Technopreneurship: The successful Entrepreneur in the new Economy. Prentice Hall
- 2) Edward Elgar. 2007. Entrepreneurship, Cooperation and the Firm: The Emergence and Survival of High-Technology Ventures in Europe. Edi: Jan Ulijn, Dominique Drillon, and Frank Lasch. Wiley Pub.
- 3) Lang, J. 2002, The High Tech Entrepreneur's Handbook, Ft.com.

- 4) David Sheff 2002, China Dawn: The Story of a Technology and Business Revolution,
- 5) HarperBusiness,https://fanny.staff.uns.ac.id/files/2013/12/Technopreneur-BASED-EDUCATION-REVOLUTION.pdf
- 6) JumpStart: A Technoprenuership Fable, Dennis Posadas, (Singapore: Pearson Prentice Hall, 2009
- 7) Basics of Technoprenuership: Module 1.1-1.2, Frederico Gonzales, President-PESO Inc; M. Barcelon, UP
- 8) Journal articles pertaining to Entrepreneurship

#### CMG338 TEAM BUILDING & LEADERSHIP MANAGEMENT FOR BUSINESS

L T P C 3 0 0 3

#### **COURSE OBJECTIVES**

- To develop and strengthen the Leadership qualities and motivation of learners.
- To impart the Leadership skills and traits essential to become successful entrepreneurs.
- To apply the principles and theories of Team Building in managing Technology oriented businessess.
- To empower the learners to build robust teams for running and leading a business efficiently and effectively

# UNIT I INTRODUCTION TO MANAGING TEAMS

9

Introduction to Team - Team Dynamics - Team Formation - Stages of Team Devlopment - Enhancing teamwork within a group - Team Coaching - Team Decision Making - Virtual Teams - Self Directed Work Teams (SDWTs) - Multicultural Teams.

# UNIT II MANAGING AND DEVELOPING EFFECTIVE TEAMS

9

Team-based Organisations- Leadershp roles in team-based organisations - Offsite training and team development - Experiential Learning - Coaching and Mentoring in team building - Building High-Performance Teams - Building Credibility and Trust - Skills for Developing Others - Team Building at the Top - Leadership in Teamwork Effectiveness.

#### UNIT III INTRODUCTION TO LEADERSHIP

9

Introduction to Leadership - Leadership Myths - Characteristics of Leader, Follower and Situation - Leadership Attributes - Personality Traits and Leadership - Intelligence Types and Leadership - Power and Leadership - Delegation and Empowerment .

# UNIT IV LEADERSHIP IN ORGANISATIONS

9

Leadership Styles – LMX Theory- Leadership Theory and Normative Decision Model - Situational Leadership Model - Contingency Model and Path Goal Theory – Transactional and Transformational Leadership - Charismatic Leadership - Role of Ethics and Values in Organisational Leadership.

# UNIT V LEADERSHIP EFFECTIVENESS

9

Leadership Behaviour - Assessment of Leadership Behaviors - Destructive Leadership - Motivation and Leadership - Managerial Incompetence and Derailment Conflict Management - Negotiation and Leadership - Culture and Leadership - Global Leadership - Recent Trends in Leadership.

**TOTAL 45: PERIODS** 

#### **COURSE OUTCOMES:**

Upon completion of this course, the student should be able to:

- CO 1 Learn the basics of managing teams for business.
- CO 2 Understand developing effective teams for business management.
- CO 3 Understand the fundamentals of leadership for running a business.
- CO 4 Learn about the importance of leadership for business development.
- CO 5 Acquaint with emerging trends in leadership effectiveness for entreprenerus."

#### **REFERENCES:**

- 1. Hughes, R.L., Ginnett, R.C., & Curphy, G.J., Leadership: Enhancing the lessons of experience ,9th Ed, McGraw Hill Education, Chennai, India. (2019).
- 2. Katzenback, J.R., Smith, D.K., The Wisdom of Teams: Creating the High Performance Organisations, Harvard Business Review Press, (2015).
- Haldar, U.K., Leadership and Team Building, Oxford University Press, (2010).
   Daft, R.L., The Leadership Experience, Cengage, (2015).
- 5. Daniel Levi, Group Dynamics for Teams ,4th Ed, (2014), Sage Publications.
- 6. Dyer, W. G., Dyer, W. G., Jr., & Dyer, J. H..Team building: Proven strategies for improving team performance, 5thed, Jossey-Bass, (2013).

#### CMG339 CREATIVITY & INNOVATION IN ENTREPRENEURSHIP

L T P C 3 0 0 3

#### COURSE OBJECTIVES

- To develop the creativity skills among the learners
- To impart the knowledge of creative intelligence essential for entrepreneurs
- To know the applications of innovation in entprerenship.
- To develoop innovative business models for business.

# UNIT I CREATIVITY

9

Creativity: Definition- Forms of Creativity-Essence, Elaborative and Expressive Creativities- Quality of Creativity-Existential, Entrepreneurial and Empowerment Creativities – Creative Environment-Creative Technology- - Creative Personality and Motivation.

# UNIT II CREATIVE INTELLIGENCE

9

Creative Intelligence: Convergent thinking ability – Traits Congenial to creativity – Creativity Training--Criteria for evaluating Creativity-Credible Evaluation- Improving the quality of our creativity – Creative Tools and Techniques - Blocks to creativity- fears and Disabilities- Strategies for Unblocking- Designing Creativity Enabling Environment.

#### UNIT III INNOVATION

9

Innovation: Definition- Levels of Innovation- Incremental Vs Radical Innovation-Product Innovation and Process- Technological, Organizational Innovation – Indicators- Characteristics of Innovation in Different Sectors. Theories in Innovation and Creativity- Design Thinking and Innovation-Innovation as Collective Change-Innovation as a system

#### **UNIT IV** INNOVATION AND ENTREPRENEURSHIP

9

Innovation and Entrepreneurship: Entrepreneurial Mindset, Motivations and Behaviours-Opportunity Analysis and Decision Making- Industry Understanding - Entrepreneurial Opportunities- Entrepreneurial Strategies – Technology Pull/Market Push – Product -Market fit

#### **INNOVATIVE BUSINESS MODELS** Unit V

9

Innovative Business Models: Customer Discovery-Customer Segments-Prospect Theory and Developing Value Propositions- Developing Business Models: Elements of Business Models – Innovative Business Models: Elements, Designing Innovative Business Models- Responsible Innovation and Creativity.

**TOTAL 45: PERIODS** 

#### **COURSE OUTCOMES**

Upon completion of this course, the student should be able to:

- CO 1 Learn the basics of creativity for developing Entrepreneurship
- CO 2 Understand the importance of creative inteligence for business growth
- CO 3 Understand the advances through Innovation in Industries
- CO 4 Learn about applications of innovation in building successful ventures
- CO 5 Acquaint with developing innovative business models to run the business effeciently and effectively

# Suggested Readings:

Creativity and Inovation in Entrepreneurship, Kankha, Sultan Chand

Pradip N Khandwalla, Lifelong Creativity, An Unending Quest, Tata Mc Graw Hill, 2004.

Paul Trott, Innovation Management and New Product Development, 4e, Pearson, 2018.

Vinnie Jauhari, Sudanshu Bhushan, Innovation Management, Oxford Higher Education, 2014.

Innovation Management, C.S.G. Krishnamacharyulu, R. Lalitha, Himalaya Publishing House, 2010.

A. Dale Timpe, Creativity, Jaico Publishing House, 2003.

Brian Clegg, Paul Birch, Creativity, Kogan Page, 2009.

Strategic Innovation: Building and Sustaining Innovative Organizations- Course Era, Raj Echambadi.

#### **CMG340** PRINCIPLES OF MARKETING MANAGEMENT FOR BUSINESS

LTPC 3003

# **COURSE OBJECTIVES:**

- To provide basic knowledge of concepts, principles, tools and techniques of marketing for entrepreneurs
- To provide an exposure to the students pertaining to the nature and Scope of marketing, which they are expected to possess when they enter the industry as practitioners.
- To give them an understanding of fundamental premise underlying market driven strategies and the basic philosophies and tools of marketing management for business owners.

#### UNIT I INTRODUCTION TO MARKETING MANAGEMENT

Introduction - Market and Marketing - Concepts- Functions of Marketing - Importance of Marketing

- Marketing Orientations Marketing Mix-The Traditional 4Ps The Modern Components of the Mix
- The Additional 3Ps Developing an Effective Marketing Mix.

# UNIT II MARKETING ENVIRONMENT

9

Introduction - Environmental Scanning - Analysing the Organisation's Micro Environment and Macro Environment - Differences between Micro and Macro Environment - Techniques of Environment Scanning - Marketing organization - Marketing Research and the Marketing Information System, Types and Components.

#### UNIT III PRODUCT AND PRICING MANAGEMENT

9

Product- Meaning, Classification, Levels of Products – Product Life Cycle (PLC) - Product Strategies - Product Mix - Packaging and Labelling - New Product Development - Brand and Branding - Advantages and disadvantages of branding Pricing - Factors Affecting Price Decisions - Cost Based Pricing - Value Based and Competition Based Pricing - Pricing Strategies - National and Global Pricing.

#### UNIT IV PROMOTION AND DISTRIBTUION MANAGEMENT

9

Introduction to Promotion – Marketing Channels- Integrated Marketing Communications (IMC) - Introduction to Advertising and Sales Promotion – Basics of Public Relations and Publicity - Personal Selling - Process - Direct Marketing - Segmentation, Targeting and Positioning (STP)-Logistics Management- Introduction to Retailing and Wholesaling.

#### UNIT V CONTEMPORARY ISSUES IN MARKETING MANAGEMENT

9

Introduction - Relationship Marketing Vs. Relationship Management - Customer Relationship Management (CRM) - Forms of Relationship Management - CRM practices - Managing Customer Loyalty and Development - Buyer-Seller Relationships- Buying Situations in Industrial / Business Market - Buying Roles in Industrial Marketing - Factors that Influence Business - Services Marketing - E-Marketing or Online Marketing.

# TOTAL 45 : PERIODS

#### **COURSE OUTCOMES:**

After completion of this course, the students will be able to:

CO1 Have the awareness of marketing management process

CO 2 Understand the marketing environment

CO 3 Acquaint about product and pricing strategies

CO 4 Knowledge of promotion and distribution in marketing management.

CO 5 Comprehend the contemporary marketing scenairos and offer solutions to marketing issues.

#### **REFERENCES:**

- 1. Marketing Management, Sherlekar S.A, Himalaya Publishing House, 2016.
- 2. Marketing Management, Philip Kortler and Kevin Lane Keller, PHI 15th Ed, 2015.
- 3 Marketing Management- An Indian perspective, Vijay Prakash Anand, Biztantra, Second edition, 2016.
- 4. Marketing Management Global Perspective, Indian Context, V.S.Ramaswamy & S.Namakumari, Macmillan Publishers India,5th edition, 2015.
- 5. Marketing Management, S.H.H. Kazmi, 2013, Excel Books India.
- 6. Marketing Management- text and Cases, Dr. C.B.Gupta & Dr. N.Rajan Nair, 17th edition, 2016.

#### CMG341 HUMAN RESOURCE MANAGEMENT FOR ENTREPRENEURS

L T P C 3 0 0 3

#### COURSE OBJECTIVES:

- 1. To introduce the basic concepts, structure and functions of human resource management for entrepreneurs.
- 2. To create an awareness of the roles, functions and functioning of human resource department.
- 3.To understand the methods and techniques followed by Human Resource Management practitioners.

#### UNIT I INTRODUCTION TO HRM

9

Concept, Definition, Objectives- Nature and Scope of HRM - Evolution of HRM - HR Manager Roles- Skills - Personnel Management Vs. HRM - Human Resource Policies - HR Accounting - HR Audit - Challenges in HRM.

#### UNIT II HUMAN RESOURCE PLANNING

9

HR Planning - Definition - Factors- Tools - Methods and Techniques - Job analysis- Job rotation- Job Description - Career Planning - Succession Planning - HRIS - Computer Applications in HR - Recent Trends

#### UNIT III RECRUITMENT AND SELECTION

9

Sources of recruitment- Internal Vs. External - Domestic Vs. Global Sources -eRecruitment - Selection Process- Selection techniques -eSelection- Interview Types- Employee Engagement.

#### UNIT IV TRAINING AND EMPLOYEE DEVELOPMENT

9

Types of Training - On-The-Job, Off-The-Job - Training Needs Analysis - Induction and Socialisation Process - Employee Compensation - Wages and Salary Administration - Health and Social Security Measures- Green HRM Practices

# UNIT V CONTROLLING HUMAN RESOURCES

9

**TOTAL 45: PERIODS** 

Performance Appraisal – Types - Methods - Collective Bargaining - Grievances Redressal Methods – Employee Discipline – Promotion – Demotion - Transfer – Dismissal - Retrenchment - Union Management Relationship - Recent Trends

#### **COURSE OUTCOMES**

Upon completion of this course the learners will be able:

- CO 1 To understand the Evolution of HRM and Challenges faced by HR Managers
- CO 2 To learn about the HR Planning Methods and practices.
- CO 3 To acquaint about the Recruitment and Selection Techniques followed in Industries.
- CO 4 To known about the methods of Training and Employee Development.
- CO 5 To comprehend the techniques of controlling human resources in organisations.

# **REFERENCES**

- 1) Gary Dessler and Biju Varkkey, Human Resource Management, 14e, Pearson, 2015.
- 2) Mathis and Jackson, Human Resource Management, Cengage Learning 15e, 2017.
- 3) David A. Decenzo, Stephen.P.Robbins, and Susan L. Verhulst, Human Resource Management, Wiley, International Student Edition, 11th Edition, 2014
- 4) R. Wayne Mondy, Human Resource Management, Pearson , 2015.

- 5) Luis R.Gomez-Mejia, David B.Balkin, Robert L Cardy. Managing Human Resource. PHI Learning. 2012
- 6) John M. Ivancevich, Human Resource Management, 12e, McGraw Hill Irwin, 2013.
- 7) K. Aswathappa, Sadhna Dash, Human Resource Management Text and Cases, 9th Edition, McGraw Hill, 2021.
- 8) Uday Kumar Haldar, Juthika Sarkar. Human Resource management. Oxford. 2012

#### CMG342 FINANCING NEW BUSINESS VENTURES

LTPC

3 0 0 3

#### **COURSE OBJECTIVES**

- To develop the basics of business venture financing.
- To impart the knowledge essential for entrepreneurs for financing new ventures.
- To acquaint the learners with the sources of debt and quity financing.
- To empower the learners towards fund rasiing for new ventures effectively.

# UNIT I ESSENTIALS OF NEW BUSINES VENTURE

9

Setting up new Business Ventures – Need - Scope - Franchising - Location Strategy, Registration Process - State Directorate of Industries- Financing for New Ventures - Central and State Government Agencies - Types of loans – Financial Institutions - SFC, IDBI, NSIC and SIDCO.

# UNIT II INTRODUCTION TO VENTURE FINANCING

9

Venture Finance – Definition – Historic Background - Funding New Ventures- Need – Scope – Types - Cost of Project - Means of Financing - Estimation of Working Capital - Requirement of funds – Mix of Dent and Equity - Challenges and Opportunities.

# **UNIT III SOURCES OF DEBT FINANCING**

9

Fund for Capital Assets - Term Loans - Leasing and Hire-Purchase - Money Market instruments – Bonds, Corporate Papers – Preference Capital- Working Capital Management- Fund based Credit Facilities - Cash Credit - Over Draft.

# UNIT IV SOURCES OF EQUITY FINANCING

9

Own Capital, Unsecured Loan - Government Subsidies, Margin Money- Equity Funding - Private Equity Fund- Schemes of Commercial banks - Angel Funding - Crowdfunding- Venture Capital.

#### UNIT V METHODS OF FUND RAISING FOR NEW VENTURES

9

**TOTAL 45: PERIODS** 

Investor Decision Process - Identifying the appropriate investors- Targeting investors- Developing Relationships with investors - Investor Selection Criteria- Company Creation- Raising Funds - Seed Funding- VC Selection Criteria – Process- Methods- Recent Trends

#### **COURSE OUTCOMES:**

Upon completion of this course, the students should be able to:

- CO 1 Learn the basics of starting a new business venture.
- CO 2 Understand the basics of venture financing.
- CO 3 Understand the sources of debt financing.
- CO 4 Understanf the sources of equity financing.
- CO 5 Acquaint with the methods of fund raising for new business ventures.

354

# **REFERENCES:**

- 1) Principles of Corporate Finance by Brealey and Myers et al.,12<sup>TH</sup> ed, McGraw Hill Education (India) Private Limited, 2018
- 2) Prasanna Chandra, Projects: Planning ,Analysis,Selection ,Financing,Implementation and Review, McGraw Hilld Education India Pvt Ltd ,New Delhi , 2019.
- 3) Introduction to Project Finance. Andrew Fight, Butterworth-Heinemann, 2006.
- 4) Metrick, Andrew; Yasuda, Ayako. Venture Capital And The Finance Of Innovation. Venture Capital And The Finance Of Innovation, 2nd Edition, Andrew Metrick And Ayako Yasuda, Eds., John Wiley And Sons, Inc, 2010.
- 5) Feld, Brad; Mendelson, Jason. Venture Deals. Wiley, 2011.
- 6) May, John; Simons, Cal. Every Business Needs An Angel: Getting The Money You Need To Make Your Business Grow. Crown Business, 2001.
- 7) Gompers, Paul Alan; Lerner, Joshua. The Money Of Invention: How Venture Capital Creates New Wealth. Harvard Business Press, 2001.
- 8) Camp, Justin J. Venture Capital Due Diligence: A Guide To Making Smart Investment Choices And Increasing Your Portfolio Returns. John Wiley & Sons, 2002.
- 9) Byers, Thomas. Technology Ventures: From Idea To Enterprise. Mcgraw-Hill Higher Education, 2014.
- 10) Lerner, Josh; Leamon, Ann; Hardymon, Felda. Venture Capital, Private Equity, And The Financing Of Entrepreneurship. 2012.

# **VERTICAL 3: PUBLIC ADMINISTRATION**

# **CMG343** PRINCIPLES OF PUBLIC ADMINISTRATION LTPC 3003 **UNIT-I** (9) 1. Meaning, Nature and Scope of Public Administration 2. Importance of Public Administration 3. Evolution of Public Administration **UNIT-II** (9) 1. New Public Administration 2. New Public Management 3. Public and Private Administration **UNIT-III** (9) 1. Relationships with Political Science, History and Sociology 2. Classical Approach

UNIT-IV (9)

1. Bureaucratic Approach: Max Weber

3. Scientific Management Approach

2. Human Relations Approach : Elton Mayo

3. Ecological Approach: Riggs

UNIT-V (9)

- 1. Leadership: Leadership Styles Approaches
- 2. Communication: Communication Types Process Barriers
- 3. Decision Making: Decision Making Types, Techniques and Processes.

**TOTAL: 45 PERIODS** 

**TOTAL: 45 PERIODS** 

#### REFERENCEs:

- 1. Avasthi and Maheswari: Public Administration in India, Agra:Lakshmi Narain Agarwal, 2013.
- 2. Ramesh K Arora: Indian Public Administration, New Delhi: Wishwa Prakashan, 2012.
- 3. R.B. Jain: Public Administration in India,21st Century Challenges for Good Governance, New Delhi: Deep and Deep, 2002.
- 4. Rumki Basu: Public Administration: Concept and Theories, New Delhi: Sterling, 2013.
- 5. R. Tyagi, Public Administration, Atma Ram & Sons, New Delhi, 1983.

**CMG344 CONSTITUTION OF INDIA** LTPC 3003 **UNIT-I** (9) 1. Constitutional Development Since 1909 to 1947 2. Making of the Constitution. 3. Constituent Assembly **UNIT-II** (9) 1. Fundamental Rights 2. Fundamental Duties 3. Directive Principles of State Policy **UNIT-III** (9)1. President 2. Parliament 3. Supreme Court **UNIT-IV** (9) 1. Governor 2. State Legislature 3. High Court **UNIT-V** (9) 1. Secularism

# **REFERENCES**:

2. Social Justice

3. Minority Safeguards

- 1. Basu. D.D.: Introduction to Indian Constitution; Prentice Hall; New Delhi.
- 2. Kapur. A.C: Indian Government and Political System; S.Chand and Company Ltd., New Delhi.
- 3. Johari J.C.: Indian Politics, Vishal Publications Ltd, New Delhi

4. Agarwal R.C: Indian Political System; S.Chand & Co., New Delhi

| CMG345                             | PUBLIC PERSONN                            | EL ADMINISTRATION                 | LTPC<br>3003      |
|------------------------------------|-------------------------------------------|-----------------------------------|-------------------|
| UNIT-I                             |                                           |                                   | (9)               |
| 1. Meaning, Scor                   | e and Importance of Pers                  | sonnel Administration             |                   |
| 2. Types of Perso                  | onnel Systems: Bureaucra                  | atic, Democratic and Representati | ve systems        |
| UNIT-II                            |                                           |                                   | (9)               |
| 1. Generalist Vs                   | Specialist                                |                                   |                   |
| 2. Civil Servants'                 | Relationship with Politica                | I Executive                       |                   |
| 3. Integrity in Adr                | ninistration.                             |                                   |                   |
| UNIT-III                           |                                           |                                   | (9)               |
| Recruitment: I     Training: Kinds | Direct Recruitment and Resort of Training | cruitment from Within             | .,                |
| 3. Promotion                       |                                           |                                   |                   |
| LINUT IV                           |                                           |                                   | (0)               |
| UNIT-IV 1. All India Servio        | es                                        |                                   | (9)               |
| Service Condition                  |                                           |                                   |                   |
|                                    | ervice Commission                         |                                   |                   |
| o. Otato i ubilo o                 | STAIGE COMMISSION                         |                                   |                   |
| UNIT-V                             |                                           |                                   | (9)               |
| 1. Employer Emp                    | loyee Relations                           |                                   |                   |
| •                                  | ary Administration                        |                                   |                   |
| 3. Allowances an                   | d Benefits                                |                                   | TOTAL: 45 PERIODS |
| REFERENCES:                        |                                           |                                   | TOTAL: 40T ERIODO |
| 1. Stahl Glean O                   | Public Personnel Admini                   | stration                          |                   |
| 2. Parnandikar P                   | ai V.A: Personnel System                  | for Development Administration.   |                   |
| 3. Bhambhiru . P                   | Bureaucracy and Policy                    | in India.                         |                   |
| 4. Dwivedi O.P a                   | nd Jain R.B: India's Admi                 | nistrative state.                 |                   |
| 5. Muttalis M.A: l                 | Jnion Public Service Com                  | mission.                          |                   |
| 6. Bhakara Rao .                   | V: Employer Employee R                    | elations in India.                |                   |
| 7. Davar R.S. Pe                   | rsonnel Management & Ir                   | ndustrial Relations               |                   |
|                                    |                                           |                                   |                   |
| CMG346                             | ADMINISTRAT                               | TIVE THEORIES                     | LTPC              |
|                                    |                                           |                                   | 3 0 0 3           |

(9)

UNIT I

Meaning, Scope and significance of Public Administration, Evolution of Public Administration as a discipline and Identity of Public Administration

UNIT II (9)

Theories of Organization: Scientific Management Theory, Classical Model, Human Relations Theory

UNIT III (9)

Organization goals and Behaviour, Groups in organization and group dynamics, Organizational Design.

UNIT IV (9)

Motivation Theories, content, process and contemporary; Theories of Leadership: Traditional and Modern: Process and techniques of decision-making

UNIT V (9)

Administrative thinkers: Kautilya, Woodrow Willson, C.I. Barnard . Peter Drucker

**TOTAL: 45 PERIODS** 

# **REFERENCES**:

- 1. Crozior M: The Bureaucratic phenomenon (Chand)
- 2. Blau. P.M and Scott. W: Formal Organizations (RKP)
- 3. Presthus. R: The Organizational Society (MAC)
- 4. Alvi, Shum Sun Nisa: Eminent Administrative Thinkers.
- 5. Keith Davis: Organization Theory (MAC)

CMG347 INDIAN ADMINISTRATIVE SYSTEM

LTPC

3003

UNIT I (9)

Evolution and Constitutional Context of Indian Administration, Constitutional Authorities: Finance Commission, Union Public Services Commission, Election Commission, Comptroller and Auditor General of India, Attorney General of India

UNIT II (9)

Role & Functions of the District Collector, Relationship between the District Collector and Superintendent of Police, Role of Block Development Officer in development programmes, Local Government

UNIT III (9)

Main Features of 73rd Constitutional Amendment Act 1992, Salient Features of 74th Constitutional Amendment Act 1992

UNIT IV (9)

Coalition politics in India, Integrity and Vigilance in Indian Administration

UNIT V (9)

Corruption - Ombudsman, Lok Pal & Lok Ayuktha

**TOTAL: 45 PERIODS** 

#### REFERENCES:

1. S.R. Maheswari : Indian Administration

2. Khera. S.S: Administration in India

3. Ramesh K. Arora: Indian Public Administration

4. T.N. Chaturvedi: State administration in India

5. Basu, D.D: Introduction to the Constitution of India

CMG348 PUBLIC POLICY ADMINISTRATION

LTPC

3003

UNIT-I (9)

Meaning and Definition of Public Policy - Nature, Scope and Importance of public policy - Public policy relationship with social sciences especially with political science and Public Administration.

UNIT-II (9)

Approaches in Policy Analysis - Institutional Approach - Incremental Approach and System's Approach - Dror's Optimal Model

UNIT-III (9)

Major stages involved in Policy making Process – Policy Formulation – Policy Implementation – Policy Evaluation.

UNIT-IV (9)

Institutional Framework of Policy making – Role of Bureaucracy – Role of Interest Groups and Role of Political Parties.

UNIT-V (9)

Introduction to the following Public Policies – New Economic Policy – Population Policy – Agriculture policy - Information Technology Policy.

# **REFERENCES**:

- 1. Rajesh Chakrabarti & Kaushik Sanyal: Public Policy in India, Oxford University Press, 2016.
- 2. Kuldeep Mathur: Public Policy and Politics in India, Oxford University Press, 2016.
- 3. Bidyutv Chakrabarty: Public Policy: Concept, Theory and Practice, 2015.
- 4. Pradeep Saxena: Public Policy Administration and Development
- 5. Sapru R.K.: Public Policy: Formulation, Implementation and Evaluation, Sterling Publishers, 2016.

**VERTICAL 4: BUSINESS DATA ANALYTICS** 

CMG349 STATISTICS FOR MANAGEMENT

LTPC 3003

**TOTAL: 45 PERIODS** 

#### **COURSE OBJECTIVE:**

To learn the applications of statistics in business decision making.

UNIT I INTRODUCTION 9

Basic definitions and rules for probability, Baye's theorem and random variables, Probability distributions: Binomial, Poisson, Uniform and Normal distributions.

# **UNIT II SAMPLING DISTRIBUTION AND ESTIMATION**

9

Introduction to sampling distributions, Central limit theorem and applications, sampling techniques, Point and Interval estimates of population parameters.

# **UNIT III TESTING OF HYPOTHESIS - PARAMETIRC TESTS**

9

Hypothesis testing: one sample and two sample tests for means of large samples (z-test), one sample and two sample tests for means of small samples (t-test), ANOVA one way.

# **UNIT IV NON-PARAMETRIC TESTS**

9

Chi-square tests for independence of attributes and goodness of fit, Kolmogorov-Smirnov – test for goodness of fit, Mann – Whitney U test and Kruskal Wallis test.

#### UNIT V CORRELATION AND REGRESSION

9

Correlation –Rank Correlation – Regression – Estimation of Regression line – Method of Least Squares – Standard Error of estimate.

**TOTAL:45 PERIODS** 

#### **COURSE OUTCOMES:**

- To facilitate objective solutions in business decision making.
- To understand and solve business problems
- To apply statistical techniques to data sets, and correctly interpret the results.
- To develop skill-set that is in demand in both the research and business environments
- To enable the students to apply the statistical techniques in a work setting.

# **REFERENCES**:

- 1. Richard I. Levin, David S. Rubin, Masood H.Siddiqui, Sanjay Rastogi, Statistics for Management, Pearson Education, 8th Edition, 2017.
- 2. Prem. S. Mann, Introductory Statistics, Wiley Publications, 9th Edition, 2015.
- 3. T N Srivastava and Shailaja Rego, Statistics for Management, Tata McGraw Hill, 3rd Edition 2017.
- 4. Ken Black, Applied Business Statistics, 7th Edition, Wiley India Edition, 2012.
- 5. David R. Anderson, Dennis J. Sweeney, Thomas A.Williams, Jeffrey D.Camm, James J.Cochran, Statistics for business and economics, 13th edition, Thomson (South Western) Asia, Singapore, 2016.
- 6. N. D. Vohra, Business Statistics, Tata McGraw Hill, 2017.

#### CMG350 DATAMINING FOR BUSINESS INTELLIGENCE

LTPC

3 0 0 3

#### **COURSE OBJECTIVES:**

To know how to derive meaning form huge volume of data and information.

• To understand how knowledge discovering process is used in business decision making.

#### **UNIT I INTRODUCTION**

9

Data mining, Text mining, Web mining, Data ware house.

# **UNIT II DATA MINING PROCESS**

9

Datamining process – KDD, CRISP-DM, SEMMA Prediction performance measures

#### **UNIT III PREDICTION TECHNIQUES**

9

Data visualization, Time series – ARIMA, Winter Holts,

#### **UNIT IV CLASSIFICATION AND CLUSTERING TECHNIQUES**

9

Classification, Association, Clustering.

# **UNIT V MACHINE LEARNING AND AI**

9

Genetic algorithms, Neural network, Fuzzy logic, Ant Colony optimization, Particle Swarm optimization

**TOTAL: 45 PERIODS** 

# **COURSE OUTCOMES:**

CO1: Learn to apply various data mining techniques into various areas of different domains.

CO2: Be able to interact competently on the topic of data mining for business intelligence.

CO3: Apply various prediction techniques.

**CO4:** Learn about supervised and unsupervised learning technique.

CO5: Develop and implement machine learning algorithms

# **REFERENCES:**

- 1. Jaiwei Ham and Micheline Kamber, Data Mining concepts and techniques, Kauffmann Publishers 2006
- 2. Efraim Turban, Ramesh Sharda, Jay E. Aronson and David King, Business Intelligence, Prentice Hall, 2008.
- 3. W.H.Inmon, Building the Data Warehouse, fourth edition Wiley India pvt. Ltd. 2005.
- 4. Ralph Kimball and Richard Merz, The data warehouse toolkit, John Wiley, 3rd edition, 2013.
- 5. Michel Berry and Gordon Linoff, Mastering Data mining, John Wiley and Sons Inc, 2nd Edition, 2011
- 6. Michel Berry and Gordon Linoff, Data mining techniques for Marketing, Sales and Customer support, John Wiley, 2011
- 7. G. K. Gupta, Introduction to Data mining with Case Studies, Prentice hall of India, 2011
- 8. Giudici, Applied Data mining Statistical Methods for Business and Industry, John Wiley. 2009
- 9. Elizabeth Vitt, Michael Luckevich Stacia Misner, Business Intelligence, Microsoft, 2011
- 10. Michalewicz Z., Schmidt M. Michalewicz M and Chiriac C, Adaptive Business Intelligence, Springer Verlag, 2007
- 11. GalitShmueli, Nitin R. Patel and Peter C. Bruce, Data Mining for Business Intelligence Concepts, Techniques and Applications Wiley, India, 2010.

#### **CMG351**

#### **COURSE OBJECTIVE:**

- To develop the ability of the learners to define and implement HR metrics that are aligned with the overall business strategy.
- To know the different types of HR metrics and understand their respective impact and application.
- To understand the impact and use of HR metrics and their connection with HR analytics.
- To understand common workforce issues and resolving them using people analytics.

#### UNIT I - INTRODUCTION TO HR ANALYTICS

9

People Analytics - stages of maturity - Human Capital in the Value Chain : impact on business – HR metrics and KPIs.

#### UNIT II - HR ANLYTICS I: RECRUITMENT

9

Recruitment Metrics: Fill-up ratio - Time to hire - Cost per hire - Early turnover - Employee referral hires - Agency hires - Lateral hires - Fulfillment ratio - Quality of hire.

# UNIT III - HR ANALYTICS - TRAINING AND DEVELOPMENT

9

Training & Development Metrics: Percentage of employees trained-Internally and externally trained -Training hours and cost per employee - ROI.

# UNIT IV - HR ANALYTICS EMPLOYEE ENGAGEMENT AND CAREER PROGRESSION

9

Employee Engagement Metrics: Talent Retention index - Voluntary and involuntary turnovergrades, performance, and service tenure - Internal hired index Career Progression Metrics: Promotion index - Rotation index - Career path index.

#### UNIT V - HR ANALYTICS IV: WORKFORCE DIVERSITY AND DEVELOPMENT

9

**TOTAL: 45 PERIODS** 

Workforce Diversity and Development Metrics : Employees per manager – Workforce age profiling - Workforce service profiling - Churnover index - Workforce diversity index - Gender mix

#### COURSE OUTCOME:

- The learners will be conversant about HR metrics and ready to apply at work settings.
- The learners will be able to resolve HR issues using people analytics.

#### REFERENCES:

- 1. JacFitzenz, The New HR Analytics, AMACOM, 2010.
- 2. Edwards M. R., & Edwards K, Predictive HR Analytics: Mastering the HR Metric.London: Kogan Page.2016.
- 3. Human Resources kit for Dummies 3 rd edition Max Messmer, 2003
- 4. Dipak Kumar Bhattacharyya, HR Analytics ,Understanding Theories and Applications, SAGE Publications India ,2017.
- 5. Sesil, J. C., Applying advanced analytics to HR management decisions: Methods fo selection, developing incentives, and improving collaboration. Upper Saddle River, New Jersey: Pearson Education, 2014.
- 6. Pease, G., & Beresford, B, Developing Human Capital: Using Analytics to Plan and Optimize Your Learning and Development Investments. Wiley ,2014.

- 7. Phillips, J., & Phillips, P.P, Making Human Capital Analytics Work: Measuring the ROI of Human Capital Processes and OUTCOME. McGraw-Hill, 2014.
- 8. HR Scorecard and Metrices, HBR, 2001.

#### MARKETING AND SOCIAL MEDIA WEB ANALYTICS CMG352

LTPC

3003

#### **COURSE OBJECTIVE:**

To showcase the opportunities that exist today to leverage the power of the web and social media

# **UNIT I - MARKETING ANALYTICS**

9

Marketing Budget and Marketing Performance Measure, Marketing - Geographical Mapping, Data Exploration, Market Basket Analysis

# **UNIT II - COMMUNITY BUILDING AND MANAGEMENT**

9

History and Evolution of Social Media-Understanding Science of Social Media -Goals for using Social Media- Social Media Audience and Influencers - Digital PR- Promoting Social Media Pages-Linking Social Media Accounts-The Viral Impact of Social Media.

# **UNIT III - SOCIAL MEDIA POLICIES AND MEASUREMENTS**

9

Social Media Policies-Etiquette, Privacy- ethical problems posed by emerging social media technologies - The Basics of Tracking Social Media.

# **UNIT IV - WEB ANALYTICS**

9

Data Collection, Overview of Qualitative Analysis, Business Analysis, KPI and Planning, Critical Components of a Successful Web Analytics Strategy, Proposals & Reports, Web Data Analysis.

# **UNIT V - SEARCH ANALYTICS**

Search engine optimization (SEO), user engagement, user-generated content, web traffic analysis, online security, online ethics, data visualization.

**TOTAL: 45 PERIODS** 

#### COURSE OUTCOME:

The Learners will understand social media, web and social media analytics and their potential impact.

#### REFERENCES:

- 1. K. M. Shrivastava, Social Media in Business and Governance, Sterling Publishers Private Limited, 2013
- 2. Christian Fuchs, Social Media a critical introduction, SAGE Publications Ltd, 2014
- 3. Bittu Kumar, Social Networking, V & S Publishers, 2013
- 4. Avinash Kaushik, Web Analytics An Hour a Day, Wiley Publishing, 2007
- 5. Ric T. Peterson, Web Analytics Demystified, Celilo Group Media and CafePress 2004
- 6. Takeshi Moriguchi, Web Analytics Consultant Official Textbook, 7th Edition, 2016

#### **OPERATION AND SUPPLY CHAIN ANALYTICS CMG353**

# **COURSE OBJECTIVE:**

To treat the subject in depth by emphasizing on the advanced quantitative models and methods in operations and supply chain management and its practical aspects and the latest developments in the field.

#### **UNIT I - INTRODUCTION**

9

Descriptive, predictive and prescriptive analytics, Data Driven Supply Chains – Basics, transforming supply chains.

#### **UNIT II - WAREHOUSING DECISIONS**

9

P-Median Methods - Guided LP Approach, Greedy Drop Heuristics, Dynamic Location Models, Space Determination and Layout Methods.

# **UNIT III - INVENTORY MANAGEMENT**

9

Dynamic Lot sizing Methods, Multi-Echelon Inventory models, Aggregate Inventory system and LIMIT, Risk Analysis in Supply Chain, Risk pooling strategies.

#### **UNIT IV - TRANSPORTATION NETWORK MODELS**

9

Minimal Spanning Tree, Shortest Path Algorithms, Maximal Flow Problems, Transportation Problems, Set covering and Set Partitioning Problems, Travelling Salesman Problem, Scheduling Algorithms.

# **UNIT V - MCDM MODELS**

Analytic Hierarchy Process(AHP), Data Envelopment Analysis (DEA), Fuzzy Logic an Techniques, the analytical network process (ANP), TOPSIS.

**TOTAL: 45 PERIODS** 

# COURSE OUTCOME:

To enable quantitative solutions in business decision making under conditions of certainty, risk and uncertainty.

# **REFERENCES:**

- 1. Nada R. Sanders, Big data driven supply chain management: A framework for implementing analytics and turning information into intelligence, Pearson Education, 2014.
- 2. Michael Watson, Sara Lewis, Peter Cacioppi, Jay Jayaraman, Supply Chain Network Design: Applying Optimization and Analytics to the Global Supply Chain, Pearson Education, 2013.
- 3. Anna Nagurney, Min Yu, Amir H. Masoumi, Ladimer S. Nagurney, Networks Against Time: Supply Chain Analytics for Perishable Products, Springer, 2013.
- 4. Muthu Mathirajan, Chandrasekharan Rajendran, Sowmyanarayanan Sadagopan, Arunachalam Ravindran, Parasuram Balasubramanian, Analytics in Operations/Supply Chain Management, I.K. International Publishing House Pvt. Ltd., 2016.
- 5. Gerhard J. Plenert, Supply Chain Optimization through Segmentation and Analytics, CRC Press, Taylor & Francis Group, 2014.

**CMG354** 

# FINANCIAL ANALYTICS

LTPC

3003

# **COURSE OBJECTIVE:**

This course introduces a core set of modern analytical tools that specifically target finance applications.

#### **UNIT I - CORPORATE FINANCE ANALYSIS**

9

Basic corporate financial predictive modelling- Project analysis- cash flow analysis- cost of capital, Financial Break even modelling, Capital Budget model-Payback, NPV, IRR.

# **UNIT II - FINANCIAL MARKET ANALYSIS**

9

Estimation and prediction of risk and return (bond investment and stock investment) –Time series-examining nature of data, Value at risk, ARMA, ARCH and GARCH.

#### **UNIT III - PORTFOLIO ANALYSIS**

9

Portfolio Analysis – capital asset pricing model, Sharpe ratio, Option pricing models- binomial model for options, Black Scholes model and Option implied volatility.

#### **UNIT IV - TECHNICAL ANALYSIS**

9

Prediction using charts and fundamentals – RSI, ROC, MACD, moving average and candle charts, simulating trading strategies. Prediction of share prices.

# **UNIT V - CREDIT RISK ANALYSIS**

9

Credit Risk analysis- Data processing, Decision trees, logistic regression and evaluating credit risk model.

#### **TOTAL: 45 PERIODS**

#### COURSE OUTCOME

 The learners should be able to perform financial analysis for decision making using excel, Python and R.

# **REFERENCES:**

- 1. Financial analytics with R by Mark J. Bennett, Dirk L. Hugen, Cambridge university press.
- 2. Haskell Financial Data Modeling and Predictive Analytics Paperback Import, 25 Oct 2013 by Pavel Ryzhov.
- 3. Quantitative Financial Analytics: The Path To Investment Profits Paperback Import, 11 Sep 2017 by Edward E Williams (Author), John A Dobelman.
- 4. Python for Finance Paperback Import, 30 Jun 2017 by Yuxing Yan (Author).
- Mastering Python for Finance Paperback Import, 29 Apr 2015 by James Ma Weiming.

PROGRESS THROUGH KNOWLEDGE

# **VERTICAL 5: ENVIRONMENT AND SUSTAINABILITY**

CES331 SUSTAINABLE INFRASTRUCTURE DEVELOPMENT

LTPC

3 0 0 3

# **COURSE OBJECTIVE:**

 To impart knowledge about sustainable Infrastructure development goals, practices and to understand the concepts of sustainable planning, design, construction, maintenance and decommissioning of infrastructure projects.

# UNIT I SUSTAINABLE DEVELOPMENT GOALS

9

Definitions, principles and history of Sustainable Development - Sustainable development goals (SDG): global and Indian - Infrastructure Demand and Supply - Environment and Development linkages - societal and cultural demands - Sustainability indicators - Performance indicators of sustainability and Assessment mechanism - Policy frameworks and practices: global and Indian - Infrastructure Project finance - Infrastructure project life cycle - Constraints and barriers for sustainable development - future directions.

#### UNIT II SUSTAINABLE INFRASTRUCTURE PLANNING

9

Overview of Infrastructure projects: Housing sector, Power sector, Water supply, road, rail and port transportation sector, rural and urban infrastructure. Environmental Impact Assessment (EIA), Land acquisition -Legal aspects, Resettlement &Rehabilitation and Development - Cost effectiveness Analysis - Risk Management Framework for Infrastructure Projects, Economic, demand, political, socio-environmental and cultural risks. Shaping the Planning Phase of Infrastructure Projects to mitigate risks, Designing Sustainable Contracts, Negotiating with multiple Stakeholders on Infrastructure Projects. Use of ICT tools in planning – Integrated planning - Clash detection in construction - BIM (Building Information Modelling).

# UNIT III SUSTAINABLE CONSTRUCTION PRACTICES AND TECHNIQUES

9

Sustainability through lean construction approach - Enabling lean through information technology – Lean in planning and design - IPD (Integrated Project Delivery) - Location Based Management System - Geospatial Technologies for machine control, site management, precision control and real time progress monitoring - Role of logistics in achieving sustainable construction – Data management for integrated supply chains in construction - Resource efficiency benefits of effective logistics - Sustainability in geotechnical practice – Design considerations, Design Parameters and Procedures – Quality control and Assurance - Use of sustainable construction techniques: Precast concrete technology, Pre-engineered buildings.

# UNIT IV SUSTAINABLE CONSTRUCTION MATERIALS

9

Construction materials: Concrete, steel, glass, aluminium, timber and FRP - No/Low cement concrete - Recycled and manufactured aggregate - Role of QC and durability - Sustainable consumption — Eco-efficiency - green consumerism - product stewardship and green engineering - Extended producer responsibility — Design for Environment Strategies, Practices, Guidelines, Methods, And Tools. Eco-design strategies —Design for Disassembly - Dematerialization, rematerialization, transmaterialization — Green procurement and green distribution - Analysis framework for reuse and recycling — Typical constraints on reuse and recycling - Communication of Life Cycle Information - Indian Eco mark scheme - Environmental product declarations — Environmental marketing- Life cycle Analysis (LCA), Advances in LCA: Hybrid LCA, Thermodynamic LCA - Extending LCA - economic dimension, social dimension - Life cycle costing (LCC) - Combining LCA and LCC — Case studies

# UNIT V SUSTAINABLE MAINTENANCE OF INFRASTRUCTURE PROJECTS

9

Case Studies - Sustainable projects in developed countries and developing nations - An Integrated Framework for Successful Infrastructure Planning and Management - Information Technology and

Systems for Successful Infrastructure Management, - Structural Health Monitoring for Infrastructure projects - Innovative Design and Maintenance of Infrastructure Facilities - Capacity Building and Improving the Governments Role in Infrastructure Implementation, Infrastructure Management Systems and Future Directions. - Use of Emerging Technologies - IoT, Big Data Analytics and Cloud Computing, Artificial Intelligences, Machine and Deep Learning, Fifth Generation (5G) Network services for maintenance.

**TOTAL: 45 PERIODS** 

# **COURSE OUTCOME:**

On completion of the course, the student is expected to be able to

**CO1** Understand the environment sustainability goals at global and Indian scenario.

CO2 Understand risks in development of projects and suggest mitigation measures.

**CO3** Apply lean techniques, LBMS and new construction techniques to achieve sustainability in infrastructure construction projects.

**CO4** Explain Life Cycle Analysis and life cycle cost of construction materials.

**CO5** Explain the new technologies for maintenance of infrastructure projects.

# **REFERENCES:**

- 1. Charles J Kibert, Sustainable Construction : Green Building Design & Delivery, 4th Edition , Wiley Publishers 2016.
- 2. Steve Goodhew, Sustainable Construction Process, Wiley Blackwell, UK, 2016.
- 3. Craig A. Langston & Grace K.C. Ding, Sustainable Practices in the Built Environment, Butterworth Heinemann Publishers, 2011.
- 4. William P Spence, Construction Materials, Methods & Techniques (3e), Yesdee Publication Pvt. Ltd, 2016.
- 5. New Building Materials and Construction World magazine
- 6. Kerry Turner. R, "Sustainable Environmental Management", Principles and Practice Publisher:Belhaven Press,ISBN:1852930039.
- 7. Munier N, "Introduction to Sustainability", Springer2005
- 8. Sharma, "Sustainable Smart Cities In India: Challenges And Future Perspectives", SPRINGER, 2022.
- 9. Ralph Horne, Tim Grant, KarliVerghese, Life Cycle Assessment: Principles, Practice and Prospects, Csiro Publishing, 2009
- European Commission Joint Research Centre Institute for Environment and Sustainability: International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Detailed guidance. Luxembourg. European Union;2010
- 11. Hudson, Haas, Uddin, Infrastructure management: integrating design, construction, maintenance, rehabilitation, and renovation, McGraw Hill, (1997).
- 12. GregerLundesjö, Supply Chain Management and Logistics in Construction: Delivering Tomorrow's Built Environment, Kogan Page Publishers, 2015.

# CO's-PO's & PSO's MAPPING

| CO's | PO's |   |   |   |   |   |   |   |   |    |    |    |   | PSO's |   |  |
|------|------|---|---|---|---|---|---|---|---|----|----|----|---|-------|---|--|
|      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2     | 3 |  |
| 1    | 2    |   | 1 | 1 |   | 2 | 3 | 1 | 1 |    | 2  | 1  | 1 | 2     | 1 |  |

| 2    | 3 | 1 | 3 | 2 | 1 | 2 | 2 |   | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 3    | 2 | 2 | 3 | 1 | 1 | 1 | 1 |   |   |   | 1 | 1 | 1 | 3 | 1 |
| 4    | 3 | 1 | 3 | 2 | 2 | 1 | 3 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
| 5    | 3 | 1 | 2 | 2 | 2 | 2 | 3 | 1 |   | 1 | 1 | 2 | 2 | 3 | 2 |
| Avg. | 3 | 1 | 3 | 2 | 2 | 2 | 3 | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 2 |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

# CES332 SUSTAINABLE AGRICULTURE AND ENVIRONMENTAL MANAGEMENT LTPC 3 0 0 3

#### **COURSE OBJECTIVES:**

 To educate the students about the issues of sustainability in agroecosystems, introduce the concepts and principles of agroecology as applied to the design and management of sustainable agricultural systems for a changing world.

# UNIT I AGROECOLOGY, AGROECOSYSTEM AND SUSTAINABLE AGRICULTURE CONCEPTS

9

Ecosystem definition - Biotic *Vs.* abiotic factors in an ecosystem - Ecosystem processes - Ecological services and agriculture - Problems associated with industrial agriculture/food systems - Defining sustainability - Characteristics of sustainable agriculture - Difference between regenerative and sustainable agriculture systems

# UNIT II SOIL HEALTH. NUTRIENT AND PEST MANAGEMENT

9

Soil health definition - Factors to consider (physical, chemical and biological) - Composition of healthy soils - Soil erosion and possible control measures - Techniques to build healthy soil - Management practices for improving soil nutrient - Ecologically sustainable strategies for pest and disease control

#### UNIT III WATER MANAGEMENT

9

Soil water storage and availability - Plant yield response to water - Reducing evaporation in agriculture - Earthworks and tanks for rainwater harvesting - Options for improving the productivity of water - Localized irrigation - Irrigation scheduling - Fertigation - Advanced irrigation systems and agricultural practices for sustainable water use

# UNIT IV ENERGY AND WASTE MANAGEMENT

9

Types and sources of agricultural wastes - Composition of agricultural wastes - Sustainable technologies for the management of agricultural wastes - Useful and high value materials produced using different processes from agricultural wastes - Renewable energy for sustainable agriculture

#### UNIT V EVALUATING SUSTAINABILITY IN AGROECOSYSTEMS

9

**TOTAL: 45 PERIODS** 

Indicators of sustainability in agriculture - On-farm evaluation of agroecosystem sustainability - Alternative agriculture approaches/ farming techniques for sustainable food production - Goals and components of a community food system - Case studies

#### **COURSE OUTCOME**

• On completion of the course, the student is expected to be able to

368

- CO1 Have an in-depth knowledge about the concepts, principles and advantages of sustainable agriculture
- CO2 Discuss the sustainable ways in managing soil health, nutrients, pests and diseases
- CO3 Suggest the ways to optimize the use of water in agriculture to promote an ecological use of resources
- **CO4** Develop energy and waste management plans for promoting sustainable agriculture in non-sustainable farming areas
- **CO5** Assess an ecosystem for its level of sustainability and prescribe ways of converting to a sustainable system through the redesign of a conventional agroecosystem

# **REFERENCES:**

- 1. Approaches to Sustainable Agriculture Exploring the Pathways Towards the Future of Farming, Oberc, B.P. & Arroyo Schnell, A., IUCN, Belgium, 2020
- 2. Natural bioactive products in sustainable agriculture, Singh, J. & Yadav, A.N., Springer, 2020
- 3. Organic Farming for Sustainable Agriculture, Nandwani, D., Springer, 2016
- 4. Principles of Agronomy for Sustainable Agriculture, Villalobos, F.J. & Fereres, E., Springer, 2016
- 5. Sustainable Agriculture for Food Security: A Global Perspective, Balkrishna, A., CRC Press, 2021
- 6. Sustainable Energy Solutions in Agriculture, Bundschuh, J. & Chen, G., CRC Press, 2014 CO's-PO's & PSO's MAPPING- SUSTAINABLE AGRICULTURE PRACTICES

| CO's | PO's | PSO's |   |   |   |   |   |   |   |    |    |    |   |   |   |  |
|------|------|-------|---|---|---|---|---|---|---|----|----|----|---|---|---|--|
|      | 1    | 2     | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 |  |
| 1    |      | 2     |   |   |   |   |   | 2 |   | 2  |    |    | 2 | 2 |   |  |
| 2    |      | 2     |   | 2 | 2 | 2 |   |   |   |    |    |    | 3 | 2 |   |  |
| 3    |      |       |   | 2 |   | 2 |   |   |   |    | 7  |    | 3 | 2 | 3 |  |
| 4    | 3    | 2     |   |   | 2 |   |   | 2 | 2 | 2  | 2  | 11 | 3 | 2 | 3 |  |
| 5    |      | 2     | 3 | 2 |   |   | 1 |   |   |    |    | 1  |   | 2 |   |  |
| Avg. | 3    | 2     | 3 | 2 | 2 | 2 | 1 | 2 | 2 | 2  | 2  | 1  | 3 | 2 | 3 |  |

1 - Low; 2 - Medium; 3 - High; '- "- No correlation

**CES333** 

# SUSTAINABLE BIOMATERIALS

LTPC 3 0 0 3

#### **COURSE OBJECTIVES**

- To Impart knowledge of biomaterials and their properties
- To learn about Fundamentals aspects of Biopolymers and their applications
- To learn about bioceramics and biopolymers
- To introduce the students about metals as biomaterials and their usage as implants
- To make the students understand the significance of bionanomaterials and its applications.

# UNIT-I INTRODUCTION TO BIOMATERIALS

9

Introduction: Definition of biomaterials, requirements & classification of biomaterials- Types of Biomaterials- Degradable and resorbable biomaterials- engineered natural materials-Biocompatibility-Hydrogels-pyrolitic carbon for long term medical implants-textured and porous

materials-Bonding types- crystal structure-imperfection in crystalline structure-surface properties and adhesion of materials –strength of biological tissues-performance of implants-tissue response to implants- Impact and Future of Biomaterials

#### UNIT-II BIO POLYMERS

9

Molecular structure of polymers -Molecular weight - Types of polymerization techniques—Types of polymerization reactions- Physical states of polymers- Common polymeric biomaterials - Polyethylene -Polymethylmethacrylate (PMMA-Polylactic acid (PLA) and polyglycolic acid (PGA) - Polycaprolactone (PCL) - Other biodegradable polymers —Polyurethan- reactions polymers for medical purposes - Collagens- Elastin- Cellulose and derivatives-Synthetic polymeric membranes and their biological applications

# UNIT-III BIO CERAMICS AND BIOCOMPOSITES

9

General properties- Bio ceramics -Silicate glass - Alumina (Al2O3) -Zirconia (ZrO2)-Carbon-Calcium phosphates (CaP)- Resorbable Ceramics- surface reactive ceramics- Biomedical Composites-Polymer Matrix Compsite(PMC)-Ceramic Matrix Composite(CMC)-Metal Matrix Composite (MMC)-glass ceramics - Orthopedic implants-Tissue engineering scaffolds

# UNIT-IV METALS AS BIOMATERIALS

9

Biomedical metals-types and properties-stainless steel-Cobalt chromium alloys-Titanium alloys-Tantalum-Nickel titanium alloy (Nitinol)- magnesium-based biodegradable alloys-surface properties of metal implants for osteointegration-medical application-corrosion of metallic implants – biological tolerance of implant metals

# UNIT-V NANOBIOMATERIALS

9

Meatllicnanobiomaterials—Nanopolymers-Nanoceramics—Nanocomposites—Carbon based nanobiomaterials—transport of nanoparticles—release rate-positive and negative effect of nanosize-nanofibres-Nano and micro features and their importance in implant performance-Nanosurface and coats-Applications nanoantibiotics-Nanomedicines—Biochips—Biomimetics-BioNEMs—Biosensor-Bioimaging/Molecular Imaging—challenges and future perspective.

**TOTAL: 45 PERIODS** 

#### **COURSE OUTCOMES**

CO1: Students will gain familiarity with Biomaterials and they will understand their importance.

CO2: Students will get an overview of different biopolymers and their properties

CO3: Students gain knowledge on some of the important Bioceramics and Biocomposite materials

CO4: Students gain knowledge on metals as biomaterials

**CO5:** Student gains knowledge on the importance of nanobiomaterials in biomedical applications.

# **REFERENCES**

- C. Mauli Agrawal, Joo L. Ong, Mark R. Appleford, Gopinath Mani "Introduction to Biomaterials Basic Theory with Engineering Applications" Cambridge University Press, 2014.
- 2. Donglu shi "Introduction to Biomaterials" Tsinghua University press, 2006.
- 3. Joon Park, R.S.Lakes "Biomaterials An Introduction" third edition, Springer 2007.
- 4. M.Jaffe, W.Hammond, P.Tolias and T.Arinzeh "Characterization of Biomaterials" Wood head publishing, 2013.
- 5. Buddy D.Ratner and Allan S.Hoffman Biomaterials Science "An Introduction to Material in Medicine" Third Edition, 2013.
- 6. VasifHasirci, NesrinHasirci "Fundamentals of Biomaterials" Springer, 2018

- 7. Leopoido Javier Rios Gonzalez. "Handbook of Research on Bioenergy and Biomaterials: Consolidated and green process" Apple academic press, 2021.
- 8. Devarajan Thangadurai, Jeyabalan Sangeetha, Ram Prasad "Functional Bionanomaterials" springer, 2020.
- 9. Sujata.V.Bhat Biomaterials; Narosa Publishing house, 2002.

# **CES334**

# MATERIALS FOR ENERGY SUSTAINABILITY

LTPC 3003

# **COURSE OBJECTIVES**

- To familiarize the students about the challenges and demands of energy sustainability
- To provide fundamental knowledge about electrochemical devices and the materials used.
- To introduce the students to various types of fuel cell
- To enable students to appreciate novel materials and their usage in photovoltaic application
- To introduce students to the basic principles of various types Supercapacitors and the materials used.

# **UNIT-I SUSTAINABLE ENERGY SOURCES**

9

Introduction to energy demand and challenges ahead – sustainable source of energy (wind, solar etc.) – electrochemical energy systems for energy harvesting and storage – materials for sustainable electrochemical systems building – India centric solutions based on locally available materials – Economics of wind and solar power generators vs. conventional coal plants – Nuclear energy

# UNIT-II ELECTROCHEMICAL DEVICES

9

Electrochemical Energy – Difference between primary and secondary batteries – Secondary battery (Li-ion battery, Sodium-ion battery, Li-S battery, Li-O<sub>2</sub> battery, Nickel Cadmium, Nickel Metal Hydride) – Primary battery (Alkaline battery, Zinc-Carbon battery) – Materials for battery (Anode materials – Lithiated graphite, Sodiated hard carbon, Silicon doped graphene, Lithium Titanate) (Cathode Materials – S, LiCoO<sub>2</sub>, LiFePO<sub>4</sub>, LiMn<sub>2</sub>O<sub>4</sub>) – Electrolytes for Lithium-ion battery (ethylene carbonate and propylene carbonate based)

UNIT-III FUEL CELLS 9

Principle of operation of fuel cells – types of fuel cells (Proton exchange membrane fuel cells, alkaline fuel cell, direct methanol fuel cells, direct borohydride fuel cells, phosphoric acid fuel cells, solid oxide fuel cells, and molten carbonate fuel cells) – Thermodynamics of fuel cell – Fuel utilization – electrolyte membrane (proton conducting and anion conducting) – Catalysts (Platinum, Platinum alloys, carbon supported platinum systems and metal oxide supported platinum catalysts) – Anatomy of fuel cells (gas diffusion layer, catalyst layer, flow field plate, current conductors, bipolar plates and monopolar plates).

#### **UNIT-IV PHOTOVOLTAICS**

9

Physics of the solar cell – Theoretical limits of photovoltaic conversion – bulk crystal growth of Si and wafering for photovoltaic application - Crystalline silicon solar cells – thin film silicon solar cells – multijunction solar cells – amorphous silicon based solar cells – photovoltaic concentrators – Cu(InGa)Se<sub>2</sub> solar cells – Cadium Telluride solar cells – dye sensitized solar cells – Perovskite solar cells – Measurement and characterization of solar cells - Materials used in solar cells (metallic oxides, CNT films, graphene, OD fullerenes, single-multi walled carbon nanotubes, two-

dimensional Graphene, organic or Small molecule-based solar cells materials - copper-phthalocyanine and perylenetetracarboxylicbis - benzine - fullerenes - boron subphthalocyanine-tin (II) phthalocyanine)

#### **UNIT-V SUPERCAPACITORS**

9

Supercapacitor –types of supercapacitors (electrostatic double-layer capacitors, pseudo capacitors and hybrid capacitors) - design of supercapacitor-three and two electrode cell-parameters of supercapacitor- Faradaic and non - Faradaic capacitance – electrode materials (transition metal oxides (MO), mixed metal oxides, conducting polymers (CP), Mxenes, nanocarbons, non-noble metal, chalcogenides, hydroxides and 1D-3D metal-organic frame work (MOF), activated carbon fibres (ACF)- Hydroxides-Based Materials - Polyaniline (PANI), a ternary hybrid composite-conductive polypyrrole hydrogels – Different types of nanocomposites for the SC electrodes (carbon–carbon composites, carbon-MOs composites, carbon-CPs composites and MOs-CPs composites) - Two-Dimensional (2D) Electrode Materials - 2D transition metal carbides, carbonitrides, and nitrides.

**TOTAL: 45 PERIODS** 

#### **COURSE OUTCOMES**

CO1: Students will acquire knowledge about energy sustainability.

CO2: Students understand the principles of different electrochemical devices.

**CO3:** Students learn about the working of fuel cells and their application.

CO4: Students will learn about various Photovoltaic applications and the materials used.

**CO5:** The students gain knowledge on different types of supercapacitors and the performance of various materials

# REFERENCES

- 1. Functional materials for sustainable energy applications; John A. Kilner, Stephen J. Skinner, Stuart J. C. Irvine and Peter P. Edwards.
- 2. Hand Book of Fuel Cells: Fuel Cell Technology and Applications, Wolf Vielstich, Arnold Lamm, Hubert Andreas Gasteiger, Harumi Yokokawa, Wiley, London 2003.
- 3. B.E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications, Kluwer Academic / Plenum publishers, New York, 1999.
- 4. T.R. Crompton, Batteries reference book, Newners, 3rd Edition, 2002.
- 5. Materials for Supercapacitor applications; B.Viswanathan. M.Aulice Scibioh
- 6. Electrode Materials for Supercapacitors: A Review of Recent Advances, Parnia Forouzandeh, Vignesh Kumaravel and Suresh C. Pillai, catalysts 2020.
- 7. Recent advances, practical challenges, and perspectives of intermediate temperature solid oxide fuel cell cathodes Amanda Ndubuisi, Sara Abouali, Kalpana Singh and VenkataramanThangadurai, J. Mater. Chem. A, 2022.
- 8. Review of next generation photovoltaic solar cell technology and comparative materialistic development Neeraj Kant, Pushpendra Singh, Materials Today: Proceedings, 2022.

**CES335** 

**GREEN TECHNOLOGY** 

LTPC 3003

# **COURSE OBJECTIVE:**

- To acquire knowledge on green systems and the environment, energy technology and efficiency, and sustainability.
- To provide green engineering solutions to energy demand, reduced energy footprint.

#### UNIT I PRINCIPLES OF GREEN CHEMISTRY

9

Historical Perspectives and Basic Concepts. The twelve Principles of Green Chemistry and green engineering. Green chemistry metrics- atom economy, E factor, reaction mass efficiency, and other green chemistry metrics, application of green metrics analysis to synthetic plans.

# UNIT II POLLUTION TYPES

9

Pollution – types, causes, effects, and abatement. Waste – sources of waste, different types of waste, chemical, physical and biochemical methods of waste minimization and recycling.

#### UNIT III GREEN REAGENTS AND GREEN SYNTHESIS

9

Environmentally benign processes- alternate solvents- supercritical solvents, ionic liquids, water as a reaction medium, energy-efficient design of processes- photo, electro and sono chemical methods, microwave-assisted reactions

# UNIT IV DESIGNING GREEN PROCESSES

9

Safe design, process intensification, in process monitoring. Safe product and process design – Design for degradation, Real-time Analysis for pollution prevention, inherently safer chemistry for accident prevention

# UNIT V GREEN NANOTECHNOLOGY

9

Nanomaterials for water treatment, nanotechnology for renewable energy, nanotechnology for environmental remediation and waste management, nanotechnology products as potential substitutes for harmful chemicals, environmental concerns with nanotechnology

**TOTAL: 45 PERIODS** 

#### COURSE OUTCOMES

CO1: To understand the principles of green engineering and technology

CO2: To learn about pollution using hazardous chemicals and solvents

CO3: To modify processes and products to make them green and safe.

CO4: To design processes and products using green technology

CO5 – To understand advanced technology in green synthesis

# **TEXT BOOKS**

- 1. Green technology and design for the environment, <u>Samir B. Billatos</u>, <u>Nadia A. Basaly</u>, Taylor & Francis, Washington, DC, ©1997
- 2. Green Chemistry An introductory text M. Lancaster, RSC,2016.
- 3. Green chemistry metrics Alexi Lapkin and david Constable (Eds), Wiley publications, 2008

#### **REFERENCE BOOKS**

1. Environmental chemistry, Stanley E Manahan, Taylor and Francis, 2017

CES336 ENVIRONMENTAL QUALITY MONITORING AND ANALYSIS

#### **COURSE OBJECTIVES:**

- to understand and study the complexity of the environment in relation to pollutants generated due to industrial activity.
- To analyze the quality of the environmental parameters and monitor the same for the purpose of environmental risk assessment.

#### **UNIT I: ENVIRONMENTAL MONITORING AND STANDARDS**

9

Introduction- Environmental Standards- Classification of Environmental Standards- Global Environmental Standards- Environmental Standards in India- Ambient air quality standards- water quality standard- Environmental Monitoring-Need for environmental monitoring- Concepts of environmental monitoring- Techniques of Environmental Monitoring.

#### **UNIT II: MONITORING OF ENVIRONMENTAL PARAMETERS**

9

Current Environmental Issues- Global Environmental monitoring programme-International conventions- Application of Environmental Monitoring- Atmospheric Monitoring - screening parameters - Significance of environmental sampling- sampling methods - water sampling - sampling of ambient air-sampling of flue gas.

# UNIT III: ANALYTICAL METHODS FOR ENVIRONMENTAL MONITORING

9

Classification of Instrumental Method- Analysis of Organic Pollutants by Spectrophotometric methods -Determination of nitrogen, phosphorus and, chemical oxygen demand (COD) in sewage; Biochemical oxygen demand (BOD)- Sampling techniques for air pollution measurements; analysis of particulates and air pollutants like oxides of nitrogen, oxides of sulfur, carbon monoxide, hydrocarbon; Introduction to advanced instruments for environmental analysis

# UNIT IV: ENVIRONMENTAL MONITORING PROGRAMME (EMP) & RISKASSESSMENT 9

Water quality monitoring programme- national water quality monitoring- Parameters for National Water Quality Monitoring- monitoring protocol; Process of risk assessment- hazard identification-exposure assessment- dose-response assessment; risk characterization.

# **UNIT V: AUTOMATED DATA ACQUISITION AND PROCESSING**

9

Data Acquisition for Process Monitoring and Control - The Data Acquisition System - Online Data Acquisition, Monitoring, and Control - Implementation of a Data Management System - Review of Observational Networks -Sensors and transducers- classification of transducers- data acquisition system- types of data acquisition systems- data management and quality control; regulatory overview.

**TOTAL: 45 PERIODS** 

# **COURSE OUTCOMES**

After completion of this course, the students will know

| CO1 | Basic concepts of environmental standards and monitoring.                 |
|-----|---------------------------------------------------------------------------|
| CO2 | the ambient air quality and water quality standards;                      |
| CO3 | the various instrumental methods and their principles for environmental   |
|     | monitoring                                                                |
| CO4 | The significance of environmental standards in monitoring quality and     |
|     | sustainability of the environment.                                        |
| CO5 | the various ways of raising environmental awareness among the people.     |
| CO6 | Know the standard research methods that are used worldwide for monitoring |

the environment.

#### **TEXTBOOKS**

- 1. Environmental monitoring Handbook, Frank R. Burden, © 2002 by The McGraw-Hill Companies, Inc.
- 2. Handbook of environmental analysis: chemical pollutants in the air, water, soil, and soild wastes / Pradyot Patnaik, © 1997 by CRC Press, Inc

# **REFERENCES**

- 1. Environmental monitoring / edited by G. Bruce Wiersma, © 2004 by CRC Press LLC.
- 2. H. H. Willard, L. L. Merit, J. A. Dean and F. A. Settle, Instrumental Methods of Analysis, CBP Publishers and Distributors, New Delhi, 1988.
- 3. Heaslip, G. (1975) Environmental Data Handling. John Wiley & Sons. New York.

# CO's-PO's & PSO's MAPPING

| Course   | Program Outcomes |    |    |    |      |    |     |     |    |      |    |    |    |    |    |
|----------|------------------|----|----|----|------|----|-----|-----|----|------|----|----|----|----|----|
| Outcom   | РО               | РО | РО | PO | РО   | РО | РО  | РО  | РО | РО   | PO | РО | PS | PS | PS |
| es       | 1                | 2  | 3  | 4  | 5    | 6  | 7   | 8   | 9  | 10   | 11 | 12 | 01 | 02 | О3 |
| CO1      | 1                | 1  | 1  |    | -,;- |    | -   | -   | -  | 40)  |    |    | 3  | -  | -  |
| CO2      | 1                | 1  | 1  | 1  | 1    | -  | -   | - 4 | 1  | Y    | 2  | 2  | 2  | 1  | 1  |
| CO3      | 1                | 1  | 2  | 1  | 1    | -  | -   | -   | 2  | - `\ | 1  | 1  | 1  | -  | -  |
| CO4      | 1                | 2  | 3  | 3  | 1    | -  | -   | -   | 2  | -    | 3  | 3  | 1  | -  | -  |
| CO5      | 1                | 1  | 3  | 2  | 1    |    | - 7 | -   | 3  |      | 3  | 1  | 2  | -  | -  |
| CO6      | 3                | 2  | 3  | 3  | 2    | -  | -   | -   | 3  | -    | 3  | 3  | 3  | 1  | 1  |
| Over all | 3                | 2  | 3  | 3  | 2    | -  |     | - 1 | 3  |      | 3  | 3  | 3  | 1  | 1  |

<sup>1 -</sup> low, 2 - medium, 3 - high, '-' - no correlation

# CES337 INTEGRATED ENERGY PLANNING FOR SUSTAINABLE DEVELOPMENT

LTPC 3003

# **COURSE OBJECTIVES:**

- 1. To create awareness on the energy scenario of India with respect to world
- 2. To understand the fundamentals of energy sources, energy efficiency and resulting environmental implications of energy utilisation
- 3. Familiarisation on the concept of sustainable development and its benefits
- 4. Recognize the potential of renewable energy sources and its conversion technologies for attaining sustainable development
- 5. Acquainting with energy policies and energy planning for sustainable development

#### UNIT I ENERGY SCENARIO

9

Comparison of energy scenario – India and World (energy sources, generation mix, consumption pattern, T&D losses, energy demand, per capita energy consumption) – energy pricing – Energy security

# UNIT II ENERGY AND ENVIRONMENT

9

Conventional Energy Sources - Emissions from fuels - Air, Water and Land pollution -

#### UNIT III SUSTAINABLE DEVELOPMENT

9

Sustainable Development: Concepts and Stakeholders, Sustainable Development Goal (SDG) - Social development: Poverty, conceptual issues and measures, impact of poverty. Globalization and Economic growth - Economic development: Economic inequalities, Income and growth.

#### UNIT IV RENEWABLE ENERGY TECHNOLOGY

9

Renewable Energy – Sources and Potential – Technologies for harnessing from Solar, Wind, Hydro, Biomass and Oceans – Principle of operation, relative merits and demerits

#### UNIT V ENERGY PLANNING FOR SUSTAINABLE DEVELOPMENT

q

National & State Energy Policy - National solar mission - Framework of Central Electricity Authority - National Hydrogen Mission - Energy and climate policy - State Energy Action Plan, RE integration, Road map for ethanol blending, Energy Efficiency and Energy Mix

#### **COURSE OUTCOMES:**

Upon completion of this course, the students will be able to

CO1: Understand the world and Indian energy scenario

CO2: Analyse energy projects, its impact on environment and suggest control strategies

CO3: Recognise the need of Sustainable development and its impact on human resource development

**CO4:** Apply renewable energy technologies for sustainable development

**CO5:** Fathom Energy policies and planning for sustainable development.

# REFERENCES:

- Energy Manager Training Manual (4Volumes) available at http://www.emea.org/gbook1.asp, a website administered by Bureau of Energy Efficiency (BEE), a statutory body under Ministry of Power, Government of India.2004
- 2. Robert Ristirer and Jack P. Kraushaar, "Energy and the environment", Willey, 2005.
- 3. Godfrey Boyle, "Renewable Energy, Power for a Sustainable Future", Oxford University Press, U.K., 2012
- 4. Twidell, J.W. & Weir A., "Renewable Energy Resources", EFNSpon Ltd., UK, 2015.
- 5. Dhandapani Alagiri, Energy Security in India Current Scenario, The ICFAI University Press, 2006
- 6. M.H. Fulekar, Bhawana Pathak, R K Kale, "Environment and Sustainable Development" Springer, 2016
- 7. https://www.niti.gov.in/verticals/energy

CES338 ENERGY EFFICIENCY FOR SUSTAINABLE DEVELOPMENT

- 1. To understand the types of energy sources, energy efficiency and environmental implications of energy utilisation
- 2. To create awareness on energy audit and its impacts
- 3. To acquaint the techniques adopted for performance evaluation of thermal utilities
- 4. To familiarise on the procedures adopted for performance evaluation of electrical utilities
- 5. To learn the concept of sustainable development and the implication of energy usage

#### UNIT I ENERGY AND ENVIRONMENT

9

Primary energy sources - Coal, Oil, Gas - India Vs World with respect to energy production and consumption, Climate Change, Global Warming, Ozone Depletion, UNFCCC, COP

#### UNIT II ENERGY AUDITING

9

Need and types of energy audit. Energy management (audit) approach-understanding energy costs, bench marking, energy performance, matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, fuel & energy substitution, energy audit instruments

# UNIT III ENERGY EFFICIENCY IN THERMAL UTILITIES

9

Energy conservation avenues in steam generation and utilisation, furnaces, Thermic Fluid Heaters. Insulation and Refractories - Commercial waste heat recovery devices: recuperator, regenerator, heat pipe, heat exchangers (Plate, Shell & Tube), heat pumps, and thermocompression

# UNIT IV ENERGY CONSERVTION IN ELECTRICAL UTILITIES

9

Demand side management - Power factor improvement - Energy efficient transformers - Energy conservation avenues in Motors, HVAC, fans, blowers, pumps, air compressors, illumination systems and cooling towers

# UNIT V SUSTAINABLE DEVELOPMENT

9

Sustainable Development: Concepts and Stakeholders, Sustainable Development Goal (SDG). Globalization and Economic growth. Economic development: Economic inequalities, Income and growth. Social development: Poverty, conceptual issues and measures, impact of poverty,

TOTAL: 45 PERIODS

# **COURSE OUTCOMES:**

Upon completion of this course, the students will be able to

CO1: Understand the prevailing energy scenario

CO2: Familiarise on energy audits and its relevance

CO3: Apply the concept of energy audit on thermal utilities

CO4: Employ relevant techniques for energy improvement in electrical utilities

CO5: Understand Sustainable development and its impact on human resource development

#### **REFERENCES:**

- Energy Manager Training Manual (4Volumes) available at http://www.emea.org/gbook1.asp, a website administered by Bureau of Energy Efficiency (BEE), a statutory body under Ministry of Power, Government of India.2004
- 2. Eastop.T.D& Croft D.R, "Energy Efficiency for Engineers and Technologists", Logman Scientific & Technical, ISBN-0-582-03184, 1990
- 3. W.R. Murphy and G. McKay "Energy Management" Butterworths, London 1987
- 4. Pratap Bhattacharyya, "Climate Change and Greenhouse Gas Emission", New India Publishing Agency- Nipa, 2020

- 5. Matthew John Franchetti, Defne Apul "Carbon Footprint Analysis: Concepts, Methods, Implementation, and Case Studies" CRC Press,2012
- 6. Robert A. Ristinen, Jack J. Kraushaar, Jeffrey T. Brack, "Energy and the Environment", 4th Edition, Wiley, 2022
- 7. M.H. Fulekar, Bhawana Pathak, R K Kale, "Environment and Sustainable Development" Springer, 2016
- 8. Sustainable development in India: Stocktaking in the run up to Rio+20: Report prepared by TERI for MoEF, 2011.

